

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

STRAIGHT LINES

Others

1.

$$P = (-1, 0), Q = (0, 0) and R = (3, 3\sqrt{3})$$

I et

be three points. The equation of the bisector

of the angle PQR (1)
$$\sqrt{3}x+y=0$$
 (2)

$$x+rac{\sqrt{3}}{2}y=0$$
 (3) $rac{\sqrt{3}}{2}x+y=0$ (4) $x+\sqrt{3}y=0$

Watch Video Solution

2. Let A(h, k), B(1, 1) and C(2, 1) be the vertices of a right angled triangle with AC as its hypotenuse. If the area of the triangle is 1, then the set of values which k can take is given

by (1) $\{1,3\}$ (2) $\{0,2\}$ (3) $\{-1,3\}$ (4) $\{-3,-2\}$

3. The perpendicular bisector of the line segment joining P (1, 4) and Q (k, 3) has y-intercept -4. Then a possible value of k is (1) 1 (2) 2 (3) -2 (4) -4

4. The lines $p(p^2+1)x$ - y+q=0 and $\left(p^2+1
ight)^2 x + \left(p^2+1
ight) y + 2q = 0$ are perpendicular to a common line for (a) no value of p (b) exactly one value of p (c) exactly two values of p (d) more than two values of p

Watch Video Solution

5. The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes through the point (13, 32). The line K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$ Then the distance between L and K is (1) $\sqrt{17}$ (2) $\frac{17}{\sqrt{15}}$ (3) $\frac{23}{\sqrt{17}}$ (4) $\frac{23}{\sqrt{15}}$

View Text Solution

intersect the line $L_3\!:\!y+2=0$ at P and Q respectively . The bisectors of the acute angle

6. The lines L_1 : y-x=0 and L_2 : 2x+y=0

between L_1 and L_2 intersect L_3 at R .

Statement 1 : The ratio PR : RQ equals

$$2\sqrt{2}$$
: $\sqrt{5}$

Statement - 2 : In any triangle , bisector of an

angle divides the triangle into two similar triangles.

Watch Video Solution

7. If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2, then k equals (1) $\frac{29}{5}$ (2) 5 (3) 6 (4) $\frac{11}{5}$

Watch Video Solution

8. A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a triangle OPQ, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PO is

Watch Video Solution

9. A ray of light along $x+\sqrt{3}y=\sqrt{3}$ gets reflected upon reaching x-axis, the equation of the reflected rays is (1) $\sqrt{3}y=x-\sqrt{3}$ (2)

 $y=\sqrt{3}x-\sqrt{3}$ (3) $\sqrt{3}y=x-1$ (4)

$$y = x + \sqrt{3}$$

10. The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as (0, 1), (1, 1) and (1, 0) is (1) $2-\sqrt{2}$ (2) $1+\sqrt{2}$ (3) $1-\sqrt{2}$ (4) $2+\sqrt{2}$

11. Let PS be the median of the triangle with vertices P(2,2), Q(6,-1) and R(7,3) . The equation of the line passing through (1,-1) and parallel to PS is (1) 4x-7y-11=0 (2) 2x+9y+7=0 (3) 4x+7y+3=0 (4) 2x-9y-11=0

View Text Solution

12. Two sides of a rhombus are along the lines, x-y+1=0 and 7x-y-5=0 . If its

diagonals intersect at $(-1,\,-2)$, then which one of the following is a vertex of this rhombus?

View Text Solution