

MATHS

BOOKS - SHARAM PUBLICATION

MODEL QUESTION PAPER -15

1. If
$$f(x) = \left(1-x^3
ight)^{rac{1}{3}}$$
 then find $fof(x)$.

4. If
$$\begin{bmatrix} 3 & 5 & 3 \\ 2 & 4 & 2 \\ \lambda & 7 & 8 \end{bmatrix}$$
 is a singular matrix, write the

value of lambda.

6. Find the intervals in which the function $y = \frac{\ln x}{x}$ is increasing and decreasing.

7. Write the value of
$$\int_{-\pi/4}^{\pi/4} \sin^5 x \cos x dx$$

Watch Video Solution

8. What is the solution of the equation $\frac{d^2y}{dx^2} = e^{-(2x)}$?

9. What is the equation of the line passing through the point (1,2,3)and parallel to the vector $3\hat{i} + 2\hat{j} - 2\hat{k}$

Watch Video Solution

10. If f: R o R is the function defined by $f(x) = 4x^3 + 7$, then show that f is a bijection.

11. If R and S are two equivalence relation on the set then prove that $R \cap S$ is also an equivlaence relation on the set.

12. If
$$*$$
 is a binary operation on set Q of
rational numbers such tht
 $a*b=(2a-b)^2, a, b\in Q$. Find $3*5$ and
 $5*3$. Is $3*5=5*3$?

13. Solve the following equation:

$$\cosig(an^{-1}xig)=\sinig(an^{-1}rac{3}{4}ig).$$

Watch Video Solution

14.
$$\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x & 2 \\ 1 & y \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ -1 & 4 \end{bmatrix}$$
 Find x and y.

17. Eliminate x,y,z from

a=x/y-z, b=y/z-x, c=z/x-y

Watch Video Solution

18. For what value of
$$\lambda$$
, is the function $f(x) = \begin{cases} \lambda x^2 - 2x & ext{if } x \leq 0 \\ 4x + 1 & ext{if } x > 0 \end{cases}$ is continuous at x=0

19. If
$$\cos y = x \cos(a+y)$$
 then prove that

$$\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$$
Watch Video Solution
20. If $y^2 \cot x = x^2 \cot y$ then find $\frac{dy}{dx}$
Watch Video Solution

21. Find the equation of the normal to the curve $y = \left(\log x\right)^2$ at $x = \frac{1}{e}$.

23. Integrate:
$$\int \frac{a}{b+ce^x} dx$$

26. Find the area bounded by

$$y=\sin x,y=0,x=rac{\pi}{2}$$

27. Solve : (x + y)dy + (x - y)dx = 0.

Watch Video Solution

28. If $\hat{i}+\hat{j}+\hat{k}$ and $2\hat{i}-lpha\hat{j}+3\hat{k}$ are

orthogonal to each other then find lpha

29. If the magnitude of the difference of two unit vectors is $\sqrt{3}$ then find the magnitude of their sum.

30. Find the equation of the plane Paralel to the plane 2x - y + 3z + 1 = 0 and at a

distance 3 units away from it.

31. If $\overrightarrow{a} = 2\overrightarrow{b}$ and $\overrightarrow{c} = -3\overrightarrow{b}$, then what is the angle between \overrightarrow{a} and \overrightarrow{c} ? **Watch Video Solution**

32. If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two mutually perpendicular lines show that the d.cs. Of the line perpendicular to both of them are $m_1n_2 - n_1m_2, n_1l_2 - l_1n_2, l_1m_2 - m_1l_2$

33. Find the value of k for which
$$f(x) = \left\{ \begin{array}{ll} rac{\sqrt{1+kx}-\sqrt{1-kx}}{x}, \ ext{if} & -1 \leq x < 0 \ rac{2x+1}{x-1}, & ext{if} & 0 \leq x < 1 \end{array}
ight.$$

is continuous at x = 0

35. Use the function $f(x) = x^{\frac{1}{x}}, x > 0$ to show

that e^pi)grt pi^e.

Watch Video Solution

$$y^2 = 2x.$$

37. If
$$egin{bmatrix} x & x^2 & x^3-1 \ y & y^2 & y^3-1 \ z & z^2 & z^3-1 \end{bmatrix} = 0$$

then prove that xyz=1 when x,y,z are non zero

and unequal.

Watch Video Solution

38. Show that the inverse of a bijective

function is unique.

39. Prove the following

$$an^{-1}rac{2a-b}{b\sqrt{3}}+ an^{-1}rac{2b-a}{a\sqrt{3}}=rac{\pi}{3}$$

Watch Video Solution

