

MATHS

BOOKS - SHARAM PUBLICATION

MODEL QUESTION PAPER-2

Exercise

1. Write the smallest reflexive relation on set $\{1, 2, 3, 4\}$.

2. If $\tan^{-1}x + \tan^{-1}y = \frac{\pi}{4}, xy < 1$,

then write the value of x + y + xy.

Watch Video Solution

3. What is the value of : $\begin{vmatrix} 4 & a & b+c \ 4 & b & c+a \ 4 & c & a+b \ \end{vmatrix}$

Watch Video Solution

4. If $\begin{bmatrix} x+y & x-y \\ 2x-z & 0 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 8 & 0 \end{bmatrix}$ find the value of x, y, z.

5. Write the value of
$$\frac{dy}{dx}$$
 $y = \sin x + \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + ...\infty}}}$.

if

- **6.** What is the interval in which $f(x) = x^3 3x^2 + 3x 10$ is strictly increasing ?
 - Watch Video Solution

- **7.** Evaluate : $\int_2^4 \frac{x}{x^2+1} dx$.
 - Watch Video Solution

8. Find the differential equation whose solution is $y = a\cos 2x + b\sin 2x.$

Watch Video Solution

9. Find the value of p for which the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i}-2p\hat{j}+3\hat{k}$ are parallel.

Watch Video Solution

10. Write the vector equation of the line given by

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}.$$

11. If A = {1, 2, 3}, B = {4, 5, 6, 7} and f = {(1, 4), (2, 5), (3, 6)} is a function from A to B. State whether f is one-one or not.

Watch Video Solution

12. Solve: $\tan^{-1} x + 2 \cot^{-1} x = \frac{2\pi}{3}$

13. if * is the binary operation on N given by a*b= L. C. M of a and b. Find 20*16. Is * Commutative.

$$\left|egin{array}{cccc} a-b-c & 2a & 2a \ 2b & b-c-a & 2b \ 2c & 2c & c-a-b \end{array}
ight|=\left(a+b+c
ight)^3.$$

Watch Video Solution

- **15.** Using elementary operation find the inverse of $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$
 - Watch

Watch Video Solution

16. Construct a 2×3 matrix whose element are given by

$$a_{ij} = i + j$$
.

0

17. Find the value of
$$\begin{vmatrix} 17 & 58 & 97 \\ 19 & 60 & 99 \\ 18 & 59 & 98 \end{vmatrix}$$
 without expanding.

Watch Video Solution

18. Find the value of k, so that the function defined by

$$f(x) = \left\{ egin{aligned} kx+1, & ext{if} & x \leq \pi \ \cos x, & ext{if} & x > \pi \end{aligned}
ight.$$
 is continuous at $x = \pi.$

Watch Video Solution

- **19.** Find the slope of the tangent to the curve $x=\sin 3t,\,y=\cos 2t,\,att=rac{\pi}{4}.$
 - **W**a

20. If $f(x) = a \ln x + bx^2 + x$ has extreme values at

Watch Video Solution

x = -1 and x = 2 then find a and b.

21. Evaluate: $\int \frac{\log \sin x}{\tan x} dx$.

Watch Video Solution

22. Evaluate $\int \frac{dx}{x(x^5+3)}$.

23. Evaluate $\int_0^{\pi/4} \log(1+\tan x) dx$.

Watch Video Solution

24. Determine the area the of the region between the curves $y=\cos x$ and $y=\sin x$, bounded by x=0.

Watch Video Solution

25. Solve the differential equation $(1+x^2) rac{dy}{dx} + y = an^{-1} x$

26. Vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$. Find the angle between \overrightarrow{a} and \overrightarrow{b} .

27. Show by vector method that the line joining the points (1,4,2) and (-1,1,-2) is perpendicular to the line joining the points (2,-3,4) and (5,3,-2).

28. Find the co-ordinates of the point where the perpendicular from the origin meets the line joining the points (-9,4,5) and (11,0,-1).

29. Find the equation of the plane passing through the line x = y = z and the point (3,2,1).

Watch Video Solution

30. Find the co-ordinates of a point where the line

$$rac{x-2}{3} = rac{y+1}{4} = rac{z-2}{2}$$
 intersect the plane

x - y + z = 5.

Solve

Solve for
$$x an^{-1} igg(rac{2x}{1-x^2} igg) + \cot^{-1} igg(rac{1-x^2}{2x} igg) = rac{\pi}{3} (-1 < x < 1)$$

constraints

Watch Video Solution

32. Find graphically the maximum value of z=2x+5y

the

$2x + 4Y \le 8, 3x + y \le 6, x > 0, y > 0.$

subject

Watch Video Solution

to

33. Find the values of a and b such that the function f

defined by
$$f(x)= egin{cases} ax^2+b & ext{ if } & x<1 \ 1 & ext{ if } & x=1. \ 2ax+b & ext{ if } & x>1 \end{cases}$$

34. Find (dy)/(dx) if $y = x^{x} + (\sin x)^{x}$.

35. Find the equations of the tangent to the curve

$$y = x^2 - 2x + 7$$
, which is

- (i) parallel to the line 2x y + 9 = 0.
- (ii) perpendicular to the line 5y 15x = 13.

36. Evaluate:
$$\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx.$$

Watch Video Solution

37. Evaluate $\int_0^\pi \frac{x}{1+\sin x} dx$

38. If
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} are three vectors such that $\left|\overrightarrow{a}\right|=3, \left|\overrightarrow{b}\right|=4$ and $\left|\overrightarrow{c}\right|=5$ and each one of these is perpendicular to the sum of other two, then find $\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|$.

39. Find the coordinates of foot of perpendicular drawn from the point (0, 2, 3) on the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}.$ Also, find the length of perpendicular.

