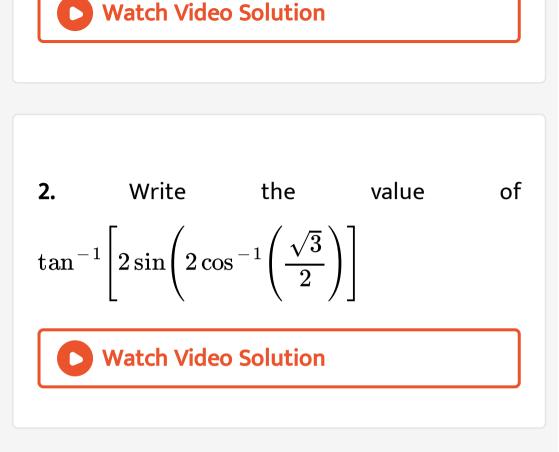


MATHS

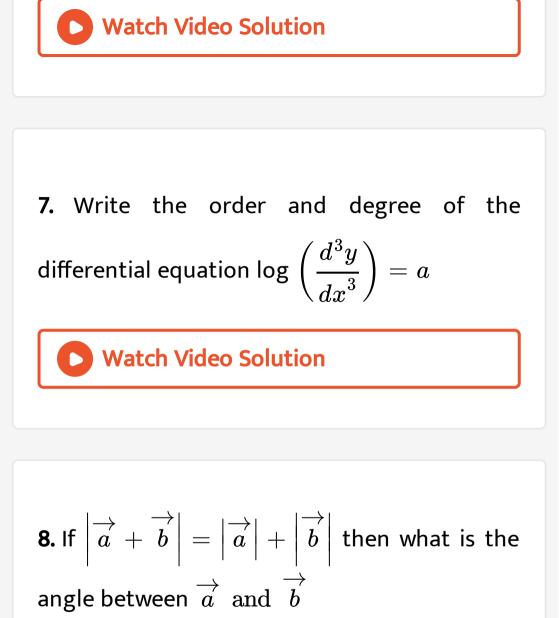
BOOKS - SHARAM PUBLICATION


MODEL QUESTION PAPER 12

1. Let R is the equivalence in the set A = {0, 1, 2,

3, 4, 5} given by R = {(a, b) : 2 divides (a - b)}.

Write the equivalence class [0].



3. Solve the following matrix equation for x $\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0.$

4. If every element of a third order determinant of value 8 is multiplied by 2, then write the value of the new determinant.

• Watch Video Solution
5. If
$$y = \tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$
, then find $\frac{dy}{dx}$
• Watch Video Solution

6. Evaluate $\int \log x dx$

9. Write the angle between the planes 3x -5y +

2z-8 = 0 and 2x + 4y + 7z + 16 = 0.

10. Show that the relation R defined on the set

Z of all integers defined as R={(x,y):x-y is an

integer} is reflexive, symmertric and transtive.

11. Let f(x) = \sqrt{x} , $g(x) = 1 - x^2$. Compute fog and gof .

Watch Video Solution

12. Consider the binary operation * on the set {1, 2, 3, 4 5} defined by a * b = min (a, b).
Write operation table of operation * .

$$\cos an^{-1} \sin \cot^{-1} x = \sqrt{rac{1+x^2}{2+x^2}}.$$

that

Watch Video Solution

14. Solve the LPP Maximize z=3x+2y

Subject to $x+y \leq 400$

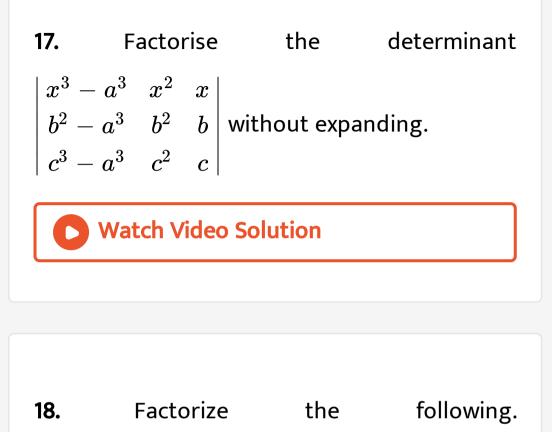
 $2x+y\leq 500, x\geq 0, y\geq 0$

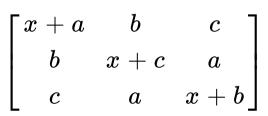
15. If the matrix A is such that $\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} A = \begin{bmatrix} -4 & 1 \\ 7 & 7 \end{bmatrix}$, find A.

Watch Video Solution

16. Verify that
$$A = egin{bmatrix} a & b \ c & d \end{bmatrix}$$

 $A^2-(a+d)A+(ad-bc)I=0$ where I is


the


equation

the 2x2 unit matrix.

satisfies

19. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then prove that $A^2 - 5A + 7I = O$

20. Find the value of k if the function f(x) defined by f(x)= $\begin{cases} 2x-1 & whenx < 2 \\ k & whenx = 2 \\ x+1 & whenx > 2 \end{cases}$ is

continous at x=2.

21. If sin $y = x \sin (a + y)$ then show that $rac{dy}{dx} = rac{\sin^2(a+y)}{\sin a}$ dxWatch Video Solution 22. If $y^2 \cot x = x^2$ coty then find $rac{dy}{dx}$ Watch Video Solution

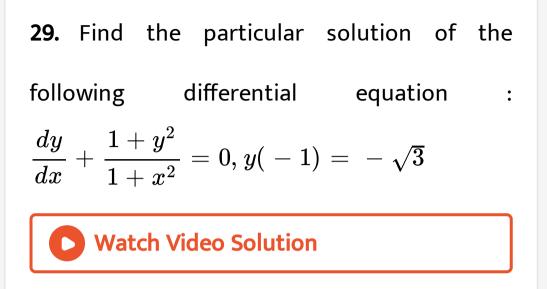
23. Find the intervals where function is increasing function y = cos x + sin x,x $\varepsilon[0, 2\pi]$

24. Find the equation of the normal to the

curve

$$5x^2+3y^2=23$$
 at (2,-1)

Watch Video Solution


25. Integrate
$$\int \sec x \tan x \cdot \sqrt{\tan^2 x - 3} \cdot dx$$

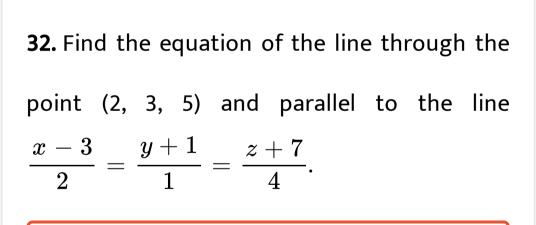
26.
$$\int \frac{xe^x}{1+x^2} dx$$

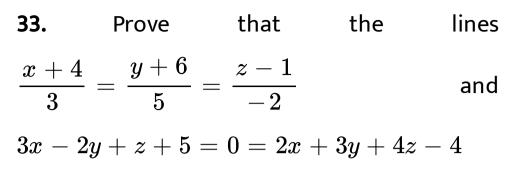
27. Evaluate
$$\int_0^1 \left[an^{-1} x + rac{x}{1+x^2}
ight] dx$$

Watch Video Solution

28. Find the area of region enclosed by $y^2 = 4ax$ and $x^2 = 4ay$.

30. If the sum of two unit vectors is a unit

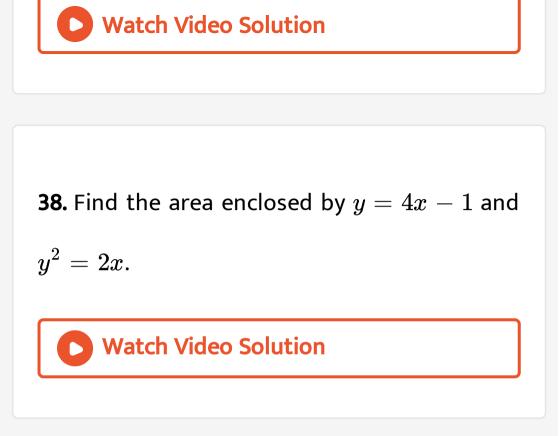

vectors find the magnitude of their difference.



31. If $\hat{i}+\hat{j}+\hat{k}$ and $2\hat{i}-lpha\hat{j}+3\hat{k}$ are

orthogonal to each other then find lpha

are co-planar.


Watch Video Solution

34. Solve :
$$\tan^{-1} x + \tan^{-1} \left(\frac{2x}{1-x^2} \right) = \frac{\pi}{2}$$

35. If
$$y = x^{\sin x - \cos x} + rac{x^2 - 1}{x^2 + 1}$$
, then find $rac{dy}{dx}$

36. Find the equation of the tangent to the curve $y = x^4 - 6x^3 + 13x^2 - 10x + 2$ at the point x=1 and y=0.

37. Find
$$\int x^2 (\sin^4 x + \cos^4 x) dx$$

39. Find the solution of the following differential equations: $\sqrt{2}$

$$xdy-ydx=\sqrt{x^2+y^2dx}$$

40. For
$$\overrightarrow{a} = \hat{i} + \hat{j}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{k}$, $\overrightarrow{c} = \hat{j} + \hat{k}$,
obtain $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ and also verify the
formula $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right)\overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)\overrightarrow{c}$.

41. Prove that the measure of the angle between two main diagonals of a cube is $\cos^{-1}\frac{1}{3}$.

