

MATHS

BOOKS - SHARAM PUBLICATION

QUESTION PAPER 2015

1. If
$$\int_2^3 f(z) dx = 9$$
, then write the value of $\int_2^3 f(\phi(z)) d(\phi(z)).$

2. Write the order of the differential equation of

the system of ellipse
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1.$$

4. Write the set of values of k for which the

function $f(x) = kx - \sin x$ is increasing.

Watch Video Solution

5. If (2,3,5) is one end of a diameter of the sphere $x^2 + y^2 + z^2 - 6x - 12y - 2z + 20 = 0$, then write coordinates of the other end of the diameter.

6. If
$$\begin{bmatrix} 3 & 5 & 3 \\ 2 & 4 & 2 \\ \lambda & 7 & 8 \end{bmatrix}$$
 is a singular matrix, write the

value of lambda.

Watch Video Solution

7. There are 4 letters and 4 directed envelopes. Write the number of ways such that two letters

are kept in the right envelopes.

8. Write the probability that two persons have the same birthday (considering the relevant year not to be a leap year).

9. A line makes angles 60° and 45° with the positive direction of X-axis and Y-axis, respectively. What acute angle does it make with the 7-axis?

10. Write the equation of the plane perpendicular to y-axis at the point (0,-2, 0).Watch Video Solution

11. Show that
$$\frac{dy}{dx}$$
 is independent of t
 $\cos x = \sqrt{rac{1}{1+t^2}}$ and $\sin y = rac{2t}{1+t^2}$

12. Find
$$\displaystyle rac{dy}{dx}$$
 , when $\displaystyle y^x = x^{\sin y}$

Walch Video Solution

16. Find the area of the circle

$$x^2 + y^2 = 2ax.$$

Watch Video Solution

17. Evaluate:
$$\int x^2 \tan^{-1} x dx$$
.

18. Evaluate
$$\int \!\!\! \frac{dx}{x \ln(x) \sqrt{\left(In(x)
ight)^2 - 4}}$$

20. Solve the following differential equation :

$$x^2(y-1)dx + y^2(x-1)dy = 0.$$

21. Find the particular solution of the differential

equation $rac{d^2y}{dx^2}=6x$ given that y=1 and $rac{dx}{dy}=2$ when x=0.

Watch Video Solution

22. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are mutually perpendicular vectors of equal magnitude, show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to $\overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{c}$.

23. Prove that the measure of the angle between

two main diagonals of a cube is $\cos^{-1}\frac{1}{3}$.

24. Prove by vector method that the lines joining the mid points of consecutive sides of a quadrilateral is a parallelogram.

25. Prove that

$$\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} \overrightarrow{b} \times \overrightarrow{c} \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \end{bmatrix}^2$$
Watch Video Solution

26. Solve the following LPP graphically :

Minimize $Z=6x_1+7x_2$

Subjected to $x_1+2x_2\geq 1$, $x_1,x_2\geq 0$.

27. Find the feasible region of the system. $2y - x \ge 0, \, 6y - 3x \le 21, \, x \ge 0, \, y \ge 0$

28. Find the equation of the plane through the points (1, 2, -3), (2,3, -4) and perpendicular to the plane x + y + z + 1 = 0.

29. Find the perpendicular distance of the point

$$\begin{aligned} \textbf{30. If } A &= \begin{bmatrix} 1 & -2 & 2 \\ 3 & 1 & -1 \end{bmatrix} \\ B \begin{bmatrix} 2 & 4 \\ 1 & 2 \\ 3 & -1 \end{bmatrix} \text{verify} \\ \text{that} (AB)^T &= B^T A^T. \end{aligned}$$

31. How many four digits even numbers with distict digits can be formed out of the digits 0,1,2,3,4,5,6?

32. Solve the following equations by cramer's rule : 7x + y + 1 = 0, x + 13y + 5 = 0.

33. If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
 then show that $A^k = \begin{bmatrix} 1+2k & -4k \\ k & 1-2k \end{bmatrix}, k \in N$

Watch Video Solution

34. Two different digits are selected at random

from the digits 1 through 9

If the sum is even, what is the probability that 3

is one of the digits selected?

35. Suppose that the probability that your alarm goes off in the morning is 0.9. If the alarm goes off, the probability is 0.8 that you attend your 8 a.m. class. If the alarm does not go to off, the probability that you make your 8 a.m.class is 0.5. Find the probability that you make your 8 a.m. class.

36. In how many ways can 10 boys and 10 girls sit

in a row so that no two boys sit together ?

37. Find the fifth term in the expansion of

$$\left(6x-rac{a^3}{x}
ight)^{10}$$

Watch Video Solution

38. Evaluate:
$$\int \! \frac{dx}{\cos x(1+2\sin x)}$$

39. Find the tangent to the curve $y = \cos(x + y), 0 \le x \le 2\pi$ which is parallel to the line x + 2y = 0

40. Show that

42. From a box containing 32 bulbs out of which 8 are defective 4 bulbs are drawn at random successively one after anoter with replacement. Find the probability distribution of the number of defective bulds.

43. For
$$\overrightarrow{a} = \hat{i} + \hat{j}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{k}$, $\overrightarrow{c} = \hat{j} + \hat{k}$,
obtain $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ and also verify the
formula $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right)\overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)\overrightarrow{c}$.
($\overrightarrow{a} \cdot \overrightarrow{c}$) $\overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)\overrightarrow{c}$.
Watch Video Solution

44. A sphere of constant radius k passes through the origin and meets the coordinate axes at P,Q,R. Prove that centroid of the triangle PQR lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2$.

45. Maximise Z = -10x + 2y

Subject to $-x+y \geq -1, x+y \leq 6, y \leq 5$

and $x, y \ge 0$.