©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - SHARAM PUBLICATION

RELATIONS AND FUNCTIONS

Example

1. Write down all the partitions of the set $\{a, b, c\}$.
(D) Watch Video Solution
2. Write the domain of the function defined by
$\mathrm{f}(\mathrm{x})=\sin ^{-1} x+\cos x$

- Watch Video Solution

3. A R is a relation on set A such that $R=R^{-1}$,
then write the type of the relation R.

- Watch Video Solution

4. Write relations in tabular form and determine their type for $R=\{(x, y): 2 x-y=0\}$ on $A=\{1,2,3, \ldots, 13\}$

D Watch Video Solution

5. Sets A and B have respectively m and n elements. The total number of relations from A
to B is 64. If $m<n$ and $m \neq 1$, write the values of m and n respectively.
6. Show that the two sets $\{1,2,3, \ldots . . .$.$\} and \{3,4,5$,\} are equivalent.

D Watch Video Solution

7. Test whether the relation :
$R=\{(m, n): 2 \mid(m+n)\}$ on \mathbb{Z} is reflexive,
symmetric or transitive.

Watch Video Solution
8. Show that if R is an equivalence relation on X, then $\operatorname{Dom} \mathrm{R}=\mathrm{Rng} \mathrm{R}=\mathrm{X}$.

D Watch Video Solution

9. If $R=\left\{\left(a, a^{3}\right):\right.$ a is prime number less than
$5\}$ be a relation. Find the range of R.
10. Find the least positive integer r such that
$185 \in[r]_{7}$

D Watch Video Solution

11. Let R is the equivalence in the set $A=\{0,1,2$,
$3,4,5\}$ given by $R=\{(a, b): 2$ divides $(a-b)\}$.
Write the equivalence class [0].

D Watch Video Solution
12. Is φ an equivalence relaiton on any set?

- Watch Video Solution

13. If $\mathrm{A}=\{1,2,3,4,5\}$ and $R: A \rightarrow A$ is $\{(1,2),(2,3)$,
$(4,5),(3,3)\}$ then write $R^{-1}: A \rightarrow A$.

- Watch Video Solution

14. What is the range of the function

$$
f(x)=\frac{|x-1|}{x-1}, x \neq 1 ?
$$

Watch Video Solution

15. State the reason for the relation R in the set
$\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive.

D Watch Video Solution

16. If $R=\{(x, y): x+2 y=8\}$ is a relation on
N, then write the range of R.
17. If a set A has n elements and another set B
has m elements, what is the number of relations from A to B ?

(Watch Video Solution

18. If a set A has n elements and another set B
has m elements, what is the number of relations from A to B ?
19. Write the relation $R=\left\{\left(x, x^{3}\right): x\right.$ is a prime numeber less than 10$\}$ is roaster form.

D Watch Video Solution

20. Let $A=\{1,2\}, B=\{1,2,3,4\}$: Write down the elements of $A \times B$.

D Watch Video Solution

21. Let $A=\{1,2\}, B=\{1,2,3,4\}$:How many relations will be there from A to B.

- Watch Video Solution

22. If $A=\{1,2,3,4,5,6\}$ and a relation R on A is defined by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): a, b \in A$ and b is exactly divisible by a\} then write R is roster form.

- Watch Video Solution

23. Let $A=\{1,2,3,5\}, B=\{4,6,9\}$, , relation R form

A to B is defined by $R=\{(x, y): x \in A, y \in B$ and $x-y$ is odd\}.write R in roster form.
24. Write the equivalence class $[3]_{7}$ as a set.

(Watch Video Solution

25. Find $[2]_{10} \cap[1]_{13}$

(D) Watch Video Solution

26.

$f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$
given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2$,
$3),(5,1)\}$. Write down gof.

D Watch Video Solution

27. Let $A=\{1,2,3\}$ and let the relation $R=\{(1,2),(2$,
$3)$ \} what is the minimum number of order pairs introduced to R ot make it an equivalence relation.

- Watch Video Solution

28. If $A=\{1,2,3\}, B=\{4,5,6,7\}$ and $f=\{(1,4),(2$,
5), (3, 6)\} is a function from A to B. State whether f is one-one or not.

- Watch Video Solution

29. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$, then write fog.
30. If $f(x)=\left(1-x^{3}\right)^{\frac{1}{3}}$ then find $f o f(x)$.

- Watch Video Solution

31. If $f: R \rightarrow R$ and $g: R \rightarrow R$ is defined by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $g(x)=5 x^{2}$, then $(\mathrm{gof})(\mathrm{x})$.

- Watch Video Solution

32. If $\mathrm{f}: R \rightarrow R$ and $g: R \rightarrow R$ is given by
$f(x)=|x|$ and $g(x)=|5 x-2|$ then write
$f o g(x)$.

D Watch Video Solution

33. If $f: R \rightarrow R$ is defined by $f(x)=3 x+2$ define $\mathrm{f}(\mathrm{f}(\mathrm{x}))$

D Watch Video Solution

34. If the fuction $f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-4$ is invertible, then find f^{-1}.
35. If $f: R \rightarrow R$ defined by $f(x)=\frac{3 x+5}{2}$ is an invertible function, then find $f^{-1}(x)$.

D Watch Video Solution

36. State whether the function $f: N \rightarrow N$ defined by $f(x)=5 x$ is injective, surjective or both.
37. If $f(x)=x^{3}$ and $g(x)=x^{\frac{1}{3}}$. Then find $\operatorname{gof}(x)$:

- Watch Video Solution

38. If R be a relation from the set A to the set B,
then-
A. $R=A \cap B$
B. $R=A \cup B$
C. $R \subseteq A \times B$

D. $R \subseteq B \times A$

Answer:

- Watch Video Solution

39. If $A=\{1,2,3,4,5\}$ then the relation $R=\{(1,1),(2$,
$2),(3,3),(4,4),(1,2),(2,3)\}$ is
A. reflexive
B. symmetric
C. transitive

D. none of these.

Answer:

- Watch Video Solution

40. If A be non-empty set of children in a family then the relation "a is a brother of b " on A is-
A. reflexive
B. symmetric
C. transitive

D. none of these.

Answer:

D Watch Video Solution

41. If a set A has n elements and another set B
has m elements, what is the number of relations from A to B ?
A. $2^{m n}$
B. $2^{m n}-1$

C. $2 m^{n}$

D. m^{n}

Answer:

- Watch Video Solution

42. If R be a relation on a finite set A having n elements, then the number of relations on A is-
A. 2^{n}
B. $2^{n^{2}}$
C. n^{2}

$$
\text { D. } n^{n}
$$

Answer:

- Watch Video Solution

43. If R be the largest equivalence relation on a set A and S is any relation on A then
A. $R \subset S$
B. $S \subset R$

C. $\mathrm{R}=\mathrm{S}$

D. none of these.

Answer:

D Watch Video Solution

44. If $n(A)=4$ and $n(B)=6$ then the number of one-one function from A to B is-
A. 360
B. 370
C. 380
D. 390

Answer:

- Watch Video Solution

$$
\begin{aligned}
& \text { 45. If } \quad f(x)=\cos \log _{e}^{x} \\
& f(x) \cdot f(y)-\frac{1}{2}\left[f(x y)+f\left(\frac{x}{y}\right)\right]=
\end{aligned}
$$

A. 0
B. $\frac{1}{2} f(x) f(y)$
C. $f(x+y)$

D. none of these.

Answer:

- Watch Video Solution

46. If the mapping is $f: R \rightarrow R$ given by
$f(x)=4 x^{3}-12 x$ then image of the interval [-1, 3]is -
A. $[8,72]$
B. [-8,72]
C. $[0,8]$

D. none of these.

Answer:

D Watch Video Solution

47. If $f(x)=\left(a-x^{n}\right)^{\frac{1}{n}}$ where $\mathrm{a}>0$ and $n \in N$
then $f o f(x)$ is equal to-
A. x
B. n
C. x^{n}

$$
\text { D. } a^{n}
$$

Answer:

D Watch Video Solution

48. If $f: R \rightarrow R$ be a function defined by $f(x)=\cos (5 x+2)$, then f is
A. injective
B. surjective
C. bijective

D. none of these.

Answer:

D Watch Video Solution

49. Sets A and B have respectively m and n elements. The total number of relations from set A to set B is 64 . If $m<n$ and $m \neq 1$, write the values of m and n, respectively.
A. $m \leq n$ is-
B. n^{m}
C. $\frac{n!}{(n-m)!}$

D. none of these.

Answer:

D Watch Video Solution

50. The total number one-one function from a finite set with m elements to a set with n elements form>n is

$$
\begin{aligned}
& \text { A. } \frac{m!}{(m-n)!} \\
& \text { B. } \frac{n!}{(n-m)!} \\
& \text { C. } n^{m}
\end{aligned}
$$

D. none of these.

Answer:

D Watch Video Solution

51. The number of bijective function from a set

A to itself when A contains n elements is-
A. n^{2}
B. n
C. n !
D. 2^{n}

Answer:

D Watch Video Solution

52. Show that the two sets $\{1,2,3, \ldots . . .$.$\} and \{3,4$,

5,\} are equivalent.
53. Find the domain of the functions:
$f(x)=\log \left(\frac{12}{x^{2}-x}\right)$
$f(x)=\cos ^{-1}\left[\log _{3}\left(\frac{x^{2}}{3}\right)\right]$

D Watch Video Solution

54. Let the binary operation on Q defined as

$$
a \cdot b=2 a+b-a b, \text { find } 3 \cdot 4
$$

55. If the binary operation $*$ on set of integers

Z is defined as $a * b=a+3 b^{2}$ then find the vlaue of $2 * 4$.

D Watch Video Solution

56. Let * be a binary operation on set of integer.

I defined by $a * b=2 a+b-3$. Find the value of $3 * 4$.
57. Let $*: R \times R \rightarrow r$ is defined as
$a * b=2 a+b F \in d(2 * 3) * 4$.

- Watch Video Solution

58. Let * is a binary operation on set of integers

I defined by $a * b=3 a+4 b-2$, then find the value of $4 * 5$.

(Watch Video Solution

59. Prove that for any
$f: X \rightarrow Y$, foid $_{x}=f=i d_{Y}$ of.

D Watch Video Solution

60. Test whether the relation
$R=\{(m, n): 2 \mid(m+n)\}$ on \mathbb{Z} is reflexive,
symmetric or transitive.
61. Let R be the relation on the set R of real numbers such that $a R b$ iff $a-b$ is and integer.

Test whether R is an equivalence relation. If so
find the equivalence class of $\operatorname{land} \frac{1}{2}$ wrt. This equivalence relation.

D Watch Video Solution

62. Let \sim be defined by (m, n) $\sim(p, q)$ if $m q=n p$
where $\mathrm{m}, \mathrm{n}, \mathrm{p}, q \in Z-\{0\}$. Show that it is an equivalence relation.
63. Show that the relation R defined on the set
Z of all integers defined as $R=\{(x, y): x-y$ is an integer\} is reflexive, symmertric and transtive.

D Watch Video Solution
64. Find least positive integer x, satisfying
$276 x+128=4(\bmod 7)$.

D Watch Video Solution

65. Test whether the relations are reflexive,
symmetric or transitive on the sets specified.
$\mathrm{R}=\left\{(\mathrm{m}, \mathrm{n}): \frac{m}{n}\right.$ is a power of 5$\}$ on $\mathrm{Z}-\{0\}$.

- Watch Video Solution

66. Test wheter relations are reflexive,
symmetric or transitive on the sets specified for

$$
R=\{(m, n): \text { 3divides } m-n\} o n\{1,2,3 \ldots, 10\}
$$

67. If R and S are two equivalence relation on
the set then prove that $R \cap S$ is also an equivlaence relation on the set.

D Watch Video Solution

68. If $A=R-\{3\}$ and $B=R-\{1\}$. Consider the
function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$,
for all $x \in A$. Then, show that f is bijective. Find
$f^{-1}(x)$.

Watch Video Solution

69. Let $f(x)=\sqrt{x} \operatorname{and} g(x)=1-x^{2}$.

Compute fog and gof and find their natural domains.

- Watch Video Solution

70. The ralation R on Z is defined by for m, $n \in Z, m R n \Rightarrow \frac{m}{n}$ is a power of 2. Examine whether it is an equivalence relation.
71. Show that the relation R on the set $A=\{1,2,3$,

4, 5\} given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):|a-b|$ is even $\}$ in an equivalence ralation.

- Watch Video Solution

72. Show that the relation S defined on set
$N \times N$ by $(a, b) S(c, d) \Rightarrow a+d=b+c$ is an equivalence relation.
73. Check whether the relation R defined on the
set $A=\{1,2,3,4,5,6\}$ as $R=\{(x, y): y$ is divisible by $x\}$
is reflexive, symmetric and transitive.

D Watch Video Solution

74. If the function'f : $R \rightarrow R$ is given by $f(x)=$ $x^{2}+2$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $\mathrm{g}(\mathrm{x})=$ $\frac{x}{x-1}, x \neq 1$ then find fog and gof and hence find fog (2) and gof (-3) .

Watch Video Solution

75. Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f: A \rightarrow B$ is a
function defined by $\mathrm{f}(\mathrm{x})=\frac{x-1}{x-2}$ then show that f is one-one and onto. Hence, find f^{-1}.

D Watch Video Solution

76. Show that the fuction f in $A=R-\left\{\frac{2}{3}\right\}$ definde as $f(x)=\frac{4 x+3}{6 x-4}$ is one-one and on to. Hence find $f^{\wedge}(-1)^{`}$.
77. Show that $f: N \rightarrow N$, given by
$f(x)=\left\{\begin{array}{l}x+1, \text { if } \mathrm{x} \text { is odd } \\ x-1, \text { if } \mathrm{x} \text { is even }\end{array}\right.$
is bijective (both one-one and onto).

D Watch Video Solution

78. Let $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{W}$ be defined as $\mathrm{f}(\mathrm{x})=\mathrm{x}-1$ if x is
odd and $f(x)=x+1$ if x is even then show that f
is invertible. Find the inverse of f where W is
the set of all whole numbers.

Watch Video Solution

79. If $f: R \rightarrow R$ is defined as $f(x)=10 x+7$.

Find the function $g: R \rightarrow R$, such that $g o f=f o g=I_{R}$.

- Watch Video Solution

80. If $f: R \rightarrow R$ is the function defined by $f(x)=4 x^{3}+7$, then show that f is a bijection.
81. If the function $f: R \rightarrow R$ is given by
$f(x)=(x)^{2}+3 x+1$ and $g: R \rightarrow R$ is given
by $g(x)=2 x-3$ than find fog and gof.

- Watch Video Solution

82. If S is the set of all rational numbers except

1 and * be defined on S by $a * b=a+b-a b$,
for all $a, b \in S$.
Prove that
(i) *is a binary operation on S .
(ii) * is commutative as well as associative.

- Watch Video Solution

83. If S is the set of all rational numbers except

1 and * be defined on S by $a * b=a+b-a b$,
for all $a, b \in S$.

Prove that
(i) * is a binary operation on S .
(ii) * is commutative as well as associative.

- Watch Video Solution

84. Construct the multiplication table $\times 7$ on
the set $\{1,2,3,4,5,6\}$. Also find the converse of 4 if exists.

- Watch Video Solution

85. Consider the binary operation
*: $R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined
as $\quad a * b=|a-b|$ and $a o b=a . \quad$ For \quad all
$a, b \in R$. Show that * is commutative but not associative, .o. is associative but not commutative.

(D) Watch Video Solution

86. Consider the binary operation * on the set
$\{1,2,3,4,5\}$ defined by $a * b=\min \{a m b\}$.
Write the operation talbe of operation * .

- Watch Video Solution

87. If $*$ is a binary operation on set Q of rational numbers such the
$a * b=(2 a-b)^{2}, a, b \in Q$. Find $3 * 5$ and
$5 * 3$. Is $3 * 5=5 * 3$?

(D) Watch Video Solution

88. if $*$ is the binary operation on N given by
$a * b=$ L. C. M of a and b. Find $20 * 16$. Is $*$ Commutative.

D Watch Video Solution

89. if $*$ is the binary operation on N given by
$a * b=$ L. C. M of a and b. Find $20 * 16$. Is $*$ Associative.
90. Prove that $f: X \rightarrow Y$ is injective iff for all subsets A, B of $X, f(A \cap B)=f(A) \cap f(B)$.

D Watch Video Solution

91. Prove that $f: X \rightarrow Y$ is injective iff $f^{-1}(f(A))=\mathrm{A}$ for all $A \subseteq X$.
92. Prove that $f: X \rightarrow \mathrm{Y}$ is surjective iff for all
$B \subseteq Y, f\left(f^{-1}(B)\right)=B$.

(D) Watch Video Solution

$$
\begin{aligned}
& \text { 93. Prove that for any } \\
& f: X \rightarrow Y, \text { foid }_{x}=f=i d_{Y} \text { of. }
\end{aligned}
$$

94. Let f: $X \rightarrow Y$

If there exists a map $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ such that gof $=$ $i d_{X}$ and fog $=i d_{y}$, then show that
fis bijective and (ii) $g=f^{-1}$

D Watch Video Solution

95. Let $f: X \rightarrow Y$. If there exists a map
$g: Y \rightarrow X$ such that g of $=i d_{x}$ and fo $\mathrm{g}=i d_{y}$ then
show that ${ }^{g} g=f^{\wedge}(-1)$
96. If $\mathrm{f} f(x)=\cos \left[\pi^{2}\right] x+\cos \left[-\pi^{2}\right] x$ where
[x] stands for the greatest integer functions,
then evaluate
$f\left(\frac{\pi}{2}\right), f(\pi), f(-\pi)$, and $f\left(\frac{\pi}{4}\right)$.

- Watch Video Solution

97. If $\mathrm{f}: R \rightarrow R, g: R \rightarrow R$ and $h: R \rightarrow R$ such
that $\mathrm{f}(\mathrm{x})=x^{2}, g(x)=\tan \mathrm{x}$ and $\mathrm{h}(\mathrm{x})=\log \mathrm{x}$ then
find [ho (gof)] (x) at $x=\frac{\sqrt{\pi}}{2}$
98. If p is a prime and $a b \equiv 0(\bmod \mathrm{p})$ then show that either $\mathrm{a}=0(\bmod \mathrm{p})$ or $b \equiv 0(\bmod \mathrm{p})$.

(Watch Video Solution

99. Prove that the relation R on the set Z of all
integers defined by $R=\{(a, b): a-b$ is
divisible by $n\}$ is an equivalence relation.

D Watch Video Solution
100. Let n be positive integer and a function f
be defined as
$f(n)=\left\{\begin{array}{ll}0 & \text { whenn }=1 \\ r\left(\left[\frac{n}{2}\right]\right)+1 & \text { whenn }>1\end{array}\right.$ then find $f(35)$.

(Watch Video Solution

101. If $f: R \rightarrow R$ defined by $f(x)=5 x-8$ for
all $x \in R$, then show that f is invertible. Find the corresponding inverse function.
102. Show that the inverse of a bijective function is unique.

- Watch Video Solution

103. Show that the inverse of a bijective is also
a bijection.
(D) Watch Video Solution
104. Let $\mathrm{f}=\{(1, \mathrm{a}),(2, \mathrm{~b}),(3, \mathrm{c}),(4, \mathrm{~d})\}$ and $\mathrm{g}=\{(\mathrm{a}, \mathrm{x}),(\mathrm{b}, \mathrm{x})$, $(c, y),(d, x)\}$ Determine gof and fog if possible.

Test whether fog=gof.

D Watch Video Solution

105. Prove that the greatest integer function $f: R$
$\rightarrow R$, given by $f(x)=[x]$ is neither one-one nor
onto, where [x] denotes the greatest integer less than or equal to x .
106. Let A and B be sets.

Show that $\mathrm{f}: A \times B \rightarrow B \times A$ such that $\mathrm{f}(\mathrm{a}, \mathrm{b})$
$=(b, a)$ is bijective function .

D Watch Video Solution
107. Show that the fuction $f: R \rightarrow R$ defined by $f(x)=\sin x$ is neither one-one nor onto.
108. If $f: N \rightarrow N$ is defined by.
$f(n)=\left\{\begin{array}{l}\frac{n+1}{2}, \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2}, \text { if } \mathrm{n} \text { is even }\end{array}\right.$ for all $n \in N$.
Find whether the function f is bijective.

(Watch Video Solution

109. Show that a fuction $f: R \rightarrow R$ given by
$f(x)=a x+b, a, b \in R$ and $a \neq 0 \quad$ is
bijective.

- Watch Video Solution

110. Let* be a binary operation on Q, defined by $\mathrm{a} * \mathrm{~b}=\frac{3 a b}{5}$.Show that is commutative as well as associative. Also, find its identity, if it exists.

D Watch Video Solution

111. If $A=N \times N$ and * is a binary operation
on A defined by $(a, b) *(c, d)=(a+c, b+d)$
. Show that * is commutative and associative.

Also, find identity element for * on A, if any.
112. A binary operation • on the set $\{0,1,2,3,4,5\}$
is defined as
$a \cdot b= \begin{cases}a+b & \text { if } a+b<6 \\ a+b-6 & \text { if } a+b \geq 6\end{cases}$
Find the composition table for - Also, show that zero is the identity for this operation and each non-zero element a of the set is invertible with 6 -a, being the inverse of a.

- Watch Video Solution

113. Let us consider a binary operation $*$ on the set $\{1,2,3,4,5\}$ given in the following table.

Compute $(2 * 3) * 3$ and $2 *(3 * 4)$

D Watch Video Solution

114. Let us consider a binary operation $*$ on the set $\{1,2,3,4,5\}$ given in the following table.

Is $*$ commutative.

$*$	1	2	3	4	5
1	1	1	1	1	1
2	1	2^{n}	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1.	5

D Watch Video Solution

115. Let us consider a binary operation $*$ on the set $\{1,2,3,4,5\}$ given in the following table.

Compute $(2 * 3) *(4 * 5)$.

D Watch Video Solution

