©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - SHARAM PUBLICATION

VECTORS

Example

1. If \vec{a} and \vec{b} are unit vectors and $\vec{a}+\vec{b}$ is also a unit vector, then write the measure of the angle between \vec{a} and \vec{b}
(D) Watch Video Solution
2. Prove that : $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$.

(D) Watch Video Solution

3. Calculate the area of the triangle $A B C$ (by vector method) where $A(1,2,4), B(3,1,-2), C(4,3,1)$

(D) Watch Video Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude, show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to $\vec{a} \cdot \vec{b} \cdot \vec{c}$.

(Watch Video Solution

5. Prove the following by vector method. Measure of the angle between two diagonals of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$

- Watch Video Solution

6. Prove by vector method that the lines joining the mid points of consecutive sides of a quadrilateral is a parallelogram.

- Watch Video Solution

7. if $\vec{a}=2 \hat{i}-5 \hat{j}+8 \hat{k}, \vec{b}=\hat{i}-3 \hat{j}-7 \hat{k} \quad$ and
$\vec{c}=-3 \hat{i}+2 \hat{j}-\hat{k}$ then find $|\vec{a}+\vec{b}+\vec{c}|$
8. If $\vec{a}=3 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}-2 \hat{k}$ then what is the unit vector parallel to $\vec{a}+\vec{b}$

D Watch Video Solution

9. Find the angle between the vectors $3 \hat{i}+4 \hat{j}$ and $2 \hat{i}+\hat{j}+\sqrt{3} \hat{k}$

D Watch Video Solution

10. What is the angle between two vectors \vec{a} and \vec{b} with magnitude 2 and 1 respectively such that $\vec{a} \cdot \vec{b}=\sqrt{3}$.

D Watch Video Solution

11. If $\vec{a}=3 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}-2 \hat{k}$ then what is the unit vector parallel to $\vec{a}+\vec{b}$

- Watch Video Solution

12. Find the component of the vector $\vec{b}=8 \hat{i}+\hat{j}$ in the direction of the vector $\vec{a}=\hat{i}+2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

13. What is the value of x so that vector $6 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-4 \hat{j}+x \hat{k}$ are perpendicular to each other.

Watch Video Solution

14. Determine μ, for which the vector
$\vec{a}=\mu(6 \hat{i}+2 \hat{j}-3 \hat{k})$ will be of unit length.

- Watch Video Solution

15. How many directions a null vector has?

D Watch Video Solution

16. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors,
each of magnitude unity, then what will be the magnitude of

$$
|\vec{a}+\vec{b}+\vec{c}|
$$

- Watch Video Solution

17. What is the volume of the parallelopiped whose sides are given by the vectors. $\hat{i}+\hat{j}, \hat{j}+\hat{k}$ and $\hat{k}+\hat{i}$

- Watch Video Solution

18. Write the values of m and n for which the vectors $(m-1) \hat{i}+(n+2) \hat{j}+4 \hat{k}$ and $(m+1) \hat{i}+(n-2) \hat{j}+8 \hat{k}$ are parallel

- Watch Video Solution

19. Show that the vectors $2 \hat{i}+3 \hat{j}, 5 \hat{i}-5 \hat{k}$ and $6 \hat{j}+4 \hat{k}$ are co-planar.
20. If A, B, C, D, E are the vertices of a regular pentagon, find the vector sum $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D E}+\overrightarrow{E A}$.

- Watch Video Solution

21. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then draw the conclusion.

(Watch Video Solution

22. Find a vector in the direction of vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$ which has magnitude 21units.

(D) Watch Video Solution

23. Find the unit vector in the direction of the sum of the vectors $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+2 \hat{j}-7 \hat{k}$

- Watch Video Solution

24. Write a unitvector in the direction of the sum of vectors
$\vec{a}=2 \hat{i}-\hat{j}-2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}+3 \hat{k}$

- Watch Video Solution

25. If $\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}, \vec{b}=3 \hat{i}-y \hat{j}+2 \hat{k}$ are two equal vectors, then write the value of $\mathrm{x}+\mathrm{y}+\mathrm{z}$.
26. If $\widehat{a} . \hat{b}=\frac{1}{2}$ then what is the angle between \widehat{a} and \hat{b} ?

(D) Watch Video Solution

27. Write the value of the cosine of the angle which the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ makes with y -axis

(Watch Video Solution

28. Write a vector in the direction of vector $\hat{i}-2 \hat{j}+3 \hat{k}$ that has magnitude 9 units.

Watch Video Solution

29. Find the value of 'a' such that vector $6 \hat{i}+2 \hat{j}-3 \hat{k}$ is perpendicular to $\hat{i}+6 \hat{j}+a \hat{k}$

(D) Watch Video Solution

30. What is the unit vector perpendicular to the vectors $\hat{i}-\hat{j}$ and $2 \hat{i}-3 \hat{j}$?

D Watch Video Solution

31. What is the magnitude of $2 \vec{a} \times 3 \vec{a}$?

- Watch Video Solution

32. If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=144$, write the value of $a b$

(D) Watch Video Solution

33. Write a vector normal to $\hat{i}+\hat{k}$ and $\hat{i}+\hat{j}$.

- Watch Video Solution

34. What is the angle between $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$?

- Watch Video Solution

35. If \vec{a} and \vec{b} are unit vectors such that $\vec{a} \times \vec{b}$ is a unit vector, then the angle between \vec{a} and \vec{b} is \qquad

- Watch Video Solution

36. If two vectors \vec{a} and \vec{b} are such that $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then what is the angle between \vec{a} and \vec{b} ?

- Watch Video Solution

37. What $\begin{gathered}\text { is the } \\ (\hat{i}+\hat{j}+\hat{k})+(\hat{i}+\hat{k}-3 \hat{j})+(\hat{k}+\hat{i}-3 \hat{j})+(\hat{i}+\hat{j}-3 \hat{k})\end{gathered}$
?
38. What is the projection of $\hat{i}+\hat{j}-\hat{k}$ upon the vector \hat{i} ?

D Watch Video Solution

39. Prove that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$

(D) Watch Video Solution

40. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k} \quad$ and
$\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ and find a vector of magnitude 6 units which is parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

Watch Video Solution

41. Show that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

42. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$, find the angle between \vec{a} and \vec{b}.

D Watch Video Solution

43. The position vectors of the points A, B, C and D are $4 \hat{i}+3 \hat{j}-\hat{k}, 5 \hat{i}+2 \hat{j}+2 \hat{k}, 2 \hat{i}-2 \hat{j}-3 \hat{k}$ and $4 \hat{i}-4 \hat{j}+3 \hat{k}$ respectively. Show that $A B$ and $C D$ are parallel.
44. If the sum of two unit vectors is a unit vectors find the magnitude of their difference.

(D) Watch Video Solution

45. If $\vec{a}=(2,-2,1), \vec{b}=(2,3,6)$ and $\vec{c}=(-1,0,2)$, Find the magnitude and direction of $\vec{a}-\vec{b}+2 \vec{c}$.

(Watch Video Solution

46. Prove the following by vector method. An angle inscribed in a semi-circle is a right angle.

D Watch Video Solution

47. If \vec{a}, \vec{b} and \vec{c} mutually perpendiculars, show that $[\vec{a} \cdot(\vec{b} \times \vec{c})]^{2}=a^{2} b^{2} c^{2}$

- Watch Video Solution

48. If $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}-\alpha \hat{j}+3 \hat{k}$ are orthogonal to each other then find α

- Watch Video Solution

49.

Find

when
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}, \vec{c}=\hat{j}+\hat{k}$
50. Find a vector \vec{b} such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=3$ where $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{j}-\hat{k}$

D Watch Video Solution

51. Prove by vector method that in a $\Delta A B C, c^{2}=a^{2}+b^{2}-2 a b \cos C$.

D Watch Video Solution

52. Determine the area of the parallelogram whose sides are the vectors $2 \hat{i}+2 \hat{j}$ and $\hat{i}-\hat{k}$.

(Watch Video Solution

53. If the position vectors of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$ respectively, then prove that $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear.

- Watch Video Solution

54. Find the scalar projection of the vector
$\vec{a}=3 \hat{i}+6 \hat{j}+9 \hat{k}$ on $\vec{b}=2 \hat{i}+2 \hat{j}-\hat{k}$.

- Watch Video Solution

55. Find the value of λ such that the following vectors are coplanar: $-\hat{i}+\lambda \hat{j}-\lambda \hat{k}, 2 \hat{i}+4 \hat{j}+5 \hat{k},-2 \hat{i}+4 \hat{j}-4 \hat{k}$

- Watch Video Solution

56. Prove that four points with position vectors $\hat{i}+\hat{j}-3 \hat{k}, 2 \hat{i}-\hat{j}-\hat{k},-\hat{i}+2 \hat{j}+2 \hat{k} \operatorname{and} 2 \hat{i}+2 \hat{k}$ arecoplanar

- Watch Video Solution

57. Using vector method find the area of the triangle with vertices $(1,0,0)(0,1,0)$ and $(0,0,1)$

(D) Watch Video Solution

58. Write the volume of the parallelopiped whose sides are given by $-\hat{j}, \hat{k},-\hat{i}$
59. If the magnitude of the difference of two unit vectors is $\sqrt{3}$ then find the magnitude of their sum.

- Watch Video Solution

60. Write a vector normal to $\hat{i}+\hat{k}$ and $\hat{i}+\hat{j}$.

(D) Watch Video Solution

61. If $\vec{a}=(2,-2,1), \vec{b}=(2,3,6)$ and $\vec{c}=(-1,0,2)$
,Find the magnitude and direction of $\vec{a}+\vec{b}-\vec{c}$.

- Watch Video Solution

62. Find the angle between the vectors $3 \hat{i}+4 \hat{j}$ and $2 \hat{i}+\hat{j}+\hat{k}$.

- Watch Video Solution

63. Find the unit vector in the direction of $\vec{a}-\vec{b}$ where $\vec{a}=4 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}-11 \hat{k}$.

(D) Watch Video Solution

64. If a and b are perpendicular vectors show that

$$
\begin{aligned}
& (\vec{a}+\vec{b})^{2}=(\vec{a}-\vec{b})^{2} . \\
& {\left[(\vec{a}+\vec{b})^{2}\right. \text { means(veca+vecb).(veca+vecb), sodoes (veca- }} \\
& \text { vecb) } \left.{ }^{\wedge} 2^{\prime}\right]
\end{aligned}
$$

(Watch Video Solution

65.

Prove
$\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=0$
and hence prove that
$\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b}) \quad$ are coplanar.

- Watch Video Solution

66. If $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ then verify that $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b}.
67. Prove that the four points with position vectors
$2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c} \quad$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.

D Watch Video Solution

68. Show that \vec{a}, \vec{b} and \vec{c} are coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are coplanar.

- Watch Video Solution

69. Find the vector \vec{p} which is perpendicular to both
$\vec{\alpha}=4 \hat{i}+5 \hat{j}-\hat{k}, \vec{\beta}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{p} \cdot \vec{q}=21$ where $q=3 \hat{i}+\hat{j}-\hat{k}$.
70. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-\hat{k}$. Find a vector \vec{c} such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$.

(Watch Video Solution

71. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $|\vec{a}|=5,|\vec{b}|=12,|\vec{c}|=13$ and $\vec{a}+\vec{b}+\vec{c}=0$ then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

D Watch Video Solution

72. If $a=2 \hat{i}+\hat{k}, b=\hat{i}+\hat{j}+\hat{k}$ and $c=4 \hat{i}-3 \hat{j}+7 \hat{k}$, then find the vector \vec{r} which satisfies $r \times b=c \times b$ and $r . a=0$.

- Watch Video Solution

73. Prove the following by vector method. in any triangle ABC, $a=b \cos C+c \cos B$.

- Watch Video Solution

74. Prove by vector method that in a
$\Delta A B C, c^{2}=a^{2}+b^{2}-2 a b \cos C$.

- Watch Video Solution

75. For $\vec{a}=\hat{i}+\hat{j}, \vec{b}=-\hat{i}+2 \hat{k}, \vec{c}=\hat{j}+\hat{k}$, obtain $\vec{a} \times(\vec{b} \times \vec{c})$ and also verify the formula
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.

(Watch Video Solution

76. Prove the following by vector method. The diagonals of a rhombus are at right angles.

- Watch Video Solution

77. Determine the sine of the angle between the vectors

$$
\widehat{-} 3 \hat{j}+\hat{k}, \hat{i}+\hat{j}+\hat{k}
$$

D Watch Video Solution

78. Find the volume of the parallelopiped whose sides are given by the vectors. $\hat{i}+\hat{j}+\hat{k}, \hat{k}, 3 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

79. Find the value of λ for which the three points with position vectors $2 \hat{i}+3 \hat{j}-4 \hat{k},-\hat{i}+\hat{j}+2 \hat{k} \quad$ and $4 \hat{i}+5 \hat{j}+\lambda \hat{k}$ are coplanar.

(Watch Video Solution

80. Find a unit vector perpendicular to the following two vectors $\vec{a}=2 \hat{i}+3 \hat{j}+6 \hat{k}$ and $\vec{b}=3 \hat{i}-6 \hat{j}+2 \hat{k}$
81. Find the value of λ so that three vectors
$\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$
$\vec{c}=3 \hat{i}+\lambda \vec{j}+5 \hat{k}$ are coplanar.

- Watch Video Solution

82. Show that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

83. If the vertices A, B, C of a triangle $A B C$ are at $(1,1,2),(2,2,3)$,
$(3,-1,-1)$ respectively, then using vector method find the area of the triangle.
84. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, prove that $\vec{a}+\vec{c}=m \vec{b}$, where m is a scalar.

(D) Watch Video Solution

85. Prove analytically : The perpendicular bisector of the sides of a triangle are concurrent.

- Watch Video Solution

86. Show that the following vector are co-planar.
$\hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}-4 \hat{j}+5 \hat{k}, 3 \hat{i}+6 \hat{j}+\hat{k}$
87. Prove by vector method that the medians of a triangle are concurrent.

D Watch Video Solution

88. Show that $(\vec{a} \times \vec{b})^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$.

D Watch Video Solution

89. Prove by vector method that the medians of a triangle are concurrent.

- Watch Video Solution

90. Show that the following vector are co-planar. $\hat{i}-2 \hat{j}+2 \hat{k}, 3 \hat{i}+4 \hat{j}+5 \hat{k},-2 \hat{i}+4 \hat{j}-4 \hat{k}$.
(Watch Video Solution
