

MATHS

BOOKS - SHARAM PUBLICATION

MODEL QUESTION PAPER-18

1. If a set A has n elements and another set B has m elements, what is the number of relations from A to B ?

3. State the feasible solution.

5. Differentiate
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$$
 w.r.t $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ when $x \neq 0$.
Watch Video Solution

6. Write the equation of the tangent to the curve

y=[x] at the point (-2,2).

7. Find
$$\int_{-\pi/4}^{\pi/4} \sin^3 x dx$$

Watch Video Solution

8. Write the order of the differential equation whose general solution is $y = ax^2 + b$, where a

and b are arbitrary constants.

10. Write the equation of the line parallel to the

line
$$\frac{x-2}{-3} = \frac{3-y}{-2} = \frac{z+5}{6}$$
 and passing

through the point (1, 2, 3).

13. Find the points on the curve $y = x^3 - 11x + 5$ at which the equation of the tangent is y = x - 11.

Watch Video Solution

14. Find the point P on the curve $y^2 = 4ax$, which is nearest to the point (11a, 0).

15. Evaluate
$$\int (x+3)(2-x)dx$$
.

18. Using integration, find the area of the region

bounded by the curves $y = x^2$ and y = x.

Watch Video Solution

19. Let R is the equivalence in the set A = {0, 1, 2,

3, 4, 5} given by R = {(a, b) : 2 divides (a - b)}. Write

the equivalence class [0].

20. If F : R \rightarrow R is given by f(x) = $\left(3-x^3\right)^{1/3}$

then find (fof) x.

Watch Video Solution

21. Let * is the binary operation on N given by a * b = HCF (a, b), where $a, b \in N$. Write the value of 22 * 4.

22. Solve:
$$an^{-1}x + 2\cot^{-1}x = rac{2\pi}{3}$$

23. Write the solution of the following L.P.P. Maximize z=3x+2ysubject to $x+y\leq 400$, $2x+y\leq 500$, $x\geq 0,y\geq 0.$

24. IF A_y is the cofactor of the element a_y of the

determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$ then write the value

of a_{32} . A_{32}

Watch Video Solution

25. If
$$A = egin{bmatrix} 2 & 0 & 1 \ 2 & 1 & 3 \ 1 & -1 & 0 \end{bmatrix}$$

then find the value of

 $A^2 - 3A + 2I$

26. Prove that $egin{array}{c|c} x+y & x & x \ 5x+4y & 4x & 2x \ 10x+8y & 8x & 3x \end{array} = x^3$

Vatch Video Solution

30. Find a unit vector perpendicular to both of
the vectors
$$\overrightarrow{a} + \overrightarrow{b}$$
 and $\overrightarrow{a} - \overrightarrow{b}$ where
 $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and $b = \hat{i} + 2\hat{j} + 3\hat{k}$.

Watch Video Solution

32. Prove that the measure of the angle between

two main diagonals of a cube is $\cos^{-1}\frac{1}{3}$.

33. Find the equation of the plane passing through the intersection of the planes 3x + y - z = 2 and x-y + 2z = 1and the point (1, 0, 2)

34. If
$$f(x)= egin{cases} rac{1-\cos 4x}{x^2} & when x < 0\ a & when x = 0\ rac{\sqrt{x}}{\sqrt{16+\sqrt{x}+4}} & when x > 0 \end{cases}$$
 is

continuous at x=0, then the value of a will be.

37. Evaluate the following integrals :

38. Find the area of region in the first quadrant enclosed by the X-axis, the line y = x and the circle $x^2 + y^2 = 32$.

39. Solve the following differential
$$x\frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right).$$
 Watch Video Solution

40. Show that

 $(b+c)^2$ a^2
 b^2 $(c+a)^2$ b^2
 c^2 c^2 $(a+b)^2$

Watch Video Solution

41. Solve for x, $\cos^{-1}x + \sin^{-1}\Big(rac{x}{2}\Big) = rac{\pi}{6}.$

42. Write the vector equations of the following

lines and hence determine the distance between

them	$\frac{x-1}{2}$ =	$=rac{y-2}{3}$	$=rac{z+4}{6}$	and
$rac{x-3}{4} =$	$\frac{y-3}{6} =$	$=\frac{z+5}{12}.$		