# ©゙’ doubtnut 

## MATHS

## BOOKS - SHARAM PUBLICATION

## QUESTION PAPER 2015

## Exercise

1. If $\int_{2}^{3} f(z) d x=9$, then write the value of $\int_{2}^{3} f(\phi(z)) d(\phi(z))$.
2. Write the order of the differential equation of
the system of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

## D Watch Video Solution

> 3. Write $\begin{gathered}\text { the } \\ \text {. value }\end{gathered} \quad$ of
> $\lim _{h \rightarrow 0} \frac{\tan ^{-1}(1+h)-\tan ^{-1} 1}{h}$.
(D) Watch Video Solution
4. Write the set of values of $k$ for which the
function $f(x)=k x-\sin x$ is increasing.

## D Watch Video Solution

5. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then write coordinates of the other end of the diameter.

# 6. If $\left[\begin{array}{ccc}3 & 5 & 3 \\ 2 & 4 & 2 \\ \lambda & 7 & 8\end{array}\right]$ <br> is a singular matrix, write the 

 value of lambda.
## D Watch Video Solution

7. There are 4 letters and 4 directed envelopes.

Write the number of ways such that two letters are kept in the right envelopes.
8. Write the probability that two persons have the same birthday (considering the relevant year not to be a leap year).

## D Watch Video Solution

9. A line makes angles $60^{\circ}$ and $45^{\circ}$ with the positive direction of $X$-axis and $Y$-axis, respectively. What acute angle does it make with the $Z$-axis?
10. Write the equation of the plane perpendicular to $y$-axis at the point $(0,-2,0)$.

## (D) Watch Video Solution

11. Show that $\frac{d y}{d x}$ is independent of $t$.
$\cos x=\sqrt{\frac{1}{1+t^{2}}}$ and $\sin y=\frac{2 t}{1+t^{2}}$

## (D) Watch Video Solution

12. Find $\frac{d y}{d x}$, when $y^{x}=x^{\sin y}$

## - Watch Video Solution

13. Evaluate: $\lim _{x \rightarrow 0^{+}} \log _{\tan x} \tan 2 x$.

## - Watch Video Solution

14. Find the approximate value of $\sqrt[6]{63}$.

## D Watch Video Solution

15. Show that $2 \sin x+\tan x \geq 3 x$ for all $x \varepsilon\left(0, \frac{\pi}{2}\right)$.
16. Find the area of the circle
$x^{2}+y^{2}=2 a x$.

## - Watch Video Solution

17. Evaluate: $\int x^{2} \tan ^{-1} x d x$.

## D Watch Video Solution

18. Evaluate $\int \frac{d x}{x \ln (x) \sqrt{(\operatorname{In}(x))^{2}-4}}$

## - Watch Video Solution

19. Solve the following differential equations
$\left(x+2 y^{3}\right) \frac{d y}{d x}=y$

## - Watch Video Solution

20. Solve the following differential equation :
$x^{2}(y-1) d x+y^{2}(x-1) d y=0$.

## - Watch Video Solution

21. Find the particular solution ofthe differential equation $\frac{d^{2} y}{d x^{2}}=6 x$ given that $y=1$ and $\frac{d x}{d y}=2$ when $x=0$.

## (D) Watch Video Solution

22. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude, show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to $\vec{a} \cdot \vec{b} \cdot \vec{c}$.

## D Watch Video Solution

23. Prove that the measure of the angle between
two main diagonals of a cube is $\cos ^{-1} \frac{1}{3}$.

## D Watch Video Solution

24. Prove by vector method that the lines joining the mid points of consecutive sides of a quadrilateral is a parallelogram.

## D Watch Video Solution

25. 

Prove

$$
[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}
$$

## D Watch Video Solution

26. Solve the following LPP graphically :

Minimize $Z=6 x_{1}+7 x_{2}$
Subjected to $x_{1}+2 x_{2} \geq 1, x_{1}, x_{2} \geq 0$.

- Watch Video Solution

27. Find the feasible region of the system.
$2 y-x \geq 0,6 y-3 x \leq 21, x \geq 0, y \geq 0$

## D Watch Video Solution

28. Find the equation of the plane through the points (1, 2, -3 ), (2,3,-4) and perpendicular to the plane $x+y+z+1=0$.
29. Find the perpendicular distance of the point
$(-1,3,9)$ from the line
$\frac{x-13}{5}=\frac{y+8}{-8}=\frac{z-31}{1}$

## D Watch Video Solution

30. If $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 3 & 1 & -1\end{array}\right]$
$B\left[\begin{array}{cc}2 & 4 \\ 1 & 2 \\ 3 & -1\end{array}\right]$ verify
$\operatorname{that}(A B)^{T}=B^{T} A^{T}$.
31. How many four digits even numbers with distict digits can be formed out of the digits 0,1,2,3,4,5,6?

## D Watch Video Solution

32. Solve the following equations by cramer's rule : $7 x+y+1=0, x+13 y+5=0$.
33. If $A=\left[\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right]$ then show that
$A^{k}=\left[\begin{array}{ll}1+2 k & -4 k \\ k & 1-2 k\end{array}\right], k \varepsilon N$

## D Watch Video Solution

34. Two different digits are selected at random from the digits 1 through 9

If the sum is even, what is the probability that 3 is one of the digits selected?
35. Suppose that the probability that your alarm
goes off in the morning is 0.9 . If the alarm goes off, the probability is 0.8 that you attend your 8 a.m. class. If the alarm does not go to off, the probability that you make your 8 a.m.class is 0.5 .

Find the probability that you make your 8 a.m. class.

## D Watch Video Solution

36. In how many ways can 10 boys and 10 girls sit in a row so that no two boys sit together ?
37. Find the fifth term in the expansion of
$\left(6 x-\frac{a^{3}}{x}\right)^{10}$

D Watch Video Solution
38. Evaluate: $\int \frac{d x}{\cos x(1+2 \sin x)}$
(D) Watch Video Solution
39. Find the tangent to the curve $y=\cos (x+y), 0 \leq x \leq 2 \pi$ which is parallel to the line $x+2 y=0$

## D Watch Video Solution

40. Show that

$$
\left|\begin{array}{lll}
(b+c)^{2} & a^{2} & a^{2} \\
b^{2} & (c+a)^{2} & b^{2} \\
c^{2} & c^{2} & (a+b)^{2}
\end{array}\right|=2 a b c(a+b+c)^{3}
$$

$C_{1}^{2}+2 C_{2}^{2}+3 C_{3}^{2} \ldots+n C_{n}^{2}=\frac{(2 n-1)!}{\{(n-1)!\}^{2}}$

## D Watch Video Solution

42. From a box containing 32 bulbs out of which

8 are defective 4 bulbs are drawn at random successively one after anoter with replacement.

Find the probability distribution of the number of defective bulds.
43. For $\vec{a}=\hat{i}+\hat{j}, \vec{b}=-\hat{i}+2 \hat{k}, \vec{c}=\hat{j}+\hat{k}$, obtain $\vec{a} \times(\vec{b} \times \vec{c})$ and also verify the formula $\vec{a} \times(\vec{b} \times \vec{c})$

$$
=
$$

$(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.

## D Watch Video Solution

44. A sphere of constant radius $k$ passes through the origin and meets the coordinate axes at $P, Q$ ,$R$. Prove that centroid of the triangle $P Q R$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.
45. Maximise $Z=-10 x+2 y$

Subject to $\quad-x+y \geq-1, x+y \leq 6, y \leq 5$ and $x, y \geq 0$.

- Watch Video Solution

