

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

TEST PAPER 7

Exercise

- **1.** Find the least positive integer r such that $-375 \in [r]_{11}$
 - Watch Video Solution

- **2.** Express the value of $\sin^{-1}\frac{1}{\sqrt{5}}+\cos(\,-1)\frac{3}{\sqrt{10}}$ in simplest form.
 - Watch Video Solution

3. Find B if
$$B^2=\begin{bmatrix}17&8\\8&17\end{bmatrix}$$

4. if A is a 3×3 matrix and $|\mathsf{A}|$ = 3, then write the matric represented by

$$A imes adjA$$
.

- **5.** If $y=5^t$ and $t=e^{3x}$. Write the value of $\dfrac{dy}{dx}$ at x= 0
 - Watch Video Solution

6. Write the absolute maximum and absolute minimum of the function x

$$f(x)=rac{x}{|x|}$$
 in $[\,-2,2].$

7.
$$\int \frac{dx}{e^x + e^{-x}} =$$
____.

Watch Video Solution

8. Evaluate $\int_0^{1000} e^{x-\left[x ight]} dx$

Watch Video Solution

- 9. Write the parameteric equation of a line through parallel to the vector
- $3i + j \acute{\mathrm{E}}.$

View Text Solution

- **10.** If $lpha \hat{i} + 3\hat{j} \hat{k}$ and $2\hat{i} + \hat{j} rac{1}{3}\hat{k}$ are parallel then find lpha .
 - Watch Video Solution

11. Let A = R-{2} and B = R - {1}. If $f: A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$ then show that f is one-one and onto. Hence, find f^{-1} .

Watch Video Solution

12. Given a non-empty set X, Let *: $P(x) \times P(x)$ be defined as $A*B=(A-B)\cup (B-A), \ \forall A,B\in P(x).$ Show that the empty set ϕ is the identity for the operation * and all the elements A of p(x) are invertible with $A^{-1}=A$.

13. Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) R (u, v), if and only if xv = yu. Show that R is an equivalence relation.

14. Let R be the relation on the set R of real numbers such that aRb iff a-b is and integer. Test whether R is an equivalence relation. If so find the equivalence class of 1 and $\frac{1}{2}$ wrt. This equivalence relation.

15. An animal feed company must produce 200kg of a mixture consisting of ingredients A and B. The-ingredient A costs Rs.3 per kg and B costs 5 per kg. No more than 80 kg of A can be used and at least 60 kg of B must be used. Formulate the problem to minimise the cost of mixture.

16. Prove that
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \text{ or } (abc+bc+ca+ab)$$

17. If $A=egin{bmatrix} 3 & -4 \ 1 & -1 \end{bmatrix}$ then show that $A^k=egin{bmatrix} 1+2k & -4k \ k & 1-2k \end{bmatrix}, karepsilon N$

$$\begin{bmatrix} x & a & b \\ a & y & c \\ b & c & z \end{bmatrix}$$

19. Prove the following :
$$\begin{bmatrix} \sin \alpha & \cos \alpha & \cos(\alpha + \delta) \\ \sin \beta & \cos \beta & \cos(\beta + \delta) \\ \sin \alpha & \cos \gamma & \cos(\gamma + \delta) \end{bmatrix} = 0$$

Watch Video Solution

20. Test differentiability of the following function at the indicated points.

$$f(x) = \left\{ egin{array}{ll} 1 - 2x & x \leq rac{1}{2} \ x - rac{1}{2} & x > rac{1}{2} \end{array}
ight. at x = rac{1}{2}$$

21. if
$$x=e^t\sin t$$
 and $y=e^t\cos t$, then prove that $(x+y)^2rac{d^2y}{dx^2}=2\Big(xrac{dy}{dx}-y\Big).$

Watch Video Solution

22. If sin(x + y) = y cos(x + y) then prove that

$$rac{dy}{dx} = -rac{1+y^2}{y^2}$$

- **23.** If tangents are drawn from the origin to the curve y = $\sin x$ then show that the locus of the point of contact is $x^2y^2=x^2-y^2$.
 - Watch Video Solution

24. Test the function $y = (x - 5)^5 (x + 2)^2$ for extreme values.

25. Evaluate : $\int \left(\frac{\sin x \cos x}{\sin 2x} - 2 \sin x + 3 \right) dx$.

26.
$$\int_0^{\frac{\pi}{2}} \frac{\cos x dx}{(\sin x + 1)(\sin x + 2)}$$

27. Solve : $\left(x+2y^3\right)\frac{dy}{dx}=y$.

- **28.** Find the general solution of $\frac{dy}{du}$ = $u + \frac{1}{\sqrt{u}} + 6u + 5$.
 - Watch Video Solution

- **29.** Prove the following by vector method. The diagonals of a rhombus are at right angles.
 - Watch Video Solution

- **30.** Find the equation of the plane passing through the line of intersection of the planes. x+3y+6=0, 3x-y-4z=0 and the point (1,1,1) .
 - Watch Video Solution

31. Find the image of the point (3,5,7) with respect to the plane 2x+y+z=6.

32. Obtain the equation of the line through the point (1, 2, 3) and parallel to the line x - y + 2z - 5 = 0, 3x + y + z = -6

33. Find the inverse of the following matrices using elementary transformation

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

34. Prove the following:

$$\begin{bmatrix} b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ac & c - a & ab - a^2 \end{bmatrix} = 0$$

35. Evaluate : $\int \frac{\ln(1+x)}{1+x} dx$

Watch Video Solution

36. Solve: $x \frac{dy}{dx} + y = y^2 \ln x$

Watch Video Solution

37. Find the area of the région on closed between y=4x-1 and $y^2=2x$

Watch Video Solution

38. Prove that $lveca+vecbl \leq ssthan \ or \ equal | lveca| + | lvecb|$.

39. Find the area of the parallelogram whose diagonals are vectors

$$3\hat{i}+\hat{j}-2\hat{k}$$
 and $\hat{i}-3\hat{j}+4\hat{k}$.

