

MATHS

BOOKS - SHARAM PUBLICATION

RELATIONS AND FUNCTIONS

1. Write down all the partitions of the set {a,b,c}.

2. Write the domain of the function defined by

 $f(x)=\sin^{-1}x+\cos x$

Watch Video Solution

3. A R is a relation on set A such that $R = R^{-1}$,

then write the type of the relation R.

5. Sets A and B have respectively m and n elements. The total number of relations from A to B is 64. If m < n and $m \neq 1$, write the values of m and n respectively.

6. Show that the two sets {1, 2, 3,.....} and {3, 4, 5,

......} are equivalent.

Watch Video Solution

7. Test whether the relation : $R = \{(m, n) : 2 \mid (m + n)\}$ on \mathbb{Z} is reflexive, symmetric or transitive.

8. Show that if R is an equivalence relation on X,

then Dom R = Rng R = X.

Watch Video Solution

9. If $R = ig\{ ig(a,a^3ig): \mathsf{a} ext{ is prime number less than}$

5} be a relation. Find the range of R.

10. Find the least positive integer r such that

 $185 \in [r]_7$

Watch Video Solution

11. Let R is the equivalence in the set $A = \{0, 1, 2,$

3, 4, 5} given by R = {(a, b) : 2 divides (a - b)}.

Write the equivalence class [0].

12. Is φ an equivalence relaiton on any set?

14. What is the range of the function

$$f(x)=rac{|x-1|}{x-1}, x
eq 1?$$

15. State the reason for the relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 2), (2, 1)\}$ not to be transitive.

Watch Video Solution

16. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on

N, then write the range of R.

17. If a set A has n elements and another set B has m elements, what is the number of relations from A to B ?

18. If a set A has n elements and another set B

has m elements, what is the number of

relations from A to B?

19. Write the relation $R = ig\{(x,x^3)\!:\!x$ is a

prime numeber less than 10} is roaster form.

20. Let A={1,2}, B={1,2,3,4}: Write down the

elements of $A \times B$.

Watch Video Solution

21. Let A={1,2}, B={1,2,3,4}: How many relations will

be there from A to B.

Watch Video Solution

22. If A={1, 2, 3, 4, 5, 6} and a relation R on A is defined by R={(a, b): $a, b \in A$ and b is exactly divisible by a} then write R is roster form.

23. Let A={1, 2, 3, 5}, B={4, 6, 9}, A relation R form A to B is defined by $R = \{(x, y) : x \in A, y \in B$ and x - y is odd}.write R in roster form.

given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2,

3), (5, 1)}. Write down gof.

27. Let A={1, 2, 3} and let the relation R={(1, 2), (2,

3)} what is the minimum number of order pairs introduced to R ot make it an equivalence relation.

28. If A = {1, 2, 3}, B = {4, 5, 6, 7} and f = {(1, 4), (2, 5), (3, 6)} is a function from A to B. State whether f is one-one or not.

29. If
$$f\colon R o R$$
 and $g\colon R o R$ are given by $f(x)=8x^3$ and $g(x)=x^{rac{1}{3}}$, then write fog.

30. If
$$f(x) = \left(1-x^3\right)^{rac{1}{3}}$$
 then find $fof(x)$.

31. If $f \colon R o R$ and $g \colon R o R$ is defined by

f(x)=sinx and $g(x) = 5x^2$, then (gof)(x).

Watch Video Solution

32. If f: R o R and g : R o R is given by f(x) = |x| and g(x) = |5x-2| then write


```
Watch Video Solution
```

34. If the fuction $f \colon R o R$ defined by f(x)=3x-4

is invertible, then find f^{-1} .

35. If $f: R \to R$ defined by $f(x) = \frac{3x+5}{2}$ is an invertible function, then find $f^{-1}(x)$.

36. State whether the function $f\!:\!N o N$

defined by f(x)=5x is injective, surjective or both.

37. If $f(x) = x^3$ and $g(x) = x^{\frac{1}{3}}$. Then find gof(x):

Watch Video Solution

38. If R be a relation from the set A to the set B, then-

A. $R=A\cap B$

B. $R = A \cup B$

 $\mathsf{C}.\,R\subseteq A\times B$

D. $R\subseteq B imes A$

Answer:

Watch Video Solution

39. If A={1, 2, 3, 4, 5} then the relation R={(1,1), (2, 2), (3, 3), (4, 4), (1, 2), (2,3)} is

A. reflexive

B. symmetric

C. transitive

D. none of these.

Answer:

Watch Video Solution

40. If A be non-empty set of children in a family then the relation "a is a brother of b" on A is-

A. reflexive

B. symmetric

C. transitive

D. none of these.

Answer:

Watch Video Solution

41. If a set A has n elements and another set B has m elements, what is the number of relations from A to B ?

A. 2^{mn}

B. $2^{mn} - 1$

 $\mathsf{C}.\,2m^n$

 $\mathsf{D}.\,m^n$

Answer:

42. If R be a relation on a finite set A having n

elements, then the number of relations on A is-

A. 2^{n}

 $\mathsf{C.}\,n^2$

D. n^n

Answer:

43. If R be the largest equivalence relation on a

set A and S is any relation on A then

A. $R\subset S$

 $\mathsf{B.}\,S\subset R$

C. R=S

D. none of these.

Answer:

44. If n(A)=4 and n(B)=6 then the number of

one-one function from A to B is-

A. 360

B. 370

C. 380

D. 390

Answer:

Watch Video Solution

A. 0

B.
$$\frac{1}{2}f(x)f(y)$$

C. f(x+y)

D. none of these.

Answer:

Watch Video Solution

46. If the mapping is $f\colon R o R$ given by $f(x)=4x^3-12x$ then image of the interval [-1, 3]is -

A. [8,72]

B. [-8,72]

C. [0,8]

D. none of these.

Answer:

47. If
$$f(x) = (a - x^n)^{rac{1}{n}}$$
 where a>0 and $n \in N$

then fof(x) is equal to-

B. n

 $\mathsf{C}. x^n$

D. a^n

Answer:

Watch Video Solution

48. If $f \colon R o R$ be a function defined by

f(x)=cos(5x+2), then f is

A. injective

B. surjective

C. bijective

D. none of these.

Answer:

Watch Video Solution

49. Sets A and B have respectively m and n elements. The total number of relations from set A to set B is 64. If m < n and $m \neq 1$, write the values of m and n, respectively.

A.
$$m \leq n$$
 is-

B. n^m

$$\mathsf{C}.\,\frac{n\,!}{(n-m)\,!}$$

D. none of these.

Answer:

50. The total number one-one function from a finite set with m elements to a set with n elements form>n is

A.
$$\displaystyle rac{m!}{(m-n)!}$$
B. $\displaystyle rac{n!}{(n-m)!}$

 $\mathsf{C}.\,n^m$

D. none of these.

Answer:

51. The number of bijective function from a set

A to itself when A contains n elements is-

A. n^2

B. n

C. n!

 $\mathsf{D.}\, 2^n$

Answer:

52. Show that the two sets {1, 2, 3,.....} and {3, 4,

5,} are equivalent.

53. Find the domain of the functions: $f(x) = \log\left(\frac{12}{x^2 - x}\right)$ and $f(x) = \cos^{-1}\left[\log_3\left(\frac{x^2}{3}\right)\right]$

Watch Video Solution

54. Let the binary operation on Q defined as

 $a \cdot b = 2a + b - ab$, find $3 \cdot 4$.

55. If the binary operation * on set of integers Z is defined as $a * b = a + 3b^2$ then find the vlaue of 2 * 4.

56. Let * be a binary operation on set of integer.

I defined by a * b = 2a + b - 3. Find the value

of 3 * 4.

57. Let *: R imes R o r is defined as

 $a*b=2a+bF\in d(2*3)*4.$

Watch Video Solution

58. Let * is a binary operation on set of integers

I defined by a * b = 3a + 4b - 2, then find the

value of 4 * 5.

59. Prove that for any $f: X \to Y, foid_x = f = id_Y$ of. Watch Video Solution **60.** Test whether the relation : $R = \{(m,n) \colon 2 \mid (m+n)\}$ on $\mathbb Z$ is reflexive,

symmetric or transitive.

61. Let R be the relation on the set R of real numbers such that aRb iff a-b is and integer. Test whether R is an equivalence relation. If so find the equivalence class of $1 \text{ and } \frac{1}{2}$ wrt. This equivalence relation.

Watch Video Solution

62. Let ~ be defined by $(m,n)\sim(p,q)$ if mq=np where m, n, $p,q \in Z$ -{0}. Show that it is an equivalence relation.

Walch Video Solution

63. Show that the relation R defined on the set

Z of all integers defined as R={(x,y):x-y is an

integer} is reflexive, symmertric and transtive.

Watch Video Solution

64. Find least positive integer x, satisfying

 $276x + 128 = 4 \pmod{7}$.

66. Test wheter relations are reflexive, symmetric or transitive on the sets specified for $R = \{(m, n): 3 \text{divides}m - n\}on\{1, 2, 3, ..., 10\}.$

67. If R and S are two equivalence relation on the set then prove that $R \cap S$ is also an equivlaence relation on the set.

Watch Video Solution

68. If A = R -{3} and B = R -{1}. Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$, for all $x \in A$. Then, show that f is bijective. Find $f^{-1}(x)$.

69. Let $f(x) = \sqrt{x}$ and $g(x) = 1 - x^2$.

Compute fog and gof and find their natural domains.

70. The ralation R on Z is defined by for m, $n \in Z, \ mRn \Rightarrow rac{m}{n}$ is a power of 2. Examine

whether it is an equivalence relation.

71. Show that the relation R on the set A={1, 2, 3, 4, 5} given by R={(a,b):|a - b| is even} in an equivalence ralation.

72. Show that the relation S defined on set N imes N by $(a, b)S(c, d) \Rightarrow a + d = b + c$ is an

equivalence relation.

73. Check whether the relation R defined on the

set A = {1,2,3,4,5,6} as R = {(x,y):y is divisible by x}

is reflexive, symmetric and transitive.

74. If the function'f : $\mathbb{R} \to \mathbb{R}$ is given by $f(x) = x^2 + 2$ and g: $\mathbb{R} \to \mathbb{R}$ is given by $g(x) = \frac{x}{x-1}, x \neq 1$ then find fog and gof and hence find fog (2) and gof (-3).

75. Let A = R-{2} and B = R - {1}. If f : A \rightarrow B is a function defined by f(x)= $\frac{x-1}{x-2}$ then show that

f is one-one and onto. Hence, find f^{-1} .

76. Show that the fuction f in $A = R - \left\{\frac{2}{3}\right\}$ definde as $f(x) = \frac{4x+3}{6x-4}$ is one-one and on

to. Hence find f^(-1)`.

77. Show that $f\colon N o N$, given by

$$f(x) = egin{cases} x+1, ext{if x is odd} \ x-1, ext{if x is even} \end{cases}$$

is bijective (both one-one and onto).

Watch Video Solution

78. Let $f: W \rightarrow W$ be defined as f(x) = x - 1 if x is odd and f(x) = x + 1 if x is even then show that f is invertible. Find the inverse of f where W is the set of all whole numbers.

79. If $f \colon R o R$ is defined as f(x) = 10x + 7. Find the function $g \colon R o R$, such that $gof = fog = I_R$.

Watch Video Solution

80. If $f\!:\!R o R$ is the function defined by $f(x)=4x^3+7$, then show that f is a bijection.

81. If the function $f\colon R o R$ is given by $f(x)=(x)^2+3x+1$ and $g\colon R o R$ is given by g(x)=2x-3 than find fog and gof.

82. If S is the set of all rational numbers except 1 and * be defined on S by a * b = a + b - ab, for all $a, b \in S$. Prove that

(i) * is a binary operation on S.

(ii) * is commutative as well as associative.

83. If S is the set of all rational numbers except 1 and * be defined on S by a * b = a + b - ab, for all $a, b \in S$.

Prove that

(i) * is a binary operation on S.

(ii) * is commutative as well as associative.

84. Construct the multiplication table $\times 7$ on the set {1, 2, 3, 4, 5, 6}. Also find the converse of 4 if exists.

Watch Video Solution

85. Consider the binary operation $*: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as a * b = |a - b| and aob = a. For all $a, b \in R$. Show that * is commutative but not associative, .o. is associative but not commutative.

{1, 2, 3, 4, 5} defined by $a * b = \min \{amb\}$.

Write the operation talbe of operation * .

Watch Video Solution

A & # 1 A # 1

88. if * is the binary operation on N given by a * b= L. C. M of a and b. Find 20 * 16. Is * Commutative.

89. if * is the binary operation on N given by a * b= L. C. M of a and b. Find 20 * 16. Is * Associative.

- I ···

90. Prove that $f\colon X o Y$ is injective iff for all subsets A, B of $X,\,f(A\cap B)=f(A)\cap f(B).$

Watch Video Solution

91. Prove that $f \colon X o Y$ is injective iff

 $f^{-1}(f(A)) = \mathrm{A} ext{ for all} A \subseteq X.$

92. Prove that f:X o Y is surjective iff for all

$$B\subseteq Y, fig(f^{-1}(B)ig)=B.$$

 $f \colon X o Y, foid_x = f = id_Y$ of.

94. Let f:
$$X o Y$$

If there exists a map g:Y \rightarrow X such that gof =

 id_X and fog = id_y , then show that

f is bijective and (ii) $g=f^{-1}$

Watch Video Solution

95. Let $f: X \to Y$. If there exists a map $g: Y \to X$ such that g of= id_x and fo g= id_y then show that `g=f^(-1)

96. If $ff(x) = \cos[\pi^2]x + \cos[-\pi^2]x$ where [x] stands for the greatest integer functions, then evaluate

$$f\left(\frac{\pi}{2}\right), f(\pi), f(-\pi), \text{ and } f\left(\frac{\pi}{4}\right).$$

Watch Video Solution

97. If f:R o R, g: R o R and h: R o R such that f(x)= $x^2, g(x)$ = tan x and h(x)= log x then find [ho (gof)] (x) at $x = rac{\sqrt{\pi}}{2}$

98. If p is a prime and $ab \equiv 0$ (mod p) then

show that either a=0 (mod p) or $b \equiv 0$ (mod p).

Watch Video Solution

99. Prove that the relation R on the set Z of all integers defined by $R = \{(a, b) : a - b \text{ is } divisible by n\}$ is an equivalence relation.

100. Let n be positive integer and a function f

be defined as
$$f(n) = \begin{cases} 0 & whenn = 1 \\ r\left(\left[\frac{n}{2}\right]\right) + 1 & whenn > 1 \end{cases}$$
 then find f(35).

Watch Video Solution

101. If $f\!:\!R o R$ defined by f(x)=5x-8 for

all $x \in R$, then show that f is invertible. Find

the corresponding inverse function.

102. Show that the inverse of a bijective function is unique.

O Watch Video Solution

103. Show that the inverse of a bijective is also

a bijection.

104. Let f={(1,a),(2,b),(3,c),(4,d)} and g={(a,x),(b,x),

(c,y),(d,x)} Determine gof and fog if possible. Test whether fog=gof.

105. Prove that the greatest integer function f:R \rightarrow R, given by f(x) = [x] is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

106. Let A and B be sets.

Show that $\mathsf{f} \colon A imes B o B imes A$ such that f (a,b)

= (b,a) is bijective function .

107. Show that the fuction $f\!:\!R o R$ defined

by f (x)=sin x is neither one-one nor onto.

108. If $f \colon N o N$ is defined by.

$$f(n) = \left\{ egin{array}{c} rac{n+1}{2}, ext{if n is odd} \ rac{n}{2}, ext{if n is even} \end{array}
ight.$$
 for all $n \in N.$

Find whether the function f is bijective.

109. Show that a fuction $f\!:\!R o R$ given by

$$f(x)=ax+b, a,b\in R ext{ and } a
eq 0$$
 is

bijective.

110. Let* be a binary operation on Q, defined by $a*b=\frac{3ab}{5}$.Show that is commutative as well as associative. Also, find its identity, if it exists.

111. If $A = N \times N$ and * is a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative. Also, find identity element for * on A, if any.

Watch Video Solution

112. A binary operation \cdot on the set {0,1,2,3,4,5} is defined as

 $a \cdot b = egin{cases} a+b & ext{if}a+b < 6 \ a+b-6 & ext{if}a+b \geq 6 \end{cases}$

Find the composition table for \cdot Also, show that zero is the identity for this operation and each non-zero element a of the set is invertible with 6-a, being the inverse of a.

> Watch Video Solution

113. Let us consider a binary operation * on the set {1, 2, 3, 4, 5} given in the following table.

Compute(2 * 3) * 3 and 2 * (3 * 4)

Watch Video Solution

114. Let us consider a binary operation * on the set {1, 2, 3, 4, 5} given in the following table.

Is * commutative.

Watch Video Solution

115. Let us consider a binary operation * on the set {1, 2, 3, 4, 5} given in the following table.

Compute (2 * 3) * (4 * 5).

