©゙"doubtnut

MATHS

BOOKS - MODERN PUBLICATION

TEST PAPER 6

Exercise

1. For real numbers x and y, define $x R y$ if and only if $x-y+\sqrt{2}$ is an irrational number. Is R transitive? Explain your answer.

D Watch Video Solution
2. Find the least value of n for whichtan $^{-1}\left(\frac{n}{\pi}\right)>\frac{\pi}{4}, \mathrm{n}$ varepsilon N is valid.

- Watch Video Solution

3. If matrix $A=\left[\begin{array}{ll}1 & -1 \\ -1 & 1\end{array}\right]$ and $A^{2}=k A$, then write the value of k.

- Watch Video Solution

4.

$\left|\begin{array}{lll}1+x & x & x^{2} \\ x & 1+x & x^{2} \\ x^{2} & x & 1+x\end{array}\right|=a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}$ then write the value of a.
5. If $\mathrm{x} \in\left(\frac{3 \pi}{4}, \pi\right)$ what is $\frac{d y}{d x}$ for $\mathrm{y}=|\cos \mathrm{x}|+|\sin \mathrm{x}|$?

(D) Watch Video Solution

6. Give example of a function which is increasing in $(-\infty, 2)$ and $(3, \infty)$ and decreases in $(2,3)$.

- Watch Video Solution

7. What is the value of $\int e^{x} d x$.
8. Write the solution of $\sqrt{3} x+\frac{d y}{d x}=2$.

(D) Watch Video Solution

9. Write the equation of the line passing through the points
$(3,-2,-5)$ and ${ }^{`}(3,-2,6)$.

- Watch Video Solution

10. Find the volume of parallelopiped with edges
$2 \vec{i}-3 \vec{j}, \vec{i}+\vec{j}-\vec{k}$ and $3 \vec{i}-\vec{k}$.

- Watch Video Solution

11. Show that the relation R on the set $A=\{1,2,3,4,5)$ given by R
$=\{(a, b): \mid a-b l$ is even $)\}$ is an equivalence relation. Also, show that all elements of $(1,3,5)$ are related to each other and all the elements of $(2,4)$ are related to each other, but no element of $(1,3,5)$ is related to any element of $(2,4)$.

D Watch Video Solution

12. Consider $\mathrm{f}: R_{+}[4, \infty]$ is given by $\mathrm{f}(\mathrm{x})=x^{2}+4$. Show that f is invertible with the inverses f^{-1} of f given by $f^{-1}(y)=\sqrt{y-4}$, where R_{+}, is the set of all non-negative real numbers.

- Watch Video Solution

13. A merchant sells two models X and Y of TV with cost price
₹ 25000 and ₹ 50000 Per set respectively. He gets a profit of ₹ 1500 on model X and $₹ 2000$ on model Y. The sales connot exceed 20 sets in a month. If he cannot invest more than 6 lakh rupees, formulate the problem of determining the number of sets of each type he must keep in stock for maximum profit.

D Watch Video Solution

14. A binary operation * is defined on the set
$X=R-\{-1\}$ by $x * y=x+y+x y, \forall x, y \in X$.
Check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X.

- Watch Video Solution

15. Prove that the following. $\left[\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right]=4 \mathrm{ab}$

D Watch Video Solution

16. Using determinants, find the values of a if the area of triangle with vertices ($a, 0$),(4,0),(0,2) is 4 sq. units.

(D) Watch Video Solution

17. If A, B, C are matrices of order 2×2 each and
$2 A+B+C=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$
$A+B+C=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$
$A+B-C=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ find A, B and C .

- Watch Video Solution

18. Using properties of determinant prove that $\left|\begin{array}{lll}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right|=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)$

(D) Watch Video Solution

19. Differentiate $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$.

- Watch Video Solution

20. Examine continuity and differentiability $f(x)=$ $\left\{\begin{array}{ll}x \frac{\sin 1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ at $x=0$.

- Watch Video Solution

21. Find $\frac{d y}{d x}$ if $y=(\cos x)^{x}$.

- Watch Video Solution

22. Find the tangent to the curve
$y=\cos (x+y), 0 \leq x \leq 2 \pi$ which is parallel to the line $\mathrm{x}+$
$2 y=0$
23. Find the interval where
$y=\sin 2 x-\cos 2 x, x$ in $[0,2$ pi' $]$ is
(a) incresing (b) decreasing

- Watch Video Solution

24. Evaluate: $\int \frac{\sin x-x \cos x}{x(x+\sin x)} d x$.

(D) Watch Video Solution

25. Integrate: $\int \sin ^{-1} x d x$.

(D) Watch Video Solution

26. Find the particular solution of $d^{2} \frac{y}{d x^{2}}=2 x$,given that $\mathrm{x}=0, \mathrm{y}=2$ and $\frac{d y}{d x}=3$.

- Watch Video Solution

27. Solve :- $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$

(D) Watch Video Solution

28. If with reference to the eight handed system of mutually perpendicular unit vectors $\hat{i}, \hat{j}, \hat{k}, \vec{\alpha}=3 \hat{i}-\hat{j}, \beta=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta}=\overrightarrow{\beta_{1}}+\overrightarrow{\beta_{2}}$, where $\overrightarrow{\beta_{1}}$ is parallel to $\vec{\alpha}$ and $\overrightarrow{\beta_{2}}$ is perpendicular to $\vec{\alpha}$.
29. If $\vec{a}=(2,3,6), \vec{b}=(2,-2,1), \vec{c}=(-1,0,2)$, find the direction cosines of $\vec{b}-\vec{a}+2 \vec{c}$ and the unit vector in direction of $\vec{b}-\vec{a}+2 \vec{c}$.

- Watch Video Solution

30. Find the equation of the plane passing through $(1,3,4),(2,1 .-1)$ and $(1,-4,3)$.

- Watch Video Solution

31. Find the equation of the plane passing through the line $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and the point $(1,2,-4)$.
32. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\frac{x-2}{2}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=5$.

- Watch Video Solution

33. Let $A=R \times R$ and be the binary operation on A defined by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$. Show that *is commutative and associative. Find the identity element for* on A , if any.

- Watch Video Solution

34. Let $\mathrm{A}=\mathrm{R}-\{3 / 5\} \operatorname{Brf}: A \rightarrow A$ defined as $f(x)=\frac{3 x+2}{5 x-3}$. Br show that is invertible, hence find $\mathrm{f}^{\wedge}-1$.

D Watch Video Solution

35. Prove the following:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a x-b y-c z & a y+b x & a z+c x \\
b x+a y & b y-c z-a x & b z+c y \\
c x+a z & a y+b z & c z-a x-b y
\end{array}\right| \\
& =\left(a^{2}+b^{2}+c^{2}\right)(a x+b y+c z)\left(x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

- Watch Video Solution

36. Find the inverse of the following matrices using elementary transformation
```
\[
\left[\begin{array}{lll}
3 & -2 & 3 \\
2 & 1 & -1 \\
4 & -3 & 2
\end{array}\right]
\]
```


D Watch Video Solution

37. Show that the homogenous system of equations
$x-2 y+z=0 x+y-z=0$
$3 x+6 y-5 z=0$
hasanon - trivalsolution. Alsof \in dthesolution.

- Watch Video Solution

38.

(i) if $x=\sin t, y=\sin p t$, then show that
$\left(1-x^{2}\right) d^{2} \frac{y}{d x^{2}}-x \frac{d y}{d x}+p^{2} y=0$.
BrDeter \min ethed \Leftrightarrow erentialsof $\mathrm{z}=\cos 2 \mathrm{t}-2 \cot \mathrm{t}$.
39. A cylindrical open water tank with a circular base is to be made out of 30 sq metres of metal sheet. Find the dimensions so that it can hold maximum water. (Neglect thickness of sheet).

- Watch Video Solution

40. Evaluate $\int \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$

- Watch Video Solution

41. Determine the area of the region bounded by $y^{2}=4 a x$ by the double ordinate through $(3,0)$.
42. Prove by vector method that in any triangle $A B C$, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

- Watch Video Solution

43. Show that the lines $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ and $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ are coplaner. Find their point of intersection.

- Watch Video Solution

