đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - SHARAM PUBLICATION

QUESTION PAPER 2019

Exercise

1. If f is an odd function, then write the value of
$\int_{-a}^{a} \frac{f(\sin x)}{f(\cos x)+f\left(\sin ^{2} x\right)} d x$

- Watch Video Solution

2. Write the order of the differential equaiton whose solution is given by $y=\left(c_{1}+c_{2}\right) \cos \left(x+c_{3}\right)+c_{4} e^{x+c_{5}}$

D Watch Video Solution

3. If veca=vecb+vecc, then write the value of $\vec{a} \cdot(\vec{b} \times \vec{c})$.

- Watch Video Solution

4. Write the value of k such that the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies on the plane
$2 x-4 y+z=7$
5. A R is a relation on set A such that $R=R^{-1}$, then write the type of the relation R.

- Watch Video Solution

6. Write the value of $\cos ^{-1} \cos \left(\frac{3 \pi}{2}\right)$.

- Watch Video Solution

7.

IF
$\left|\begin{array}{lll}1+x & x & x^{2} \\ x & 1+x & x^{2} \\ x^{2} & x & 1+x\end{array}\right|=a+b x+c x^{2}+d x^{3}+e x^{4}+f x^{5}$
then write the value of a.

- Watch Video Solution

8. Let A and B be two mutually exclusive events such that $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$. Write the value of $P(A \cap B)$

- Watch Video Solution

9. If $f^{\prime}\left(2^{+}\right)=0$ and $f^{\prime}\left(2^{-}\right)=0$, then is $f(x)$ continuous at $x=2$?
$\cos ^{-1}\left(\frac{b+a \cos x}{a+b \cos x}\right)=2 \tan ^{-1}\left(\sqrt{\frac{a-b}{a+b}} \tan \frac{x}{2}\right)$

- Watch Video Solution

11. Construct the multiplication table X_{7} on the set $\{1,2$,
$3,4,5,6\}$. Also find the inverse element of 4 if it exists.

- Watch Video Solution

12. Let R be the relation on the set R of real numbers such
that $a R b$ iff $a-b$ is and integer. Test whether R is an equivalence relation. If so find the equivalence class of 1and $\frac{1}{2}$ wrt. This equivalence relation.

- Watch Video Solution

13. Solve for $x, 2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$.

- Watch Video Solution

14. Find the probability distribution of number of heads in three tosses of a coin.

- Watch Video Solution

15. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$ then show that $A^{3}-23 A-40 I=O$

- Watch Video Solution

16. Solve the following : $\left[\begin{array}{ccc}x+1 & \omega & \omega^{2} \\ \omega & x+\omega^{2} & 1 \\ \omega^{2} & 1 & x+\omega\end{array}\right]=0$

- Watch Video Solution

17. A person takes 4 tests in succession. The probability of his passing the first test is p, that of his passing each succeeding test is p or $\frac{p}{2}$ depending on his passing or failing the preceding test, Find the probabilty of his passing
just three tests.
18. Find the point on the curve $x^{2}+y^{2}-4 x y+2=0$ where the normal is paralell to the x-asis.

- Watch Video Solution

19. Find the intervals in which the function $y=\frac{\ln x}{x}$ is increasing and decreasing.

- Watch Video Solution

20. If $y=e^{x^{x^{e^{e^{x}}}}}$, then find $\frac{d y}{d x}$.

- Watch Video Solution

21. Find $\frac{d^{2} y}{d x^{2}}$ if $\mathrm{x}=\mathrm{a} \cos \theta, y=b \sin \theta$.

- Watch Video Solution

22. Verify lagrange's Mean-Value theorem for
$F(x)=x^{3}-2 x^{2}-x+3$ on $[1,2]$

D Watch Video Solution

23. Find differential equation of the curve $y=a e^{3 x}+b e^{5 x}$.
24. Obtain the general solution of the following differential equations.

$$
\left(x^{2}+7 x+12\right) d y+\left(y^{2}-6 y+5\right) d x=0
$$

- Watch Video Solution

25. Evaluate : $\int_{0}^{\pi / 2} \frac{\cos x d x}{(2-\sin x)(3+\sin x)}$

- Watch Video Solution

26. Find the area of the region bounded by the curve $y=6 x-x^{2}$ and the x-axis.
27. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines show that the d.cs. Of the line perpendicular to both of them are $m_{1} n_{2}-n_{1} m_{2}, n_{1} l_{2}-l_{1} n_{2}, l_{1} m_{2}-m_{1} l_{2}$

D Watch Video Solution

28. Find the point where the line $\frac{x-2}{1}=\frac{y}{-1}=\frac{z-1}{2} \quad$ meets the plane
$2 x+y+z=2$.

- Watch Video Solution

29. Find a unit vector perpendicular to both of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $b=\hat{i}+2 \hat{j}+3 \hat{k}$.

D Watch Video Solution

30. Show that $(\vec{a} \times \vec{b})^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$.

- Watch Video Solution

31. Find the vector equation of a plane which is at a distance of 3 units from the origin , $2 \hat{i}+3 \hat{j}-6 \hat{k}$ being a normal to the plane. Also get its cartesian equation
32. If $e^{y / x}=\frac{x}{a+b x}$ then show that
$x^{3} \frac{d}{d x}\left(\frac{d y}{d x}\right)=\left(x \frac{d y}{d x}-y\right)^{2}$

- Watch Video Solution

33. Show that the shrtest distance of the point $(0,8 a)$ from the curve $a x^{2}=y^{3}$ is $2 a \sqrt{11}$.

- Watch Video Solution

34. Determine the area common to the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=2 x$.

- Watch Video Solution

35. Solve $y^{2}+x^{2} \frac{d y}{d x}=x y \frac{d y}{d x}$.

- Watch Video Solution

36. Evaluate the following integrals $\int \frac{d x}{2 \cos ^{2} x+3 \cos x}$

- Watch Video Solution

37. Show by vector method that the four points (6, 2, -1),
$(2,-1,3),(-1,2,-4)$ and ($-12,-1,-3$) are coplanar.
38. Find the distance of the point $(1,-1,-10)$ from the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ measured parallelto the line $\frac{x+2}{2}=\frac{y-3}{-3}=\frac{z-4}{8}$

- Watch Video Solution

39. If $\sin ^{-1}\left(\frac{x}{a}\right)+\sin ^{-1}\left(\frac{y}{b}\right)=\sin ^{-1}\left(\frac{c^{2}}{a b}\right)$,
then prove that $b^{2} x^{2}+2 x y \sqrt{a^{2} b^{2}-c^{4}}+a^{2} y^{2}=c^{4}$

- Watch Video Solution

40. Maximize: $Z=10 x_{1}+12 x_{2}+8 x_{3}$

Subject to: $x_{1}+2 x_{2} \leq 30$
$5 x_{1}-7 x_{3} \geq 12$
$x_{1}+x_{2}+x_{3}=20$
$x_{1}, x_{2} \geq 0$

(D) Watch Video Solution

41. Prove that $f: X \rightarrow Y$ is injective iff for all subsets A, B of $X, f(A \cap B)=f(A) \cap f(B)$.

- Watch Video Solution

42. Examining consistency and solvability, solve the following equation by matrix method.
$x-2 y=3$
$3 x+4 y-z=-2$
$5 x-3 z=-1$

- Watch Video Solution

43. Out of the adult population in a village 50% are farmers, 30% do business and 20% are service holders. It is known that 10% of the farmers, 20% of the business holders and 50% of service holders are above poverty line. What is the probability that a member chosen from any one of the adult population, selected at random, is above poverty line?
44. Find the inverse of the following matrix using
elementary transformation : $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 1 & 0 & 2\end{array}\right]$

- Watch Video Solution

