©゙" doubtnut

MATHS

BOOKS - MODERN PUBLICATION

TEST PAPER 2

Problem

1. Let $f: R \rightarrow R$ defined by $f(x)=x+1$ and
$g: R \rightarrow R$ defined as $g(x)=\sqrt{x}$ find $f o g$ and $g o f$ if defined.
2. Express the value of $\operatorname{cosec}\left(\cos ^{-1} \frac{3}{5}+\cos ^{-1} \frac{4}{5}\right)$ in simplest form.

- Watch Video Solution

3. Find x and y :
$\left[\begin{array}{cc}x & -2 y \\ 0 & -2\end{array}\right]=\left[\begin{array}{ll}1 & -8 \\ 0 & -2\end{array}\right]$

- Watch Video Solution

4. If ω is a complex cube root of 1 , then for what value of. lamda the determinant $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \lambda & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|=0$?

- Watch Video Solution

5. What is the derivative of $\cos ^{-1}\left(2 x^{2}-1\right)$ if $x \in$
$(-1,0)$.

D Watch Video Solution

6. Write the interval in which $y=\ln x, x \operatorname{in} R_{+}$is increasing, decreasing.
7. Evaluate $\int_{0}^{2}|x-2| d x$

- Watch Video Solution

8. What is the differential equation whose solution is
$y=3 x+k ?$
9. if $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ the what is the relation between \vec{a} and \vec{b} ?

- Watch Video Solution

10. Write the equation of the plane perpendicular to
z-axis and passing through ${ }^{`}(1,-2,4)$.

- Watch Video Solution

11. let $f: A \rightarrow B$ is a bijective function. Do you think $f^{-1}: B \rightarrow A$ is also bijective? justify your answer.
12. Prove that $f: X \rightarrow Y$ is injective iff for all subsets A, B of $X, f(A \cap B)=f(A) \cap f(B)$.

- Watch Video Solution

13. Find the number of equivalence, relations on $X=$
$\{1,2,3)$,

- Watch Video Solution

14. Find the inverse of the following matrices using elementary transformation
$\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$

D Watch Video Solution

15. Verify that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ satisfies
the
equation
$A^{2}-(a+d) A+(a d-b c) I=0$ where I is the 2 x
2 unit matrix.

$$
\begin{aligned}
& \text { 16. } \\
& \text { Prove } \\
& {\left[\begin{array}{lll}
b+c & c+a & a+b \\
q+r & r+p & p+q \\
y+z & z+x & x+y
\end{array}\right]=2\left[\begin{array}{lll}
a & b & c \\
p & q & r \\
x & y & z
\end{array}\right]}
\end{aligned}
$$

- Watch Video Solution

17. Prove that the following. $\left[\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right]$
$=4 a b$

D Watch Video Solution
18. Find the inverse of the following matrix
$\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0\end{array}\right]$

- Watch Video Solution

19. Examine the continuity of the following functions
at indicated points.
$f(x)=\left\{\begin{array}{l}\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1} \text { if } x \neq 0 a t x=0 \\ 0 \quad \text { if } x=0\end{array}\right.$

Watch Video Solution

20. if $x=e^{t} \sin t$ and $y=e^{t} \cos t$, then prove that
$(x+y)^{2} \frac{d^{2} y}{d x^{2}}=2\left(x \frac{d y}{d x}-y\right)$.

- Watch Video Solution

21. Differentiate.
$x^{\sin x}+(\tan x)^{x}$

- Watch Video Solution

22. Find the equation of the normal at a point on the
curve $x^{2}=4 y$, which passes through the point $(1,2)$.

Also, find the equation of the corresponding tangent.

- Watch Video Solution

23. etermine the sub-interval of $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, in which $f(x)=\tan x-4 x$ is increasing.

- Watch Video Solution

24. Integrate the following $\int \frac{x+3}{5-x^{2}-4 x}$

D Watch Video Solution

25. $\int_{0}^{2}\left[x^{2}\right] d x$

- Watch Video Solution

26. Evaluate $\int_{0}^{\pi / 4} \log (1+\tan x) d x$.

D Watch Video Solution

27. Solve the following differential equations
$\frac{d y}{d x}+\frac{y}{x}=x^{2}, y(1)=1$
D Watch Video Solution
28. Show that the vector area of the triangle whosse vertices have position vector $\vec{a}, \vec{b}, \vec{c}$ is $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$.

- Watch Video Solution

29. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

- Watch Video Solution

30. Find the co-ordinates of the point where the line joining $(3,4,-5)$ and $(2,-3,1)$ meets the plane

$2 x+y+z-7=0$.

- Watch Video Solution

31. Passing throughthe point $(2,-3,1)$ and ($-1,1-7$) and perpendicular to the plane $x-2 y+5 z+1=0$.

- Watch Video Solution

32. Find the direction cosines of the line which is perpendicular to the lines whose direction ratios are <1,-2,3> and <2,2,1>.
33. Prove that $\mathrm{f}: X \rightarrow Y$ is surjective iff for all
$A \subseteq X,(f(A))^{\prime} \subseteq f\left(A^{\prime}\right)$, where A^{\prime} denotes the complement of A in X .

D Watch Video Solution

34. Find the inverse of $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$ using elementary operations.

$$
\left.\begin{array}{ccc}
(v+w)^{2} & u^{2} & u^{2} \\
v^{2} & (w+u)^{2} & v^{2} \\
w^{2} & w^{2} & (u+v)^{2}
\end{array} \right\rvert\,=2 u v w(u+v+w)^{3}
$$

- Watch Video Solution

36. Find the points on the curve $y=x^{2}+1$ which are nearest to the point $(0,2)$.

- Watch Video Solution

37. Evaluate $\int_{0}^{\pi} \frac{x}{1+\sin x} d x$
38. Find the area of the regions into which the circle $x^{2}+y^{2}=4$ is divided by the line $x+\sqrt{3} y=2$.

- Watch Video Solution

39. Find the solution of the following differential equations:
$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$

- Watch Video Solution

41. A variable plane meets the coordinate axes at P,
Q, R points. If the plane passes through a fixed point ($\mathrm{a}, \mathrm{b}, \mathrm{c}$), prove that the centre of the shpere passing the origin and $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ will lie on the surface $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$
42. Write whether the following statements are true or false.

The equation $\tan ^{-1}(\cot x)=2 x$ has exactly two real solutions.

- Watch Video Solution

43. Show that the operation * given by $x^{*} y=x+y+-x y$ is a binary oeration on Z, Q and R but not on N .

$$
\left[\begin{array}{ccc}
x+1 & \omega & \omega^{2} \\
\omega & x+\omega^{2} & 1 \\
\omega^{2} & 1 & x+\omega
\end{array}\right]
$$

$=0$

- Watch Video Solution

45. If $f^{\prime}(x)=\sqrt{2 x^{2}-1}$ and $y=f\left(x^{2}\right)$ then what
is $\frac{d y}{d x}$ at $\mathrm{x}=1$?

- Watch Video Solution

46. Find the extreme points of the function $y=x+\frac{1}{x}$.
47. What is the differential equation whose solution is $y=c(\sin x+\cos x)$?

D Watch Video Solution

48. For what value of λ, the vectors $\lambda \hat{i}+3 \hat{j}+\lambda \hat{k}$ and $\lambda \hat{i}-2 \hat{j}+\hat{k}$ are perpendicular to each others.
49. Let A and B be sets.

Show that $\mathrm{f}: A \times B \rightarrow B \times A$ such that $\mathrm{f}(\mathrm{a}, \mathrm{b})=$ (b,a) is bijective function .

- Watch Video Solution

50. Maximise $Z=50 x_{1}+60 x_{2}$

Subject to $2 x_{1}+3 x_{2} \leq 6, x_{1}, x_{2} \geq 0$.

- Watch Video Solution

51. Let \sim be defined by $(m, n) \sim(p, q)$ if $m q=n p$ where m,
$\mathrm{n}, \mathrm{p}, q \in Z-\{0\}$. Show that it is an equivalence
relation.

- Watch Video Solution

52. If $A=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$
and $C=\left[\begin{array}{ccc}1 & 0 & 2 \\ -2 & 3 & 0\end{array}\right]$,verify (A+B)C=AC+BC

- Watch Video Solution

53. Prove that all the diagonal elements of a skew symmetric matrix are zero .
54. If x, y, z are positive and are the p th, q th and r th terms of a G.P. then prove that
$\left|\begin{array}{lll}\log x & p & 1 \\ \log y & q & 1 \\ \log z & r & 1\end{array}\right|=0$

D Watch Video Solution
55. Answer the following:

What is the value of $\left[\begin{array}{ccc}o & -h & -g \\ h & o & -f \\ g & f & o\end{array}\right]$?

- Watch Video Solution

56. Show that no two normals to a parabola are parallel.

- Watch Video Solution

57. Find the intervals where the following functions
are (a) increasing and (b) decreasing.
$y=\sin x+\cos x, x \in[0,2 \pi]$

- Watch Video Solution

58. Find $\int\left(\frac{\cos x}{\sin ^{2} x}+\sin x\right) d x$
59. Evaluate : $\int_{0}^{\frac{\pi}{4}} \frac{d x}{\cos x}(\cos x+\sin x)$.

- Watch Video Solution

60. Find the differential equation whose general soltution is $c_{1} x^{2}+c_{2} y=1$ where c_{1}, c_{2} are arbitrary constants.

- Watch Video Solution

61. Find the area of the region bounded by the curve $y=6 x-x^{2}$, the X-axis and the two ordinates $x=0$ and $x=9$.

- Watch Video Solution

62. Prove the following by vector method. The parallelogram whose diagonals are equal is a rectangle.
63. Prove that the two lines whose direction cosines
are connected by the equations
$l+2 m+3 n=0,3 l m-4 \ln +m n=0 \quad$ are
perpendicular to each other.

- Watch Video Solution

64. A variable plane meets the coordinate axes at A,
B, C and is at a constant distance d from origin.
Prove that the locus of the centroid of the triangle
ABC is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{9}{d^{2}}$
65. Find the equation of the line through the point
$(3,-1,2)$ and parallel to the planes $x+y+2 z-4=0$ and $2 x-3 y+z+3=0$

D Watch Video Solution

66. If N denotes the set of all natural numbers and R be the relation on $N \times N$ defined by (a, b) R (c, d) if $a d(b+c)=b c(a+d)$. Show that R is an equivalence relation.

- Watch Video Solution

67. If a, b and c are all positive real, then prove that minimum value of determinant
$\left|\begin{array}{lll}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ a c & b c & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$

D Watch Video Solution

68. Solve the following system of equations by the matrix inversion method.
$x+y+z=4$
$2 x-y+3 z=1$
and $3 x+2 y-z=1$
69. Find the inverse of $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$ using elementary operations.

- Watch Video Solution

70. Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.

(Watch Video Solution

71. Evaluate : $\int \frac{d x}{\cos x}(5+3 \cos x)$.

- Watch Video Solution

72. Find the area of the parallelogram whose diagonals are the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$?

- Watch Video Solution

73. For an vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, prove that
$\vec{r}=(\vec{r} \cdot \hat{i}) \hat{i}+(\vec{r} \cdot \hat{j}) \hat{j}+(\vec{r} \cdot \hat{k}) \hat{k}$

- Watch Video Solution

74. Find the equation of plane through the point
$(2,0,-3)$ and containing the line
$3 x+y+z-5=0=x-2 y+4 z+4$

- Watch Video Solution

