©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - SHARAM PUBLICATION

THREE DIMENSIONAL GEOMETRY

Example

1. Write the vector equation ofthe plane whose cartesian equation is $x+y+2 z=1$.

D Watch Video Solution
2. Write the vector equation of the plane passing through the point (a, b, c) and parallel to the plane $r .(\hat{i}+\hat{j}+\hat{k})=2$.

- Watch Video Solution

3. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.

- Watch Video Solution

4. Write the distance between parallel planes
$2 x-y+3 z=4$ and $2 x-y+3 z=18$.
5. What is the equation of x-axis in symmetric form.

- Watch Video Solution

6. What is the direction cosines of the line passing through ($0,0,0$) and ($1,2,3$) ?

- Watch Video Solution

7. How many straight lines in space through the origin are equally inclined to the coordinate axes?
8. Write the equation of the plane perpendicular to y axis at the point $(0,-2,0)$.

- Watch Video Solution

9. Fill in the blanks in the length of the projection of the line segment joining $(1,3,-1)$ and ($3,2,4$)on z -axis is \qquad .
$[1,3,4,5]$

D Watch Video Solution

10. If α, β, γ be direction angles of a line, what is the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

- Watch Video Solution

11. If the distance between the points $(-1,-1, k)$ and $(1,-1,1)$ is 2 then what is the value of k ?

- Watch Video Solution

12. Write theequationofthelinepassing through the point (4, -6,1) and parallel to the line

$$
x-\frac{1}{1}=y+\frac{2}{3}=z-\frac{1}{-1} .
$$

13. What is the image of the point $(-2,3,-5)$ respect to the $z x-p l a n e$?

D Watch Video Solution
14. What is the distance of the point (x, y, z) from x-axis?

D Watch Video Solution

15. What is the distance of the point $(1,2,-3)$ from $x y-$ plane ?
16. What is the angle between the lines $\frac{x}{1}=\frac{y}{-2}=\frac{z}{1}$ and $\frac{x}{4}=\frac{y}{1}=\frac{z}{-2}$.

- Watch Video Solution

17. What is the number of independent constants that occur in the general equation of a plane.

D Watch Video Solution

18. A plane has x-intercept and y-intercept 2 and 3 respectively and passes through (1, 1, 1). Find the z -
intercept.

- Watch Video Solution

19. What is the distance of the point (x, y, z) from x-axis?

- Watch Video Solution

20. What is the angle between the lines

$$
\begin{aligned}
& \frac{x+2}{-4}=\frac{y+3}{5}=\frac{z-1}{3} \\
& \frac{1-x}{-4}=\frac{y-1}{5}=\frac{2-z}{3} .
\end{aligned}
$$

and
21. Write the equation of the plane passing through the point(1,-2,3) and perpendicular to the y-axis.

- Watch Video Solution

22. To which coordinate axis is, the plane $2 x+3 y=0$ parallel and why ?

- Watch Video Solution

23. What is the image of the point $(6,3,-4)$ with respect to yz- plane ? '
24. Find the value of k for which the line $\frac{x-2}{3}=\frac{1-y}{k}=\frac{z-1}{4}$ is parallel to the plane $2 x+$ $6 y+3 z-4=0$.

- Watch Video Solution

25. If the d.cs of a straight line be $\left\langle\frac{2}{7}, \frac{3}{7}, \frac{k}{7}\right\rangle$, then what is the value of k ?

- Watch Video Solution

26. If a line makes an angle 90° with x-axis, 60° with y axis and what angle it makes with z-axis?
27. What is the distance between the planes $x-2 y+3 z+$ $1=0$ and $2 x-4 y+6 z+3=0$?

- Watch Video Solution

28. Write the equation of the plane with intercepts on axes $1,-1,3$.

- Watch Video Solution

29. What are the direction consines of the normal to the plane $3 x-2 y-2 z+1=0$?

- Watch Video Solution

30. Write the ratio in which the line joining the points
$(2,3,4)$ and $(-3,5,-4)$ is divided by yz-plane.

- Watch Video Solution

31. Write the angle between the planes $3 x-5 y+2 z-8=0$
and $2 x+4 y+7 z+16=0$.
32. Write the equation of the line passing through $(-3,1$,
2) and perpendicular to the plane $2 y-z=3$.

- Watch Video Solution

33. Write the direction cosines of Z-axis.

- Watch Video Solution

34. What is the distance of the point $(4,5,-3)$ from y-axis
?

- Watch Video Solution

35. Write the equation of the plane passes through y axis and z -axis.

- Watch Video Solution

36. Fill in the blanks in the length of the projection of the line segment joining ($1,3,-1$) and ($3,2,4$) on z-axis is
\qquad -
$[1,3,4,5]$

- Watch Video Solution

37. What are the d.cs of the line through (1,-1, 1) and (2,
$-5,-3)$?
38. Show that the point ($3,-2,4$), ($1,1,1$) and ($-1,4,-2$)are collinear.

D Watch Video Solution

39. What is the equation of x-axis in symmetric form.

- Watch Video Solution

40. What are the d.cs of the line $x=y=z$.
41. Write down the d.rs of the line $2 x=3 y=4 z$.

- Watch Video Solution

42. Write the equation of the plane passing through the point $(3,1,2)$ and parallel to the plane $2 x+2 y+2 z+1=0$.

- Watch Video Solution

43. Find the equation of the line through the point (2,3 ,
5) and parallel to the line $\frac{x-3}{2}=\frac{y+1}{1}=\frac{z+7}{4}$.
44. Show that lines $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$ and $\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})$ intersect each other.

Find their point of intersection.

- Watch Video Solution

45. The position vectors of two points A and B are
$3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}-2 \hat{j}-4 \hat{k}$, respectively. Find the equation of the plane passing through B and prependicular to $A B$.

- Watch Video Solution

46. Find the area of the triangle $A B C$ with vertices
$A(1,2,4), B(3,1,-2)$ and $C(4,3,1)$ by vector method.

(D) Watch Video Solution

47. Show that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

D Watch Video Solution

48. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

D Watch Video Solution

49. Find the shortest distance between the following lines $\quad \vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and $\vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$

- Watch Video Solution

50. Find the shortest distance between the lines
$\frac{x-8}{3}=\frac{y+9}{-16}=\frac{z-10}{7}$
and
$\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

D Watch Video Solution

51. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line

$$
\begin{aligned}
& \frac{x-2}{2}=\frac{y+1}{4}=\frac{z-2}{12} \\
& x-y+z=5
\end{aligned}
$$

D Watch Video Solution

52. The projection of a line segment $\overline{O P}$, through origin

0 , on the co-ordinate axes are $6,2,3$. Find the length of the line segment OP and its direction cosines.

- Watch Video Solution

53. passing through the point ($-1,3,2$) perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.
54. Prove that the lines $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2}$ and
$3 x-2 y+z+5=0=2 x+3 y+4 z-4$ are coplanar.

D Watch Video Solution

55. Find the locus of points which are equidistant from
the points (1,2,3) and (3,2,-1).

- Watch Video Solution

56. Find the equation of the plane through the points (1 ,
$2,-3),(2,3,-4)$ and perpendicular to the plane $x+y+z+1$
$=0$.

- Watch Video Solution

57. Find the perpendicular distance of the point
$(-1,3,9)$ from the line $\frac{x-13}{5}=\frac{y+8}{-8}=\frac{z-31}{1}$

- Watch Video Solution

58. Prove that the measure of the angle between two main diagonals of a cube is $\cos ^{-1} \frac{1}{3}$.

- Watch Video Solution

59. If $\mathrm{P}(1, y, z)$ lies on the line through $(3,2,-1)$ and $(-4,6,3)$ find $y \& z$.

- Watch Video Solution

60. Find the equation of the plane passing through the
foot of the perpendiculars drawn from $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ on the coordinate planes.

- Watch Video Solution

61. Find the equation of the plane passing through the
points (2, 1, -1) and ($-1,3,4$) and perpendicular to the plane $\mathrm{x}-2 \mathrm{y}+4 \mathrm{z}=10$.
62. Find the points of intersection of the line $\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-1}{-1} \quad$ and \quad the plane $2 x+y+z=9$.

- Watch Video Solution

63. Find the ratio in which the line segment through
$(1,3,-1)$ and $(2,6,-2)$ is divided by zx -plane.
64. Find the co-ordinates of the point where the perpendicular from the origin meets the line joining the points ($-9,4,5$) and (11, 0, - 1).

- Watch Video Solution

65. Find the image of the point $(2,-1,3)$ in the plane $3 x-2 y+z-9=0$

(D) Watch Video Solution

66. Find the image of the point $(-2,0,3)$ with respect to the plane $\mathrm{y}=3$.
67. If $\mathrm{A}(1,0,-1), \mathrm{B}(-2,4,-2)$ and $\mathrm{C}(1,5,10)$ be the vertices of a triangle and the bisector of the angle BAC, meets $B C$ at D, then find the coordinates of the point D.

- Watch Video Solution

68. Find the point where the line
$\frac{x-2}{1}=\frac{y}{-1}=\frac{z-1}{2} \quad$ meets the plane
$2 x+y+z=2$.

- Watch Video Solution

69. The angle between the plane $3 x+3 z-5=0$ and the line $\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-3}{0}$ is.

D Watch Video Solution

70. Find the equation of the plane passing through the
line $x=y=z$ and the point $(3,2,1)$.

D Watch Video Solution

71. Find the equation of the plane which passes through
$(1,1,2)$ and parallel to the plane $x+2 y-z=5$.
72. Bisecting the line segment joining ($-1,4,3$) and $(5,-2,-1)$ at right angles.

- Watch Video Solution

73. Find the distance between the parallel planes $3 x-2 y$
$+6 z-7=0$ and $3 x-2 y+6 z+14=0$.

- Watch Video Solution

74. Find the number of points (x, y, z) in space other than the point $(1,-2,3)$, such that $|x|=1,|y|=2$ and $|z|=3$.
75. Write the equation of the plane passing through ($3,-6,-9$) and parallel to xy -plane.

- Watch Video Solution

76. Find the equation of the plane passing through the points ($-2,3,5$), ($7,-7,-5$) and ($-2,5,-3$).

D Watch Video Solution

77. Find the equation of the plane Paralel to the plane $2 x-y+3 z+1=0$ and at a distance 3 units away
from it.

- Watch Video Solution

78. Passing throughthe point $(2,-3,1)$ and ($-1,1-7$) and perpendicular to the plane $x-2 y+5 z+1=0$.

- Watch Video Solution

79. Write the axis to which the plane by $+c z+d=0$ is parallal.
80. Find the shortest distance between the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$

(D) Watch Video Solution

81. Find the equation of the plane which contains the
line of intersection of the planes
$\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0, \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$
and which is perpendicular to the planer
$\vec{r} \cdot(5 \hat{i}-6 \hat{k})+8=0$

- Watch Video Solution

$$
\begin{aligned}
& \text { 82. } \\
& \frac{x+3}{2}=\frac{y+5}{3}=\frac{z-7}{-3} \text { and } \frac{x+1}{4}=\frac{y+1}{5}=\frac{z+1}{-1}
\end{aligned}
$$

are coplanar.

- Watch Video Solution

83. Prove that the four points $(0,4,3),(-1,-5,-3),(-2,-2,1)$
and ($1,1,-1$) lie in one plane. Find the equation of the plane.
84. Find the distance from the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{1}$ to the point (4, 5, 2).

- Watch Video Solution

85. A variable plane is at a constant distance $3 r$ from the origin and meets the axes in A, B and C. Show that the locus of the centroid of the $\triangle A B C$ is $x^{-2}+y^{-2}+z^{-2}=r^{-2}$.

- Watch Video Solution

86. If the edges of a rectangular parallelopiped are of lengths a, b, c, then the angle between four diagonals
are $\cos ^{-1}\left(\frac{ \pm a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}}\right)$.

- Watch Video Solution

87. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines show that the d.cs.

Of the line perpendicular to both of them are $m_{1} n_{2}-n_{1} m_{2}, n_{1} l_{2}-l_{1} n_{2}, l_{1} m_{2}-m_{1} l_{2}$

- Watch Video Solution

88. Find the image of the point $(2,3,4)$ with respect to
the plane $x-y+2 z=4$. Obtain the foot of the
perpendicular from P on the plane and the corresponding perpendicular distance.

D Watch Video Solution

89. Prove that the two lines whose direction cosines are
$l+2 m+3 n=0,3 l m-4 \ln +m n=0 \quad$ are
perpendicular to each other.

- Watch Video Solution

90. Find the equation of the plane through the points (2,

2,1) and ($9,3,6$) and perpendicular to the plane $2 x+6 y+$
$6 z-1=0$.

- Watch Video Solution

91. How far is the point $(4,1,1)$ from the line of intersection of the planes $x+y+z=4, x-2 y-z=4$.

- Watch Video Solution

92. passing through the point ($-1,3,2$) perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.
93. Find the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=5$.

(D) Watch Video Solution

94. Prove that the line joining $(1,2,3),(2,1,-1)$ intersects the line joining ($-1,3,1$) and ($3,1,5$).

- Watch Video Solution

95. Find the equation of the line through the point ($1,-2$,
1) and parallel to the line $\frac{x}{2}=\frac{y-1}{-1}=\frac{z+2}{3}$.
96. Find the shortest distance between the lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$
$\frac{x+3}{-3}=\frac{y-7}{2}=\frac{z-6}{4}$ Find also the equation of
the line of shortest distance.

- Watch Video Solution

