

MATHS

BOOKS - SHARAM PUBLICATION

MATRICES

Example

1. A is a square matrix of order 3. write the value n, |2A|=n|A|.

2. If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ -2 & 5 & 3 \end{bmatrix}$$
 then verify that A+A is

symmetric and A-A is skew-symmetric.

Watch Video Solution

3. Show that $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is its own inverse.

4. Express [[123][401][-15-2]] as a sum of a symmetric and a skew symmetrices.

Watch Video Solution

5. If I is an identity matrix of order n, then kbeing a natural number, write the matrix I^k .

6. If A is a 4×5 matrix and B is a matrix such that A^TB and BA^T both are defined, then write the order of B.

Watch Video Solution

7. IF $\begin{bmatrix} 3 & 5 & 3 \\ 2 & 4 & 2 \\ \lambda & 7 & 6 \end{bmatrix}$ is a singular matrix, then

write the value of λ

8. If $\begin{bmatrix} 3 & 2 \\ 7 & x \end{bmatrix} \begin{bmatrix} 5 & -2 \\ -7 & y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then find the value of x and y.

,then write the matrix represented by A.Adj A.

9. If A is a square matrix of order 3 and |A|=3

10. If A be an invertible-matrix, then $\det \left(A^{-1}\right)$ is equal to_____.

11. The matrix A satisfying the equation

$$egin{bmatrix} 1 & 3 \ 0 & 1 \end{bmatrix} A = egin{bmatrix} 1 & 1 \ 0 & -1 \end{bmatrix}, ext{ is}___.$$

12. How many entries are there in a 3×4 matrix

13. If $\begin{bmatrix} x & y \end{bmatrix} + \begin{bmatrix} 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & -1 \end{bmatrix}$ then what are the values of x and y?

Watch Video Solution

14. Find a 2×2 matrix A such that

$$A + egin{bmatrix} 1 & 2 \ 1 & 1 \end{bmatrix} = egin{bmatrix} 2 & 0 \ 0 & 2 \end{bmatrix}.$$

15. If
$$A=\begin{bmatrix}2&3&4&5\\6&7&8&9\\1&-3&5&6\end{bmatrix}$$
 then what is the order of A^T .

Watch Video Solution

16. If
$$2\begin{bmatrix}3&4\\5&x\end{bmatrix}+\begin{bmatrix}1&y\\0&1\end{bmatrix}=\begin{bmatrix}7&0\\10&5\end{bmatrix}$$
, then find (x-y) .

17. Solve the following matrix equation for x

$$\left[egin{array}{cc} x & 1 \end{array}
ight] \left[egin{array}{cc} 1 & 0 \ -2 & 0 \end{array}
ight] = 0.$$

18. If
$$\begin{bmatrix} x-y & z \\ 2x-y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$$
 then find the value of x+y.

19. If
$$\begin{bmatrix} a+4 & 3b \\ 8 & -6 \end{bmatrix} = \begin{bmatrix} 2a+2 & b+2 \\ 8 & a-8b \end{bmatrix}$$

then write the value if a-2b.

Watch Video Solution

$$\left[egin{array}{ccc} a-b & 2a+c \ 2a-b & 3c+d \end{array}
ight] = \left[egin{array}{ccc} -1 & 5 \ 0 & 13 \end{array}
ight].$$

21. If
$$2\begin{bmatrix}1&3\\0&x\end{bmatrix}+\begin{bmatrix}y&0\\1&2\end{bmatrix}=\begin{bmatrix}5&6\\1&8\end{bmatrix}$$
 then find the value of x + y.

22. If
$$\begin{bmatrix} 2x & 4 \end{bmatrix} \begin{bmatrix} x \\ -8 \end{bmatrix} = 0$$
 then find the positive value of x.

23. The elements a_{ij} of a 3 imes 3 matrix are given by $a_{ij} = \frac{1}{2} |-3i+j|$. Write the value of element a_{32} .

Watch Video Solution

24. $\begin{bmatrix} xy & 4 \\ z+6 & x+y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$ then write the value of (x+y+z) .

25. Write the order of product matrix

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}.$$

Watch Video Solution

26. Write the value of x-y + z from the

following equation.
$$\begin{vmatrix} x+y+z \\ x+z \end{vmatrix} = \begin{vmatrix} 9 \\ 5 \\ 7 \end{vmatrix}$$
.

27. If $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} A = \begin{bmatrix} 0 \end{bmatrix}$ then what is the order of the matrix.

28. Find
$$x$$
, so that

$$egin{bmatrix} [1 & x & 1] egin{bmatrix} 1 & 3 & 2 \ 0 & 5 & 1 \ 0 & 3 & 2 \end{bmatrix} egin{bmatrix} 1 \ 1 \ x \end{bmatrix} = O$$

29. If $a_{ij} = |i-j|$ then construct $\left[a_{ij}
ight]_{2 imes 3}$.

30. Transform $\begin{bmatrix} 6 & 3 \\ 2 & 2 \end{bmatrix}$ into unit matrix.

31. If $A_lpha=egin{bmatrix}\coslpha&\sinlpha\-\sinlpha&\coslpha\end{bmatrix}$, then prove that

$$A_{lpha}A_{eta}=A_{lpha+eta}.$$

32. If A is an orthogonal matrix then find |A|.

Watch Video Solution

33. If A is annon singular matrix of size 3/3 then what is adj. (adjA) ?

34. If Aand B are two square matrices such that

$$B=-A^{-1}BA$$
 then show that

 $(A+B)^2 = A^2 + B^2$.

35. If
$$3A-B=\begin{bmatrix}5&0\\1&1\end{bmatrix}$$
 and $B=\begin{bmatrix}4&3\\2&5\end{bmatrix}$ then find the matrix A.

36. If $x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$ then write the value of x.

Watch Video Solution

37. Find the value of y and x from the following equation

$$2egin{bmatrix} x & 5 \ 7 & y-3 \end{bmatrix} + egin{bmatrix} 3 & -4 \ 1 & 2 \end{bmatrix} = egin{bmatrix} 7 & 6 \ 15 & 14 \end{bmatrix}$$

38.

Simplify:

$$\cos heta egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix} + \sin heta egin{bmatrix} \sin heta & -\cos heta \ \cos heta & \sin heta \end{bmatrix}$$

•

Watch Video Solution

39. If matrix $A=\begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$ and $A^2=\lambda A$ then write the value of λ .

40. For a 2×2 matrix A = $\begin{bmatrix} a_{ij} \end{bmatrix}$ whose elements are given by $a_{ij}=rac{i}{i}$, write the value of a_{12} .

Watch Video Solution

41. If $\begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} = A + \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix}$ then find the matrix A.

42. If $\begin{bmatrix} x & x-y \\ 2x+y & 7 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 8 & 7 \end{bmatrix}$ then find the value of y.

43. If
$$\begin{bmatrix} y+2x & 5 \\ -x & 3 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ -2 & 3 \end{bmatrix}$$
 then find the value of y.

44. If $\begin{bmatrix} 2x & 1 \\ 5 & x+2y \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix}$ then find the value of x+y.

Watch Video Solution

45. If $\begin{bmatrix} 2x+y & 3y \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}$ then find the value of x.

46. If $\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$ then write the value of k.

Watch Video Solution

47. Find x from the matrix equation

$$\left[egin{array}{cc} 1 & 3 \ 4 & 5 \end{array}
ight]\left[egin{array}{cc} x \ 2 \end{array}
ight] = \left[egin{array}{cc} 5 \ 6 \end{array}
ight].$$

48. Find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$.

Watch Video Solution

49. Verify that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

satisfies the equation

 $A^2-(a+d)A+(ad-bc)I=0$ where I is

the 2x2 unit matrix.

50. If
$$A=\begin{bmatrix}2&0&1\\2&1&3\\1&-1&0\end{bmatrix}$$
 then find the value of

$$A^2 - 3A + 2I$$

51. If
$$A=\begin{bmatrix}1&2&2\\2&1&2\\2&2&1\end{bmatrix}$$
 then prove that

$$A^2 - 4A - 5I = 0.$$

52. If $A=\left[egin{array}{cc} \alpha & 0 \\ 1 & 1 \end{array}
ight]$ and $B=\left[egin{array}{cc} 1 & 0 \\ 5 & 1 \end{array}
ight]$, show that for no values of α , $A^2=B$.

Watch Video Solution

53. Find the inverse of the matrix $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \end{bmatrix}$.

54. If
$$A=\begin{bmatrix}1&-2&2\\3&1&-1\end{bmatrix}$$
 $B\begin{bmatrix}2&4\\1&2\\3&-1\end{bmatrix}$ verify

$$\operatorname{that}(AB)^T = B^T A^T.$$

55. If
$$A=egin{bmatrix} 3 & -4 \ 1 & -1 \end{bmatrix}$$
 then show that $A^k=egin{bmatrix} 1+2k & -4k \ k & 1-2k \end{bmatrix}, karepsilon N$

56. $\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x & 2 \\ 1 & u \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ -1 & 4 \end{bmatrix}$ Find x and у.

Watch Video Solution

57. If
$$A=\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then prove that $A^2-5A+7I=O$

58. Find the inverse of the matrix
$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

59. Find
$$x$$
, so that
$$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} = O$$

60. Can the inverse of the following matrix be $\begin{bmatrix} 0 & 0 & 2 \ \end{bmatrix}$

found?
$$\begin{bmatrix} 0 & 0 & 2 \\ 3 & 6 & 0 \\ 2 & 4 & 0 \end{bmatrix}$$
.

61. Construct the matrix $\left[a_{ij}
ight]_{2 imes 3}$ where $a_{ij}=|i-j|.$

Watch Video Solution

62. If $A=\begin{bmatrix}1&1\\2&2\end{bmatrix}$ and $B=\begin{bmatrix}2&1\\2&1\end{bmatrix}$ find AB andBA.

63. A and Bare square matrices of order n.Their product is commutative:Prove that $A^2B = BA^2$

64. Find x,y if
$$\begin{bmatrix} 3 & 2 \\ 7 & x \end{bmatrix} \begin{bmatrix} 5 & -2 \\ -7 & y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

65. If
$$\begin{bmatrix} 4x & x-2u \ 2u+v & 3v-2w \end{bmatrix} = \begin{bmatrix} 8 & 6 \ 3 & 5 \end{bmatrix}$$
 find x,u,v,w.

Watch Video Solution

66. Construct a matrix $\begin{bmatrix} a_{ij} \end{bmatrix}$ of order 2 imes 2where $a_{ij}=i+2j$.

67. Find the adjoint of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$.

Watch Video Solution

68. Find the matrix which when added to

$$\begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$$
 gives $\begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix}$.

69. IF $\begin{bmatrix} x_1 & x_2 \\ u_1 & u_2 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ then determine x_1, x_2, y_1, y_2 .

Watch Video Solution

70. Verify that $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfies the equation

 $A^2-(a+d)A+(ad-bc)I=0$ where I is the 2x2 unit matrix.

71. Using elementary transformation find the inverse of the matrix $\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$.

Watch Video Solution

72. Using elementary operation, find the inverse of $\begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$.

73. If
$$A=egin{bmatrix}1&-2&1\\0&-1&1\\2&0&-3\end{bmatrix}$$
 then find A^{-1} and

hence solve the system of equations

$$x-2y+z=0$$
, $-y+z=-2$ and

2x - 3z = 10.

74. Find the value of x,y, and z if
$$A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \text{ satisfies } A^1 = A^{-1}.$$

75. Find the matrix A such that
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}$$
 $A = \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$.

Watch Video Solution

76.

$$\begin{bmatrix} 2 & 2 & -4 \\ 4 & 2 & 4 \end{bmatrix}$$

Suppose

 $A = egin{bmatrix} 2 & 2 & -4 \ -4 & 2 & -4 \ 2 & -1 & 5 \end{bmatrix} ext{ and } B = egin{bmatrix} 1 & -1 & 0 \ 2 & 3 & 4 \ 0 & 1 & 2 \end{bmatrix}$

Then find BA and use this to solve the syetm of

equations

$$y+2x=7$$

$$x - y = 3$$

$$2x + 3y + 4z = 17$$

Watch Video Solution

77. Find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$.

78. Matrices X and Y are such that 3X+4Y=I and X-2Y=2I where I denotes the identity [[1,0,0],[0,1,0],[0,01] matrix . Determine X.

Watch Video Solution

79. Find the inverse of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 1 & 0 & 2 \end{bmatrix}$.

Watch Video Solution

80. Find x,y if $\begin{bmatrix} 3 & 2 \\ 7 & x \end{bmatrix} \begin{bmatrix} 5 & -2 \\ -7 & y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

81. If $A=\begin{bmatrix}2&1\\1&2\end{bmatrix}, B=\begin{bmatrix}3&2\\2&1\end{bmatrix}$ find $(AB)^{-1}$

Watch Video Solution

82. Find the adjoint of the matrix
$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
.

83. Verify that $(AB)^T = B^T A^T$ where

$$A=egin{bmatrix} 1 & -2 & 2 \ 3 & 1 & -1 \end{bmatrix}$$
 and $B=egin{bmatrix} 2 & 4 \ 1 & 2 \ 3 & -2 \end{bmatrix}$.

84. If
$$A=\begin{bmatrix}1&1\\-1&-1\end{bmatrix}, B=\begin{bmatrix}-1&3\\-3&1\end{bmatrix}$$
 then show that $(A+B)^2
eq A^2 + 2AB + B^2.$

85. There are two families A and B. There are 4 men, 6 women and 2 children in family A and 2 men, 2 women and 4 children in family B. The recommended daily amount of calories is 2400for men, 1900 for women and 1800 for children, and 45 g of proteins for men, 55 g for women and 33 g for children. Represent the above information by matrices. Using matrices multiplication, calculate the total requirement of calories and proteins for each of the 2 families.

86. Find the inverse of the matrix $\begin{bmatrix} 4 & -2 \\ 3 & 1 \end{bmatrix}$

Watch Video Solution

87. solve 3x - 2y + z = 1

$$2x + y - 5z = 2$$

$$x - y - 2z = 3.$$

88. Examining consistency and solvability, solve

the following equation by matrix method.

$$x-2y=3$$

$$3x+4y-z=-2$$

89. solve
$$x + 2y + 3z = 8$$

$$2x + y + z = 8$$

$$x + y + 2z = 6.$$

Watch Video Solution

the matrix inversion method.

90. Solve the following system of equations by

$$2x-y+3z=1$$

x + y + z = 4

and 3x + 2y - z = 1

91. By elementary operations, find A^{-1} for the

following:
$$A=egin{bmatrix}1&1&0\\1&-1&1\\1&-1&2\end{bmatrix}$$

Watch Video Solution

92. Verify that $[AB]^T = B^T A^T$ where

$$A = egin{bmatrix} 1 & 2 & 3 \ 6 & 7 & 8 \ 6 & -3 & 4 \end{bmatrix} B = egin{bmatrix} 1 & 2 & 3 \ 3 & 4 & 2 \ 5 & 6 & 1 \end{bmatrix}.$$

93. Determine the matrices A and B where

and

$$A+2B=egin{bmatrix}1&2&0\ 6&-3&3\ -5&3&1\end{bmatrix} \ 2A-B=egin{bmatrix}2&-1&5\ 2&-1&6\ 0&1&2\end{bmatrix}.$$

