

MATHS

BOOKS - SHARAM PUBLICATION

APPLICATION OF INTEGRALS

1. Find the area of the trapezium bounded by

the sides y=x, x=0, y=3, y=4.

2. Find the area bounded by the curve $x=y^2$

and the straight lines x = 0, y = 1.

3. Find the area bounded by

$$y=\sin x,y=0,x=rac{\pi}{2}$$

4. Find the area of the circle

$$x^2 + y^2 = 2ax.$$

Watch Video Solution

$$y=\sin x, y=0, x=rac{\pi}{2}$$

7. Find the area bounded by

$$y=e^x,y=0,x=4,x=2$$

8. Find the area of region enclosed by $y^2 = 4ax$ and $x^2 = 4ay$. Watch Video Solution

9. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a. Find the value of a.

10. Find the area enclosed by the parabola

$$y^2 = 4x$$
 and the line $y = 2x$.

Watch Video Solution

11. Determine the area of the region bounded by the curve $y^4 = x^3$ and the double ordinate through (2,0).

12. Show that the area bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$ is equal to the area bounded by the curve $x^2 = 4y$ and the lines y = 0 and x = 4.

Watch Video Solution

13. Determine the area common to the

parabola $y^2=x$ and the circle $x^2+y^2=2x.$

14. Find the area enclosed by y = 4x - 1 and

$$y^2 = 2x.$$

Watch Video Solution

15. Find the area of the region between the curves $y = \cos x$ and $y = \sin x, x \in \left[0, \frac{\pi}{4}\right]$

17. Find the area of the smaller region bounded by the ellipse
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 and the line $\frac{x}{3} + \frac{y}{2} = 1$.