©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

VECTOR

Exercise

1. Find the unit vector in the direction of the vector
$2 \hat{i}-3 \hat{j}+4 \hat{k}$.

D Watch Video Solution
2. What is the projection of $\hat{i}+\hat{j}-\hat{k}$ upon the vector \hat{i} ?

- Watch Video Solution

3. Correct the error if any : A null vector has no direction.

- Watch Video Solution

4. Is $(\vec{a} \cdot \vec{b}) \vec{c}$ a vector quantity.

- Watch Video Solution

5. If $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=\hat{k}$ what is $\vec{a} \cdot \vec{b}$?
6. If $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=\hat{k}$ what is $\vec{a} \cdot \vec{b}$?

- Watch Video Solution

7. In each of the problems given below, find the work done by a force \vec{F} acting on a particle, such that the particle is displaced from a point A to a point $B . \vec{F}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ $A(1,2,0), B(2,-1,3)$.

D Watch Video Solution

8. If $|k \vec{a}|=1$ then the value of $k=$
9. If $\vec{a} \times \vec{b}=\widehat{n}$ then what is the angle between \vec{a} and \vec{b} ?

D Watch Video Solution
10. Can dot product of two non-zero vectors be zero?

- Watch Video Solution

11. What is the value of $[i+j]$ along $[3 i+4 j]$.
12. If $\vec{a}=2 i+3 j-6 k$ and $\vec{b}=\propto \hat{i}-\hat{j}+2 k^{\wedge}$ are parallel then $\propto=$ \qquad .

- Watch Video Solution

13. If $2 i-j+k$ and $i-3 j-5 k$ and $3 i-4 j-4 k$ form a triangle, what type of triangle is it ?

- Watch Video Solution

14. If $(-3, \tau, 1) \perp(1,0,3)$ then $\tau=$

- Watch Video Solution

15. If on action of force $f=2 i+j-k$, a prticle displaced from $\mathrm{A}(0,1,2)$ to $\mathrm{B}(-2,3,0)$ then what is the work done by the force?

- Watch Video Solution

16. If $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$ then what is the relation between \vec{a} and \vec{b} ?

- Watch Video Solution

17. A vector perpendicular to the vectors $\hat{i}+\hat{j}$ and $\hat{i}+\hat{k}$ is \qquad
18. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors and $\vec{a}+\vec{b}+\vec{c}=0$ then the evaluate $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

D Watch Video Solution

19. Are three points with position vectors
$\vec{a}+\vec{b}, \vec{a}-\vec{b}$ and $\vec{a} \tau+\vec{b}$ are collinear for all $\tau \in R$
? Give reasons.

D Watch Video Solution

20. Find the unit vector perpendicular to $i+j$ and $i+k$.
21. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq 0$, Prove that $\vec{a}+\vec{c}=m \vec{b}$, m is a scalar.

- Watch Video Solution

22. Let \vec{a} is any vector than what is the value of $(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j})+(\vec{a} \cdot \hat{k}) \hat{k} ?$

- Watch Video Solution

23. What is the value of $(\hat{i}+\hat{j}) \times(\hat{j}+\hat{k}) \cdot(\hat{k}+\hat{i})$?
24. If $\vec{A} \vec{C}$ and $\vec{B} \vec{D}$ are the diagonals of the parallelogram $A B C D$, show that $\vec{A} \vec{C}+\vec{B} \vec{D}=2 \vec{B} \vec{C}$.

- Watch Video Solution

25. Find the area of the parallelogram whose adjacent sides are gives by the vectors. $2 \hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

26. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$, then prove that $2 \vec{a}+\vec{b}$ is perpendicular to \vec{b}.
27. Determine the area of parallelogram whose adjacent sides are the vector $2 \hat{i}+\hat{j}+3 \hat{k}, \hat{i}-\hat{j}$

- Watch Video Solution

28. Prove that $(\vec{a} \times \vec{b})^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$.

- Watch Video Solution

29.

Prove
$(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\left[\begin{array}{ll}\vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d}\end{array}\right]$
30. Find a unit vector in direction of $\vec{a}-\vec{b}$, when $\vec{a}=4 \hat{i}+7 \hat{j}+\hat{k}$ and $\vec{b}=3 \hat{j}-11 \hat{k}$.

- Watch Video Solution

31. If \vec{a} and \vec{b} be perpendicular vectors, then prove that $(\vec{a}+\vec{b})^{2}=(\vec{a}-\vec{b})^{2}$.

- Watch Video Solution

32. Find the value of λ so that the three vectors are coplanar. (2,-1,1), (1,2,-3) and (3,, 5)
33. Determine k such that a vector \vec{r} is at right angles to each of the vectors $\vec{a}=k \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-k \hat{k}$ and $\vec{c}=-2 \hat{i}+k \hat{j}+3 \hat{k}$.

- Watch Video Solution

34. Find the scalar and vector projection of \vec{a} on $\vec{b} \cdot \vec{a}=$ $\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}$

- Watch Video Solution

35. Calculate the area of the triangle $A B C$ (by vector method) where $A(1,2,4), B(3,1,-2), C(4,3,1)$

D Watch Video Solution

36. Prove that : $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$.

- Watch Video Solution

37.

Show
that
$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=0$

- Watch Video Solution

38. If \vec{a} and \vec{b} are unit vectors, then what is the angle between \vec{a} and \vec{b} so that $\sqrt{2} \vec{a}-\vec{b}$ is a unit vector?
39. Prove by vector method that the diagonals of a parallelogram bisect each other.

- Watch Video Solution

40. Prove by vector method that in a parallelogram, the line joining a vertex to the midpoint of an oppositeside trisects the other diagonal.

- Watch Video Solution

41. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude, show that $\vec{a}+\vec{b}+\vec{c}$ is equally
inclined to $\vec{a} \cdot \vec{b} \cdot \vec{c}$.

- Watch Video Solution

42. Prove the following by vector method. Median to the base of an isosceles triangle is perpendicular to the base.

(D) Watch Video Solution

43. Prove the following by vector method. The diagonals of a rhombus are at right angles.
44. Prove the following by vector method. An angle inscribed in a semi-circle is a right angle.

- Watch Video Solution

45. Prove the following by vector method. In a triangle $\mathrm{AOB}, m \angle A O B=90^{\circ}$. If P and Q are the points of trisection of $A B$, prove that
$O P^{2}+O Q^{2}=\frac{5}{9} A B^{2}$

- Watch Video Solution

46. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$.

Interpret this result geometrically.

