©゙" doubtnut

MATHS

BOOKS - MODERN PUBLICATION

TEST PAPER 3

Problem

1. Let $f: R \rightarrow R$ defined by $f(x)=x+1$ and
$g: R \rightarrow R$ defined as $g(x)=\sqrt{x}$ find $f o g$ and $g o f$
if defined.
2. Find the value of
$\cos ^{-1}\left(\frac{-7}{25}\right)+\cos ^{-1}\left(\frac{3}{5}\right)$.

- Watch Video Solution

3. If $\left|\begin{array}{ccc}a & b & c \\ b & a & b \\ x & b & c\end{array}\right|=0$ then $\mathrm{x}=$

- Watch Video Solution

4. If A is a square matrix of order 3 and $|A|=3$,then write the matrix represented by A.Adj A.

- Watch Video Solution

5. Differentiate $\tan ^{-1} \mathrm{x}$ w.r.t $\cot ^{-1}\left(\frac{1}{x}\right)$

- Watch Video Solution

6. Write the set of values of x for which the function
$f(x)=\sin x-x$ is increasing.
7. State order and degree of $\left(Y^{\prime \prime}\right)^{2}+\cos \left(Y^{\prime}\right)$

- Watch Video Solution

8. If $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \times \vec{b}|$ then angle between them is

D Watch Video Solution

9. Find the value of λ so that the vectors \vec{a} and \vec{b} are perpendicular to each other. $\vec{a}=(6,2,-3), \vec{b}=$ $(1,-4, \lambda)$
10. Show that the relation S defined on set $N \times N$ by $(a, b) S(c, d) \Rightarrow a+d=b+c$ is an equivalence relation.

- Watch Video Solution

11. A trust fund has Rs. 50,000 that is to be invested in two types of bonds. The first and second bonds respectively pay annual interest at the rate of 5% and 6% respectively .Using matrix multiplication,
determine how to invest the money in these bonds
so as to get a total annual interest of Rs. 2780 .

- Watch Video Solution

12. Find the inverse of the following matrices using
elementary transformation:
$\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$

- Watch Video Solution

- Watch Video Solution

> 14. If $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$ then show that $A^{k}=\left[\begin{array}{ll}1+2 k & -4 k \\ k & 1-2 k\end{array}\right], k \varepsilon N$

- Watch Video Solution

15. If $y=\operatorname{In}\left(x^{2}+y^{2}\right)$,then find $\frac{d y}{d x}$.

- Watch Video Solution

16. If $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$,then find $\frac{d^{2} y}{d x^{2}}$

D Watch Video Solution

17. Test the differentiability and continuity of the
following function at $\mathrm{x}=0: f(x)= \begin{cases}\frac{1-e^{-x}}{x} & x \neq 0 \\ 1 & x=0\end{cases}$
18. Determine the interval in which the function $f(x)$
$=x^{3}-5 x^{2}+3 x+97$ is decreasing and that in which it is increasing.

D Watch Video Solution

19. $\int_{0}^{\pi}|\cos x| d x$

D Watch Video Solution
20. Solve : $\left(1+y^{2}\right) \cdot d x+x d y=\tan ^{-1} y d y$
21. A plane meets the coordinate axes at A, B and C respectivély. If the centroid of the triangle $A B C$ is $(-1$, $2,5)$ then find the equation of the plane.

- Watch Video Solution

22. Prove by vector method that in any triangle $A B C$,
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

- Watch Video Solution

23. Prove that the acute angle between the lines
whose direction cosines are given by the relation
$l+m+n=0$ and $l^{2}+m^{2}-n^{2}=0$ and $\frac{\pi}{3}$

- Watch Video Solution

24. Let $f: W \rightarrow W$ be defined as $f(x)=x-1$ if x is
odd and $f(x)=x+1$ if x is even then show that f is
invertible. Find the inverse of f where W is the set of
all whole numbers.

- Watch Video Solution

25. Constract the composition table/multiplication table for the binary operation * defined on $\{0,1,2,3,4\}$ by $a * b=a \times b(\bmod =5)$. Find the identity element if any. Also find the inverse elements of 2 and 4.

- Watch Video Solution

26. Let $\mathrm{A}=\left(\begin{array}{l}122 \\ 212 \\ 221\end{array}\right)$.Find $\mathrm{A}^{\wedge}-1$ and hence show $A^{2}-4 A-5 I=0$.
27.

$$
\left[\begin{array}{ccc}
b^{2}+c^{2} & a b & a c \\
a b & c^{2}+a^{2} & b c \\
c a & c b & a^{2}+b^{2}
\end{array}\right]=4 a^{2} b^{2} c^{2}
$$

- Watch Video Solution

28. Show that the sum of the intercepts on the
coordinate axes of any tangent to the curve
$\sqrt{x}+\sqrt{y}=\sqrt{a}$ is constant.

D
Watch Video Solution
29. Shows that the triangle of greatest area that can be inscribed in a circle is equilateral.

- Watch Video Solution

30. Find the area of the région on closed between
$y=4 x-1$ and $y^{2}=2 x$

- Watch Video Solution

31. Write fog if $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: R \rightarrow R$ is given by

$$
f(x)=|x| \text { and } g(x)=|5 x-2| .
$$

32.

Evaluate
$\tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)+\cot ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\tan ^{-1}\left(\sin \left(-\frac{\pi}{2}\right)\right)$

- Watch Video Solution

33. If $|a d j A|=64$ then find $|A|$
34. Evaluate the following : $\left[\begin{array}{ccc}\sin ^{2} \theta & \cos ^{2} \theta & 1 \\ \cos ^{2} \theta & \sin ^{2} \theta & 1 \\ -10 & 12 & 2\end{array}\right]$

- Watch Video Solution

35. A differentiable function f defined for all $x>0$
and satisfies $f\left(x^{2}\right)=x^{3}$ for all $\mathrm{x}>0$. What is the value $f^{\prime}(16)$?

- Watch Video Solution

36. Write the minimum value of y_{2} where

$$
y=\sin ^{2} x \cos ^{2} x
$$

- Watch Video Solution

37. Evaluate $\int_{-1}^{1} e^{|x|} d x$

- Watch Video Solution

38. Write the vector equation ofthe plane whose
cartesian equation is $x+y+2 z=1$.

D Watch Video Solution
39. Let $A(1,2,3)$. Then, find the number of equivalence relations containing (1,2).

- Watch Video Solution

40. Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow R$ be two functions defined as $\mathrm{f}(\mathrm{x})$
$=|\mathrm{x}|+\mathrm{x}$ and $\mathrm{g}(\mathrm{x})=|\mathrm{x}|-\mathrm{x} \forall x \in R$.
Then find fog and gof.
41. Solve the following : $\left[\begin{array}{ccc}x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right]$
$=0$

- Watch Video Solution

> 42. If the matrix A is such that $\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right] A=\left[\begin{array}{cc}-4 & 1 \\ 7 & 7\end{array}\right]$, find A .

- Watch Video Solution

43. Find the values of a and b, if the function f
defined as $f(x) \begin{cases}x^{2}+3 x+a & \text { if } x \leq 1 \\ b x+2 & \text { if } x>1\end{cases}$
diffentiable at $x=1$

- Watch Video Solution

44. Differentiate with respect to x :

$$
y=3^{x^{2}}+\tan ^{-1}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)
$$

45. Find the $d y / d x$ when
$\cos x=\sqrt{\frac{1}{1+t^{2}}}, \sin y=\frac{2 t}{1+t^{2}}$

D Watch Video Solution

46. Show that the line $y=m x+c$ touches the
parabola $y^{2}=4 \mathrm{ax}$ if $\mathrm{c}=\frac{a}{m}$.

D Watch Video Solution

47. Show that $2 \sin x+\tan x \geq 3 x$ for all $x \varepsilon\left(0, \frac{\pi}{2}\right)$.
48. Evaluate : $\int \frac{x e^{x}}{(x+1)^{2}} d x$

- Watch Video Solution

49. Evaluate the following integrals
$\int\left(x^{2}\right) \frac{d x}{\left(x^{2}+3\right)\left(x^{2}+2\right)}$

- Watch Video Solution

50. Solve : $\frac{d y}{d x}+1=e^{x+y}$
51. Solve : $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$.

- Watch Video Solution

52. Find the equation of the plane passing through the points (2,1,3), $(3,2,1)$ and $(1,0,-1)$.

- Watch Video Solution

53. Find the image of the point $(3,-2,1)$ in the plane $x-y+3 z=2$.
54. Determine k such that a vector \vec{r} is at right angles to each of the vectors
$\vec{a}=k \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-k \hat{k} \quad$ and
$\vec{c}=-2 \hat{i}+k \hat{j}+3 \hat{k}$.

- Watch Video Solution

55. Find the foot of the perpendicular drawn from
the point $(5,7,3)$
to the
line
$\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$. Find the length of
the perpendicular.
56. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove that gof is bijective if both f and g are bijective. Also prove that $(g \circ f)^{-1}=f^{-1} o g^{-1}$.

D Watch Video Solution

57. Find the product of matrices A and B, where $A=$

$$
\left[\begin{array}{ccc}
-5 & 1 & 3 \\
7 & 1 & -5 \\
1 & -1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 1 & 2 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right] \text { Hence solve }
$$

the following equations by matrix method,

- Watch Video Solution

58. Show that

$$
\left|\begin{array}{lll}
(b+c)^{2} & a^{2} & a^{2} \\
b^{2} & (c+a)^{2} & b^{2} \\
c^{2} & c^{2} & (a+b)^{2}
\end{array}\right|=2 a b c(a+b+c)^{3}
$$

- Watch Video Solution

59. Find the inverse of the following matrices using
elementary transformation
```
\(\left[\begin{array}{lll}3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2\end{array}\right]\)
```


- Watch Video Solution

60. If $x=a \cos \theta+b \sin \theta$ and $y=a \sin \theta-b \cos \theta$,
then show that $y^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0$

- Watch Video Solution

61. Find the equation of the normal at a point on
the curve $x^{2}=4 y$, which passes through the point
(1, 2). Also, find the equation of the corresponding tangent.

- Watch Video Solution

62. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line
$\frac{x}{a}+\frac{y}{b}=1$

- Watch Video Solution

63. Prove analytically : The perpendicular bisector of the sides of a triangle are concurrent.
