©゙doubtnut

MATHS

BOOKS - SHARAM PUBLICATION

QUESTION PAPER 2016

Exercise

1. Write that condition of Rolle's theorem which is violated by the function $f(x)=|x-1|$ in $[0,2]$.

- Watch Video Solution

2.

Write
$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x}(d x)-\int_{0}^{\frac{\pi}{2}}(\cos x)(\sin x+\cos x)(d x)$

- Watch Video Solution

3. If p and q are the order and degree of the differential equation $y\left(\frac{d y}{d x}\right)^{2}+x^{2} \frac{d^{2} y}{d x^{2}}+x y=\sin x$, then choose the correct statement out of
$p<q$

- Watch Video Solution

4. If p and q are the order and degree of the differential equation $y\left(\frac{d y}{d x}\right)^{2}+x^{2} \frac{d^{2} y}{d x^{2}}+x y=\sin x$, then choose the
correct statement out of
$p=q$

D Watch Video Solution

5. If p and q are the order and degree of the differential equation $y\left(\frac{d y}{d x}\right)^{2}+x^{2} \frac{d^{2} y}{d x^{2}}+x y=\sin x$, then choose the correct statement out of $p<q$

D Watch Video Solution

6. If $|\vec{a}|=3,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=0$, then write the value of $|\vec{a} \times \vec{b}|$.
7. Write the distance between parallel planes $2 x-y+3 z=4$ and $2 x-y+3 z=18$.

- Watch Video Solution

8. Write the equation of the sphere concentric with the sphere $x^{2}+y^{2}+z^{2}-4 x-2 x-2 y+2 z-30=0 \quad$ and \quad passing through the origin.

D Watch Video Solution

9. If A is a 4×5 matrix and B is a matrix such that $A^{T} B$ and $B A^{T}$ both are defined, then write the order of B.

- Watch Video Solution

10. If ${ }^{n} C_{r}={ }^{n} P_{r}, r \neq 1$, then write the value of r.

- Watch Video Solution

11. A binomial distribution has mean 4 and variance 3 . Write the number of trials.

D Watch Video Solution

12. Find $\frac{d y}{d t}$, when $y=\sin ^{-1}\left(2 \frac{\sqrt{t^{2}-1}}{t^{2}}\right)$

- Watch Video Solution

13. Find $\frac{d y}{d x}$, if $x^{m} y^{n}=\left(\frac{x}{y}\right)^{m+n}$
14. If $x=a \sec \theta, y=b \tan \theta$, then prove that $\frac{d^{2} y}{d x^{2}}=-\frac{b^{4}}{a^{2} y^{3}}$

- Watch Video Solution

15. If $u=x^{3}-3 x y^{2}$, show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$

- Watch Video Solution

16. Find the intervals where the following functions are (a) increasing and (b) decreasing. $y=\sin x+\cos x, x \in[0,2 \pi]$

- Watch Video Solution

17. Find the following limits: $\lim _{x \rightarrow 0+} \frac{\ln \tan x}{\ln \sin 2 x}$

- Watch Video Solution

18. The radius of a spherical soap bubble is increasing at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. Find the rate of increase of its surface area, when the radius is 7 cm . ($\pi=3.141$ approx)

- Watch Video Solution

19. If $f^{\prime}(x)=e^{x}+\frac{1}{1+x^{2}}$ and $f(0)=1$, then find $\mathrm{f}(\mathrm{x})$.

D Watch Video Solution

20. Evaluate $\int(\log x)^{2} d x$
21. Evaluate: $\int \frac{2 x+9}{(x+3)^{2}} d x$

- Watch Video Solution

22. $\int_{0}^{1} \frac{x^{5}\left(4-x^{2}\right)}{\sqrt{1-x^{2}}} d x$

- Watch Video Solution

23. Evaluate $\int \frac{\sin x \cos x}{\sin ^{2} x-2 \sin x+3} d x$

- Watch Video Solution

24. Solve $d y+e^{-y} \sin x d x=0$.
25. Solve: $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=1$

- Watch Video Solution

26. Prove that
$|a+b| \leq|a|+|b|$
State when equality will hold,

- Watch Video Solution

27. Find the area of the triangle $A B C$ with vertices $A(1,2,4)$, $B(3,1,-2)$ and $C(4,3,1)$ by vector method.
28. The projection of a line segment $\overline{O P}$, through origin O , on the co-ordinate axes are $6,2,3$. Find the length of the line segment OP and its direction cosines.

- Watch Video Solution

29. passing through the point $(-1,3,2)$ perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.

- Watch Video Solution

30. Prove that the lines $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2}$ and $3 x-2 y+z+5=0=2 x+3 y+4 z-4$ are co-planar.

- Watch Video Solution

31. Solve the following LPP graphically

Maximize, $Z=20 x+30 y$

Subject to $3 x+5 y \leq 15$
$x, y \geq 0$.

- Watch Video Solution

32. Find the feasible region of the following system
$2 x+y \geq 6, x-y \leq 3, x \geq 0, y \geq 0$

- Watch Video Solution

33. Show that $(a+1)$ is a factor of $\left|\begin{array}{ccc}(a+1) & 2 & 3 \\ 1 & a+1 & 3 \\ 3 & -6 & a+1\end{array}\right|$
34.

Prove that the following. $\left[\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right]=\left[\begin{array}{lll}y & b & q \\ x & a & p \\ z & c & r\end{array}\right]=\left[\begin{array}{lll}x & y & z \\ p & q & r \\ a & b & c\end{array}\right]$

- Watch Video Solution

35. If $A=\left[\begin{array}{cc}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, show that for no values of $\alpha, A^{2}=B$.

- Watch Video Solution

36. How many 4 digit numbers each greater than 6000 can be formed with be digits $5,6,7$ and 8 ?
37. If $m={ }^{n} C_{2}$, prove that ${ }^{n} C_{2}=3(n+1) C_{4}$.

- Watch Video Solution

38. If the ratio of the 3rd term from the beginning to the 3rd term from the end in the expansion of $(1+\sqrt{2})^{n}$ is $\frac{1}{8}$, then find the value of n.

- Watch Video Solution

39. Let A and B be events with $P(A)=\frac{1}{3}, P(A \cup B)=\frac{3}{4}, P(A \cap B)=\frac{1}{4}, \quad \quad$ find $P\left(A \cup B^{C}\right)$.

- Watch Video Solution

40. If X follows a binomial distribution with parameter $n=6$ and p with $4 P(X=4)=P(X=2)$, find p .

- Watch Video Solution

41. If $x=\frac{1-\cos ^{2} \theta}{\cos \theta}, y=\frac{1-\cos ^{2 n} \theta}{\cos ^{n} \theta}$ then show that $\left(\frac{d y}{d x}\right)^{2}=n^{2}\left(\frac{y^{2}+4}{x^{2}+4}\right)$

D Watch Video Solution

42. Shows that the triangle of greatest area that can be inscribed in a circle is equilateral.
43. Determine the area common to the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=2 x$.

D Watch Video Solution

44. Find the solution of the following differential equations:

$$
x d y-y d x=\sqrt{x^{2}+y^{2}} d x
$$

- Watch Video Solution

45.

Prove
that
$\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=0$
and
hence
prove
that
$\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b}) \quad$ are
coplanar.
46. A variable plane meets the coordinate axes at P, Q, R points. If the plane passes through a fixed point (a, b, c), prove that the centre of the shpere passing the origin and $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ will lie on the surface $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$

D Watch Video Solution

47. Solve the following LPP graphically : Maximize :
$Z=5 x_{1}+3 x_{2}$ subject to : $3 x_{1}+5 x_{2} \leq 155 x_{1}+2 x_{2} \leq 10$
$x_{1}, x_{2} \geq 0$

- Watch Video Solution

48. Solve the following system of equations by the matrix inversion method.
$x+y+z=4$
$2 x-y+3 z=1$
and $3 x+2 y-z=1$

- Watch Video Solution

49.

Show
that:
$C_{0} C_{r}+C_{1} C_{r+1}+C_{2} C_{r+2}+\ldots+C_{n-r} C_{n}=\frac{(2 n)!}{(n-r)!(n+r)!}$

- Watch Video Solution

50. Three persons hit a target with probability $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. If each one shoot at the target once,
find the probability that exactly one of them hits the target

- Watch Video Solution

51. Three persons hit a target with probability $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. If each one shoot at the target once, if only one of them hits the target what is the probability that it was the first person?

- Watch Video Solution

