©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

TEST PAPER 10

Exercise

1. Let $f(x)=2 \ln x$ and $g(x)=\ln x^{2}$.Do you
think $f=g$? Justify
2. If $\cot ^{-1} x+\frac{\sin ^{-1} 1}{\sqrt{5}}=\frac{\pi}{4}$ then what is the value of x.

D Watch Video Solution

3. If $A=\left(\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ then find

A - alpha I, alpha in R.

D Watch Video Solution
4. Evaluate $[[-6,0,0],[3,-5,7],[2,8,11]$

D Watch Video Solution

5. Give example of a function whose is continuous but not differentiable at $\mathrm{x}=2$.

D Watch Video Solution

6. Is there any tangent to the curve
$y=|2 x-1|$ at $\left(\frac{1}{2}, 0\right) ?$

- Watch Video Solution

7. Find the primitive of : $\frac{x+1}{x}$

- Watch Video Solution

8. Is $y=\frac{A}{x+A}$ a solution of the differential
equation $x \frac{d y}{d x}+y=y^{2}$.

- Watch Video Solution

9. Find the co-ordinates of the foot of the perpendicular drawn from origin to the plane, $x+y+z-1=0$.

D Watch Video Solution

10. Write the projection of $\hat{i}-\hat{j}$ in the direction of $\hat{i}-\hat{j}$.

D Watch Video Solution
11. Let $A=\{1,2,3)$. Then, show that the number of relations containing $(1,2)$ and $(2,3)$ which are reflexive and transitive but not symmetric is three.

D Watch Video Solution

12. A factory uses three different respurce for the manufacture of two different products, 20 units of the resource $A, 12$ units of B and 16 unit of C being available. One unit of the first
product requires 2,2 and 4 units of the resources and one unit of the second product requires 4,2 and 0 units of the resources taken in order. It is known that the first product gives a profit of ₹20 per unit and the second ₹ 30 prt uniy. Formulate the LPP so as to earn maximum profit.

D Watch Video Solution

13. Verify that $[A B]^{T}=B^{T} A^{T} \quad$ where
$A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 6 & 7 & 8 \\ 6 & -3 & 4\end{array}\right] B=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 4 & 2 \\ 5 & 6 & 1\end{array}\right]$.

- Watch Video Solution

14. Solve $x+2 y=3,3 x+y=4$ by matrix method.

- Watch Video Solution

15. $\begin{aligned} & \text { Prove } \\ & {\left[\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right]=\left(1-x^{3}\right)^{2}}\end{aligned}$ following

D Watch Video Solution
16. If $A=\left[\begin{array}{cc}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, show that for no values of $\alpha, A^{2}=B$.

D Watch Video Solution

17. Prove that $\left|\begin{array}{ccc}1 & b & b^{3} \\ 1 & c & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)$
$(a+b+c)$.

D Watch Video Solution

18. If $x^{7} y^{3}=(x+y)^{10}$, then find $\frac{d^{2} y}{d x^{2}}$

- Watch Video Solution

19. If tangents are drawn from the origin to
the curve $y=\sin x$, then show that the locus of
the points of contact is $x^{2} y^{2}=x^{2}-y^{2}$.

D Watch Video Solution

20. Integrate the following $\int \frac{3 x+4}{x \sqrt{2 x^{2}-5}} d x$

- Watch Video Solution

21. Evaluate $\int_{0}^{4}\left(x+e^{2 x}\right) d x$, as limit of sum.

- Watch Video Solution

22. Solve : $\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$

- Watch Video Solution

23. Solve the following differential equations
$\left(1-x^{2}\right) \frac{d y}{d x}+2 x y=x \sqrt{1-x^{2}}$

- Watch Video Solution

24. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

25. Prove that the lines joining the midpoints of consecutive sides of a quadrilateral form a parallelogram using vector method.

- Watch Video Solution

26. $\int_{0}^{1} \frac{x^{5}\left(4-x^{2}\right)}{\sqrt{1-x^{2}}} d x$

- Watch Video Solution

27. find the point of intersection of the line through ($1,3,-2$) and ($3,4,1$) with the plane $x-2 y+4 z=-1$.

- Watch Video Solution

28. Prove that the lines
$\frac{x+3}{2}=\frac{y+5}{3}=\frac{z-7}{-3}$
and
$\frac{x+1}{4}=\frac{y+1}{5}=\frac{z+1}{-1}$ are coplanar. Find
the equation of plane containing them.
29. Let R be the relation on the set R of real numbers such that $a R b$ iff $a-b$ is and integer.

Test whether R is an equivalence relation. If so
find the equivalence class of $\operatorname{land} \frac{1}{2}$ wrt. This equivalence relation.

D Watch Video Solution

30. Show that f: A to B , where $A=R-\{3\}$,
$B=R-\{1\}$ defined as $f(x)=\frac{x-2}{x-3}$ is
bijective. Find f^{-1}.
31. Find the particular solution of the differential equation
$d y$
$\frac{d y}{d x}+y \cot x=2 x+x^{2} \cot x$, given that
$y=0$ when $x=\frac{\pi}{2}$.

- Watch Video Solution

32. Prove that the curves
$y^{2}=4 x$ and $x^{2}=4 y$ divide the area of the
$x=0, x=4, y=4$ and $y=0$ into three equal parts.

- Watch Video Solution

33. A line with direction ratios $\langle 2,1,2\rangle$ meets each of the lines $x=y+a=z$ and $x+a=2 y=2 z$. Find the co-ordinates of the points of intersection.
