©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

TEST PAPER 9

Exercise

1. Is the operation * on $\{0,1,2,3,4,5,6\}$ defined as
$a \cdot b=a+b(\bmod 7)$ a binary operation ?
(Justify)

- View Text Solution

2. Evaluate $\tan ^{-1} 2+\tan ^{-1} 3$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 3. Solve } \\
& {\left[\begin{array}{ccc}
0 & x-a & x-b \\
x+a & 0 & x-c \\
x+b & x+c & 0
\end{array}\right]=0}
\end{aligned}
$$

- Watch Video Solution

4. If $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 5 & 1 & x \\ 1 & 1 & 1\end{array}\right)$ is a singular matrix the, what is the value of x ?

- Watch Video Solution

5. Write the derivative of $y=\sec ^{-1}\left(e^{x}+1\right)$.

- Watch Video Solution

6. Write the set of points, where the function
$f(x)=x^{3}$ has relative (local) extreme.

- Watch Video Solution

7. Write the value of $\int_{0}^{\pi} \sin ^{8} x d x$

D Watch Video Solution
8. Write the order and degree of $e^{\frac{d y}{d x}}=x^{2}$.

- Watch Video Solution

9. In each of the problems given below, find the work done by a force \vec{F} acting on a particle, such that the particle is displaced from a point A to a point $B . \vec{F}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ $A(1,2,0), B(2,-1,3)$.

D Watch Video Solution

10. Find the vector equation of the line joining
$(2,1,3)$ and $(4,-2,5)$.
11. Test whether the relations are reflexive, symmetric or transitive on the sets specified.
$\mathrm{R}=\left\{(\mathrm{m}, \mathrm{n}): \frac{m}{n}\right.$ is a power of 5$\}$ on $\mathrm{Z}-\{0\}$.

- Watch Video Solution

12. Let $A=N \times N$ and let* be a binary operation on A defined by $(a, b) *(c, d)=(a d+b c, b d), \forall$
$(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{N} \times \mathrm{N}$. Show that
(i) * is commutative.
(ii) * is associative.
(iii) A has no identity element.

D Watch Video Solution

13. A factory uses three different respurce for the manufacture of two different products, 20 units of the resource $A, 12$ units of B and 16 unit of C being available. One unit of the first product requires 2,2 and 4 units of the resources and one unit of the second product requires 4,2 and 0 units of the resources taken
in order. It is known that the first product gives a profit of ₹20 per unit and the second ₹ 30 prt uniy. Formulate the LPP so as to earn maximum profit.

- Watch Video Solution

14. Let $A=\{1,2,3, \ldots, 9)$ and R be the relation on A
\times A defined by $(a, b) R(c, d)$, if $a+d=b+c$ for (a,
b), (c,d) in $A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class $(2,5)$.

Watch Video Solution

15.

$A=\left[\begin{array}{lll}1 & -2 & 2 \\ 3 & 1 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 4 \\ 1 & 2 \\ 3 & -1\end{array}\right]$
then verify that $(A B)^{T}=B^{T} A^{T}$.

D Watch Video Solution

16. Prove that the following. $\left[\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right]=$
$(b-c)(c-a)(a-b)(b c+c a+a b)$
17. If $A=\left[\begin{array}{lll}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]$, then find
$A^{3}-A^{2}$.

- Watch Video Solution

18. Prove that $\left[\begin{array}{lll}b^{2} c^{2} & b c & b+c \\ c^{2} a^{2} & c a & c+a \\ a^{2} b^{2} & a b & a+b\end{array}\right]=0$

D Watch Video Solution
19. Find "a" and "b" such that the function
$f(x)=\{3 a x+b, \quad$ if $x>1$
11 if $x=1$ iscont \in uous.
$5 a x-2 b, \quad$ if $\quad x<1$

D Watch Video Solution

20. If $y=\tan ^{-1} x$ then prove that
$\left(1+x^{2}\right) y_{2}+2 x y_{1}=0$.
Differentiate
$\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$ with respect to sqrt $1-x^{\wedge} 2^{\wedge}$.
21. Find the point (S) on the curve
$x=\frac{3 a t}{1+t^{2}}, y=\frac{3 a t^{2}}{1+t^{2}}$
where the tangent is perependicular to the line $4 x+3 y+5=0$.

- Watch Video Solution

22. Find the intervals in which the function
$y=\frac{\ln x}{x}$ is increasing and decreasing.
23. Evaluate $\left.\int(x+1) \frac{d x}{\sqrt{x^{2}+2 x-3}}\right)$

D Watch Video Solution

24. Evaluate: $\int_{0}^{2 \pi} \frac{d x}{1+e^{\sin x}}$.

- Watch Video Solution

25. Solve: $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-x^{3}=0$
26. If the sum of two unit vectors is a unit vectors find the magnitude of their difference.
(Watch Video Solution
27. Prove by vector method that in any
Δ A B C. $\mathrm{a}=\mathrm{b} \cos \mathrm{C}+\mathrm{c} \cos \mathrm{B}$.
(D) Watch Video Solution
28. Find the equation of the plane passing through $(1,3,4),(2,1 .-1)$ and $(1,-4,3)$.

D Watch Video Solution

29. Obtain the co-ordinates of the foot of the
perpendicular drawn from the point
$(3,-1,11) \rightarrow$ thel $\in e x / 2=(y-2) / 3=(z-3) / 4$
Obtain the equation of the perpendicular also.

D Watch Video Solution

30. Let $A=R \times R$ and be the binary operation on A defined by $(a, b)^{*}(c, d)=(a+c, b+d)$.

Show that *is commutative and associative.

Find the identity element for* on A , if any.

D Watch Video Solution

31. Prove that $f: X \rightarrow Y$ is injective iff for all

$$
\subset s A, B o f X, f(A \cap B)=f(A) \cap f(B)
$$

32. Use matrix product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the
system of equation
$x-y+2 z=1$
$2 y-3 z=1$ and $3 x-2 y+4 z=2$

- Watch Video Solution

> 33. Prove $\left[\begin{array}{ccc}b^{2}+c^{2} & a b & a c \\ a b & c^{2}+a^{2} & b c \\ c a & c b & a^{2}+b^{2}\end{array}\right]=4 a^{2} b^{2} c^{2}$
34. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, prove that
$\left[\begin{array}{lll}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cot B & 1 \\ \sin ^{2} C & \cot C & 1\end{array}\right]=0$

- Watch Video Solution

35. Shows that the triangle of greatest area
that can be inscribed in a circle is equilateral.
(Watch Video Solution
36. Evaluate the following integrals
$\int \frac{d \theta}{2+3 \cos ^{2} \theta-4 \sin ^{2} \theta}$

D Watch Video Solution

37. Find the equation of the straight line perpendicular to the
line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-6}{7}$ and lyinng in the plane $x-2 y+4 z-51=0$.

D Watch Video Solution

