

MATHS

BOOKS - SHARAM PUBLICATION

MODEL QUESTION PAPER -1

1. If R be a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$

defined by y = x - 3. What is R^{-1} ?

2. If
$$\sin \left(\sin^{-1} \frac{1}{5} + \cos^{-1} x \right) = 1$$
, then find the value of x.

3. If
$$\begin{vmatrix} 2x & x+3 \\ 2(x+1) & x+1 \end{vmatrix} = \begin{vmatrix} 1 & 5 \\ 3 & 3 \end{vmatrix}$$
 then find the value of x.

5. Find,
$$rac{dy}{dx}$$
 when $y=x^x.$

Watch Video Solution

7. Write the value of
$$\int \frac{\sec^2 x}{\cos ec^2 x} dx$$
.

8. Write the order and degree of the differential

equation
$$\left(rac{dy}{dx}
ight)^4 + (3y)rac{d^2y}{dx^2} = 0.$$

Watch Video Solution

9. Find
$$\overrightarrow{a}.\left(\overrightarrow{b}\times\overrightarrow{c}\right)$$
 if $\overrightarrow{a}=2\hat{i}+\hat{j}+3\hat{k}$,
 $\overrightarrow{b}=-\hat{i}+2\hat{j}+\hat{k}$ and $\overrightarrow{c}=3\hat{i}+\hat{j}+2\hat{k}$.

Watch Video Solution

10. If the equation of the line AB is $\frac{3-x}{1} = \frac{y+2}{-2} = \frac{z-5}{4}$ then write the d.r.s of the line parallel to AB.

11. If
$$f(x) = \cos(\log_e x)$$
 then show that $f(x). f(y) - \frac{1}{2} \left[f(xy) + f\left(\frac{x}{y}\right) \right] = 0$

12. Let $R=\{(a, a^3): a \text{ is a prime number less than 5}\}$ be a

relation. Find the range of R.

13. Determine whether the following operation on the set R is associative and commutative $a * b = rac{a+b}{2}$ for all $a, b \in R$.

15. Write the solution of the following LPP

Maximise Z = x + y

Subject to $3x+4y\leq 12, x\geq 0, y\geq 0$

16. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then prove that $A^2 - 5A + 7I = O$
Watch Video Solution

17. If
$$A = \begin{bmatrix} -1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5 \end{bmatrix}$$
, then find $A^3 - A^2$.

18. Solve for x,

$$egin{array}{ccccccccc} 15-2x & 11 & 10 \ 11-3x & 17 & 16 \ 7-x & 14 & 13 \end{array}
ight| = 0$$

Watch Video Solution

Watch Video Solution

20. Find the value of
$$\begin{bmatrix} 1 & a & b+a \\ 1 & b & c+a \\ 1 & c & a+b \end{bmatrix}$$
.

21. Find
$$\frac{dy}{dx}$$
, when $y^x = x^{\sin y}$
Watch Video Solution

22. Show that f(x) = |x| is continuous at x = 0 but

not deferentiable at x = 0.

23. If
$$\sin y = \frac{2t}{1+t^2}$$
, $\cos x = \frac{1}{\sqrt{1+t^2}}$ then show that $\frac{dy}{dx}$ is independent of t. Watch Video Solution

24. Find the interval where the function $f(x) = \sin x + \cos x, x \in [0, 2\pi]$ is increasing.

Watch Video Solution

25. Show that no two normals to a parabola are parallel.

26.
$$\int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} dx$$

27. Integrate:
$$\int_{0}^{rac{3}{2}} ig[x^2ig] dx$$

28. Solve :
$$(x + y)dy + (x - y)dx = 0$$
.

Watch Video Solution

29. Solve:
$$ig(x^2-1ig)rac{dy}{dx}+2xy=1$$

30. If the sum of two unit vectors is a unit vectors find

the magnitude of their difference.

Watch Video Solution
31. If
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} are mutually perpendicular, show
that $\left[\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)\right]^2 = a^2 b^2 c^2$.
Watch Video Solution

32. Find the direction cosines of the line
$$\frac{x+2}{2} = \frac{2y-7}{6} = \frac{5-z}{6}$$
 Also find the vector

equation of the line passing through the point (-1,2,3) and parallel to the given line.

33. Find the equation of a plane biscting the line segment joining (-1, 4, 3) and (5, -2, -1) at right angle.

34. Find the value of r, if the line
$$\frac{x-1}{1} = \frac{y+2}{3} = \frac{z-1}{-1} = r$$
 rintersects the plane $2x + y + z = 9$.

37. Find the area bounded by the curve $y = \sin x$ from

x=0 to $x=\pi$.

38. Show that the inverse of a bijective function is unique.

39. Prove that
$$\sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right) = \frac{\pi}{2}$$

40. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitude, show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} . \overrightarrow{b} . \overrightarrow{c} .

Watch Video Solution

41. Find the coordinates of the foot of the perpendicular drawn from the point (1, 1, 1) on the line joining (1, 6, 4) and (5, 4, 4).

42. If
$$f(x) = \left(1 - x^3\right)^{rac{1}{3}}$$
 then find $fof(x)$.

45. If
$$\begin{bmatrix} 3 & 5 & 3 \\ 2 & 4 & 2 \\ \lambda & 7 & 8 \end{bmatrix}$$
 is a singular matrix, write the value

of lambda.

47. Find the intervals in which the function $y = \frac{\ln x}{x}$ is increasing and decreasing.

Watch Video Solution

49. What is the solution of the equation $\frac{d^2y}{dx^2} = e^{-(2x)}$?

50. What is the equation of the line passing through the point (1,2,3)and parallel to the vector $3\hat{i}+2\hat{j}-2\hat{k}$

Watch Video Solution

51. If f: R o R is the function defined by $f(x) = 4x^3 + 7$, then show that f is a bijection.

Watch Video Solution

52. If R and S are two equivalence relation on the set then prove that $R\cap S$ is also an equivlaence relation

53. If * is a binary operation on set Q of rational numbers such tht $a*b=(2a-b)^2, a,b\in Q$. Find 3*5 and 5*3. Is 3*5=5*3?

Watch Video Solution

54. Solve the following equation:

$$\cosig(an^{-1}xig)=\sinig(an^{-1}rac{3}{4}ig).$$

55.
$$\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x & 2 \\ 1 & y \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ -1 & 4 \end{bmatrix}$$
 Find x and y.
Solution
56. Factorize the following.
$$\begin{bmatrix} x+a & b & c \\ b & x+c & a \\ c & a & x+b \end{bmatrix}$$
Solution
57. Solve the following :
$$\begin{bmatrix} 1+x & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+x \end{bmatrix} = 0$$
Solution
Watch Video Solution

60. If cos y = x cos(a+y) then prove that

$$rac{dy}{dx} = rac{\cos^2(a+y)}{\sin a}$$

61. If
$$y^2 \cot x = x^2 \cot y$$
 then find $\frac{dy}{dx}$

62. Find the equation of the normal to the curve

$$y = \left(\log x
ight)^2$$
 at $x = rac{1}{e}.$

Watch Video Solution

63. Find two positive numbers whose product is 256

and whose sum is least.

64. Integrate:
$$\int \frac{a}{b + ce^x} dx$$

65. Integrate:
$$\int \frac{\sec(\sqrt{x})}{\sqrt{x}} dx$$

Watch Video Solution

66. Prove that
$$\int_0^{rac{\pi}{2}} rac{\sin^n x}{\sin^n x + \cos^n x} dx = rac{\pi}{4}$$

67. Find the area bounded by

$$y=\sin x,y=0,x=rac{\pi}{2}$$

Watch Video Solution

68. Solve :
$$(x + y)dy + (x - y)dx = 0$$
.

Watch Video Solution

69. If $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - \alpha\hat{j} + 3\hat{k}$ are orthogonal to

each other then find α

70. If the magnitude of the difference of two unit vectors is $\sqrt{3}$ then find the magnitude of their sum.

Watch	Video	Solution	
Tuccii	Thace	50101011	

71. Find the equation of the plane Paralel to the plane

2x - y + 3z + 1 = 0 and at a distance 3 units away

from it.

73. If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two mutually perpendicular lines show that the d.cs. Of the line perpendicular to both of them are $m_1n_2 - n_1m_2, n_1l_2 - l_1n_2, l_1m_2 - m_1l_2$

Watch Video Solution

74. Find the value of k for which
$$f(x) = \left\{ egin{array}{ccc} rac{\sqrt{1+kx}-\sqrt{1-kx}}{x}, \ ext{if} & -1 \leq x < 0 \ rac{2x+1}{x-1}, & ext{if} & 0 \leq x < 1 \end{array}
ight.$$
 is

continuous at x = 0

76. Use the function f(x) = $x^{rac{1}{x}}, x > 0$ to show that e^pi

)grt pi^e.

77. Find the area enclosed by y=4x-1 and $y^2=2x$

78. If
$$egin{bmatrix} x & x^2 & x^3 - 1 \ y & y^2 & y^3 - 1 \ z & z^2 & z^3 - 1 \end{bmatrix} = 0$$

then prove that xyz=1 when x,y,z are non zero and

unequal.

79. Show that the inverse of a bijective function is

unique.

80. Prove the following

$$an^{-1}rac{2a-b}{b\sqrt{3}}+ an^{-1}rac{2b-a}{a\sqrt{3}}=rac{\pi}{3}$$

81. Solve the following LPP graphically Maximize z=20x+10ySubject to $x+2y\leq 40$ $3x+y\geq 30$ $4x+3y\geq 60$ $x,y\geq 0$

82. If $f: R \to R$ and $g: R \to R$ are given by $f(x)=8x^3$ and $g(x)=x^{rac{1}{3}}$, then write fog. Watch Video Solution 83. Write the principal value of $\cos^{-1}\left(rac{\sqrt{3}}{2}
ight) + \cos^{-1}\left(-rac{1}{2}
ight).$ Watch Video Solution

84. If
$$\begin{bmatrix} 2x & 4 \end{bmatrix} \begin{bmatrix} x \\ -8 \end{bmatrix} = 0$$
 then find the positive value of x.

85. Find
$$\frac{d}{dx} \ln \sin^{-1} \cos \left(\frac{\pi - 2e^x}{2} \right)$$
.

86. Find the open interval in which $f(x) = x^{rac{1}{x}}, x > 0$

is decreasing.

We the Video Solution
We the value of
$$\int \frac{1+\frac{1}{x^2}}{x-\frac{1}{x}+4} dx$$

88. Write the particular solution of $\frac{dy}{dx} = 8x$, given

that y=2, when x=1.

89. If
$$\vec{a} = 3\hat{i} + 3\hat{j} + \hat{k}$$
 and $\vec{b} = -2\hat{i} + \hat{j} - 2\hat{k}$
then what is the unit vector parallel to $\vec{a} + \vec{b}$

Watch Video Solution

90. Find the value of k for which the line $\frac{x-2}{3} = \frac{1-y}{k} = \frac{z-1}{4}$ is parallel to the plane 2x

91. If $f\colon R o R$ is defined as f(x)=10x+7. Find the function $g\colon R o R$, such that $gof=fog=I_R$.

Watch Video Solution

92. Show that the relation R on the set A of real numbers defined as $R = \{(a,b): a \leq b\}$ is reflexive. and transitive but not symmetric.

93. If S is a set of all rational numbers except 1 and * be defined on S by a * b = a + b - ab for all $a, b \in s$ then prove that * is a binary operation.

Watch Video Solution

94. If S is a set of all rational numbers except 1 and * be defined on S by a * b = a + b - ab for all $a, b \in s$ then prove that * is commutative as well as associative.

95.

Prove

that

 $\cot^{-1}7 + \cot^{-1}8 + \cot^{-1}18 = \cot^{-1}3$

96. Solve the following LPP graphically

Maximize, Z = 20x + 30y

Subject to $3x + 5y \leq 15$

 $x, y \ge 0.$

97. Verify that
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

satisfies the equation
 $A^2 - (a + d)A + (ad - bc)I = 0$ where I is the 2x2
unit matrix.

98. If the matrix A is such that
$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} A = \begin{bmatrix} -4 & 1 \\ 7 & 7 \end{bmatrix}$$
, find A.

99. Show that (a+1) is a factor of

 $\begin{vmatrix} (a+1) & 2 & 3 \\ 1 & a+1 & 3 \\ 3 & -6 & a+1 \end{vmatrix}$

Watch Video Solution

100. Solve :
$$\begin{vmatrix} x - a & 0 & 0 \\ a & x - b & 0 \\ a & b & x - c \end{vmatrix} = 0$$

Watch Video Solution

101. For what value of k is the function defined by $\begin{cases} k(x^2+2) & whenx \leq 0 \\ 3x+1 & whenx > 0 \end{cases}$.Continuous at x = 0. Also

write whether the function is continuous at x = 1.

103. Find
$$rac{dy}{dx}$$
 when $y=x^{\sin y}$

104. Find the interval in which the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is strictly increasing. Watch Video Solution

105. Find two numbers whose sum is 24 and product is

maximum.

Watch Video Solution
106. Integrate:
$$\int x \frac{e^x}{(1+x)^2} dx$$

Watch Video Solution

107. Integrate :
$$\int \frac{\tan^{-1} x}{1+x^2} dx$$

109. Find the area bounded by the line y = 2x, x- axis

and the ordinate x = 3.

110. Solve
$$2y^3 rac{dy}{dx} = ax$$

111. Find
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$
 when
 $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \overrightarrow{b} = 2\hat{i} + \hat{j} - \hat{k}, \overrightarrow{c} = \hat{j} + \hat{k}$
Vatch Video Solution

112. If the position vectors of the points A, B, C are $2\hat{i}+\hat{j}-\hat{k},3\hat{i}-2\hat{j}+\hat{k}$ and $\hat{i}+4\hat{j}-3\hat{k}$

respectively, then prove that A, B, C are collinear.

113. Write the volume of the parallelopiped whose

sides are given by $-\hat{j}, \hat{k}, -\hat{i}$

Watch Video Solution

114. The angle between the plane 3x + 3z - 5 = 0and the line $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{0}$ is. Watch Video Solution

115. Find the equation of the plane passing through the intersection of the planes 3x + y - z = 2 and x - y + 2z

=1and the point (1, 0,2)
Watch Video Solution
116. Prove that
$$\left(\overrightarrow{a}, \overrightarrow{b}\right)^2 = a^2b^2 - \left(\overrightarrow{a} \times \overrightarrow{b}\right)^2$$

Watch Video Solution

117. Show that the lines
$$\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$$

and $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ are coplaner. Find

their point of intersection.

121. Determine the area common to the parabola

$$y^2=x$$
 and the circle $x^2+y^2=2x.$

Watch Video Solution

122. Solve the following differential equations

$$rac{dy}{dx}+2y an x=\sin x,y\Big(rac{\pi}{3}\Big)=0$$

123. If
$$A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 3 \\ -3 & 1 \end{bmatrix}$ then show that $(A+B)^2 \neq A^2 + 2AB + B^2$.

124. If f: R o R defined by f(x) = 5x - 8 for all

 $x \in R$, then show that f is invertible. Find the corresponding inverse function.

126. Solve the following LPP graphically: Maximize: $Z=4x_1+3x_2$ subject to $x_1+x_2\leq 50,$ $x_1+2x_2\leq 80, 2x_1+x_2\geq 20, x_1, x_2\geq 0$

Watch Video Solution

127. The total number one-one function from a finite set with m elements to a set with n elements form>n

is

128. If
$$an^{-1} ig(\sqrt{3}ig) + \cot^{-1} x = rac{\pi}{2}$$
, then find x.

130. Write the matrix which when added to the matrix

$$\begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$$
 give the matrix $\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$

131. Find
$$rac{dy}{dx}$$
 when $y=\cot^{-1} an\Bigl(rac{\pi}{2}-x\Bigr)$

134. Write the order of the differential equation of the

system of ellipse
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1.$$

135. If vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are such that $\overrightarrow{a} = 3$, $\left|\overrightarrow{b}\right| = \frac{2}{3}$ and $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

136. Find the direction cosines of the line
$$\frac{4-x}{2} = \frac{y}{2} = \frac{1-z}{3}$$

Watch Video Solution

137. For what value of K is the following function

$$ext{continuous at x = 2 }?f(x) = egin{cases} 2x+1 & when x < 2\ k & when x = 2\ 3x-1 & when > 2 \end{cases}$$

Watch Video Solution

138. If
$$x = a \cos t, y = t \sin t$$
 then find $rac{dy}{dx}$

139. Differentiate the function $x^{\cos x}$ w.r.t.x

140. Find the slope of the tangent to the curve $y = \sin 3t, x = 2t$ at $t = \frac{\pi}{4}$

Watch Video Solution

141. If f(x) = a In
$$x + bx^2 + x$$
 has extreme values at

x = -1 and x = 2 then find a and b.

Watch Video Solution

142. Write the value of x-y+z from the relation $\begin{bmatrix} x + y + z \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix}$

$$egin{array}{c} x+z \ y+z \end{array} igg] = igg[8 \ 5 \end{bmatrix} .$$

144. Prove the following:

$$egin{bmatrix} b^2-ab&b-c&bc-ac\ ab-a^2&a-b&b^2-ab\ bc-ac&c-a&ab-a^2 \end{bmatrix}=0$$

145. Using the properties of determinants prove that

 $\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3$ or

Watch Video Solution

146. Evaluate
$$\int \! \left(x + \sqrt{x^2 + a^2}
ight) dx$$

147. Evaluate
$$\int \cos ec^2 x \sqrt{\cot x} dx$$

Watch Video Solution

149. Determine the area of the region between the curves $y = \cos x$ and $y = \sin x$, bounded by x = 0.

150. Find the general solution of the differential equation $(1+x^2) an^{-1}ydy = (1+y^2) an^{-1}xdx.$

152. Let A={1, 2, 3, 5}, B={4, 6, 9}, A relation R form A to B

is defined by $R=\{(x,y)\!:\!x\in A,y\in B$ and x-y is

odd}.write R in roster form.

153. Consider the binary operation * on the set {1, 2,

3, 4 5} defined by a * b = min (a, b). Write operation

table of operation *.

155. Find the maixmum value of $z=50x_1+60x_2$ subject to $2x_1+3x_2\leq 6, x_1, x_2\geq 0$

156. Write the values of a and b, for which the vectors

$$(a-1)\hat{i}+(b+2)\hat{j}+4\hat{k}$$
 and

 $(a+1)\hat{i}+(b-2)\hat{j}+8\hat{k}$ will be parallel.

Watch Video Solution

157. Find the scalar projection of the vector $\overrightarrow{a} = 3\hat{i} + 6\hat{j} + 9\hat{k}$ on $\overrightarrow{b} = 2\hat{i} + 2\hat{j} - \hat{k}$.

158. Find the co-ordinates of the point where the perpendicular from the origin meets the line joining the points (-9, 4, 5) and (11, 0, -1).

Watch Video Solution

159. Find the equation of the plane passing through

the line x = y = z and the point (3,2,1).

160. Find the co-ordinates of the point where the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{2}$ intersect the plane x-y+z-

S=0
Watch Video Solution
161. Find
$$\frac{dy}{dx}$$
 when $x^y + y^x = a^b$
Watch Video Solution

162. Evaluate
$$\int e^x \left(\frac{1 + \sin x}{1 + \cos x} \right) dx.$$

163.
$$\int \sin^{-1} \sqrt{\frac{x}{a+x}} dx =$$

164. Find the area of the region in the first quadrant bounded by x - axis, the line y = x and the circle $x^2 + y^2 = 18.$

Watch Video Solution

165. Show that the relation S defined on set N imes N by

 $(a,b)S(c,d) \Rightarrow a+d=b+c$ is an equivalence

relation.

166. Solve:
$$\tan^{-1} \frac{x-2}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$

167. Find graphically the maximum value of z = 2x + 5y subject to the constraints $2x + 4Y \le 8, 3x + y \le 6, x \ge 0, y \ge 0.$

Watch Video Solution

168. If $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are three vectors such that $\left|\overrightarrow{a}\right| = 3, \left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{c}\right| = 5$ and each one of these

is perpendicular to the sum of other two, then find

$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

Watch Video Solution

169. Find the coordinates of foot of perpendicular drawn from the point (0, 2, 3) on the line $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$. Also, find the length of

perpendicular.

