

MATHS

BOOKS - USHA MATHS (ODIA ENGLISH)

MATRICES DETERMINANTS PROBABILITY

Exercise

- 1. Write the value of the following determinant:
 - $\begin{array}{c|cc} 0 & 0 & 3 \\ 0 & 3 & 0 \\ \end{array}$
 - 3 0 0

2. If every element of a third order determinant having value 8 is divided by 2, then what is the value of the resulting determinant?

Watch Video Solution

3. If the co-factor and minor of each element of a 2nd order determinant are same, then what is the value of the element in the 2nd row and 1st column of the determinant ?

4. If each element of a determinant of 3rd order is multiplied by k, then how many times the value of the determinant will be multiplied?

6. If
$$\begin{vmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix} = 0$$
, then find the value (s) of x.

NAZ-L-I

7. Write the relation between x and y if the points (a,

0), (0, b) and (x, y) are collinear.

Watch Video Solution

8. Answer the following:

What is the value of x if

$$egin{bmatrix} x+1 & 1 & 1 \ 1 & 1 & -1 \ -1 & 1 & 1 \end{bmatrix} = 4 \, ?$$

9. Find x and y if |[x, y], [1, 1]| = 2. |[x, 3], [y, 2]| = 1.

11. Find x,y if
$$\begin{bmatrix} 3 & 2 \\ 7 & x \end{bmatrix} \begin{bmatrix} 5 & -2 \\ -7 & y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

12. Rectify the mistake : Matrix multiplication is commutative and associative,

13. If
$$A = [xyz], B = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, find AB and its order.

[m]

Watch Video Solution

D Watch Video Solution

14. If matrix A is of order 3 imes 4 and matrix B is of order

4 imes 3, what is the number of elements in AB?

15. If Ais a square matrix and |A|=10, then find $\left|A^{-1}
ight|$

16. If
$$A = egin{bmatrix} 1 & 2 \ 3 & -5 \end{bmatrix}$$
, find $|adjA||A|$.

Watch Video Solution

17. If A is a square matrix given by
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, find adj (adj

A).

•

19. If A is a
$$2 imes 2$$
 non-singular matrix and $|A|=rac{1}{2}$

then which matrix is represented by A imes adjA?

Watch Video Solution

20. What is the order of the matrix B if
$$\begin{bmatrix} 3 & 4 & 2 \end{bmatrix} B = \begin{bmatrix} 2 & 1 & 0 & 3 & 6 \end{bmatrix}$$

21. State'True'or'false':For any square matrix A, AA' is

symmetric.

Watch Video Solution

22. State 'True' or 'False'. For any square matrix A,

A + A' is symmetric.

23. State 'True' or 'False'. For any square matrix A,

A - A' is skew symmetric.

24. If A is a 4×5 matrix and B is a matrix such that A^TB and BA^T both are defined, then write the order of B.

Watch Video Solution

25. If A and B are two square matrices of same order, then $(A+B)^2 = A^2 + 2AB + B^2$ can hold if and only if

A. AB = BA

 $\mathsf{B.}\,AB+BA=O$

$$\mathsf{C}.\left|AB\right|\neq 0$$

 $\mathsf{D}.\left|AB\right|=0$

Answer:

26. 1.Solve for x:
$$\begin{vmatrix} 1 & 1 & x \\ p+1 & p+1 & p+x \\ 3 & x+1 & x+2 \end{vmatrix}$$
 =0

 $\begin{bmatrix} \sin^2 A & \cot A & 1\\ \sin^2 B & \cot B & 1\\ \sin^2 C & \cot C & 1 \end{bmatrix} = 0$

Watch Video Solution

29. Without expanding, show that the following determinant vanishes. $\begin{vmatrix} 2x & x+y & x+z \\ y+x & 2y & y+z \\ z+x & z+y & 2z \end{vmatrix}$

31. Without expanding, show that the following determinant vanishes. $\begin{vmatrix} b^2c^2 & bc & b+c \\ c^2a^2 & ca & c+a \\ a^2b^2 & ab & a+b \end{vmatrix}$

determinant vanishes.
$$\begin{vmatrix} 6 & 2 & 1 \\ 9 & 3 & 2 \\ 12 & 4 & 3 \end{vmatrix}$$

33. Show that:
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a - b)(b - c)(c - a)$$
Watch Video Solution

34. If a, b and c are all positive real, then prove that

minimum value of determinant

$$egin{array}{cccccc} a^2+1 & ab & ac \ ab & b^2+1 & bc \ ac & bc & c^2+1 \end{array} ig|$$
 = $1+a^2+b^2+c^2$

37. Solve by cramer's rule :2x + 3y = 6, 4x + 6y = 12

39. Find the matrix B,if $B^2 = \begin{bmatrix} 16 & 0 \\ 0 & 16 \end{bmatrix}$.

Watch Video Solution

40. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 3 \\ -1 & 2 \end{bmatrix}$, show that $(A+B)^T = A^T + B^T$.

41. If
$$A = \begin{bmatrix} 2 & 0 & 3 \\ 3 & 4 & 5 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
 and $c = \begin{bmatrix} 2 & -3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$ find $(A + B - C)^T$

Watch Video Solution

42. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 3 \\ -1 & 2 \end{bmatrix}$, show that $(A+B)^T = A^T + B^T$.

Notch Video Colution

43. If
$$A = \begin{bmatrix} 2 & 0 & 3 \\ 3 & 4 & 5 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
 and $c = \begin{bmatrix} 2 & -3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$ find $A^T - B^T$

44. Find the matrix A if
$$A^2 = egin{bmatrix} 17 & 8 \ 8 & 17 \end{bmatrix}$$

45. Verify that
$$(AB)^{-1} = B^{-1}A^{-1}$$
 if $A = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 3 & 1 \end{bmatrix}$

•

46. Verify that
$$(AB)^{-1} = B^{-1}A^{-1}$$
 if
 $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$

47. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, then show that A^2=A^-1.

48. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then prove that $A^2 - 5A + 7I = O$

49. Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = O$ where I is a 2 × 2 identity matrix and O is 2 × 2 zero matrix.Using this equation.find A^{-1} .

50. If
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
, then prove that $A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}, n \in N.$

51. Express the matrix
$$A = \begin{bmatrix} 4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7 \end{bmatrix}$$
 as the sum

of symmetric and skew symmetric matrix.

Watch Video Solution

52. Examining consistency and solvability, solve the following equation by matrix method.

2x-y+z=4

x+3y+2z=12

3x+2y+3z=16

Watch Video Solution

				$ x^3 - a^3 $	x^2	x	
53.	Factorise	the	determinant	$b^2 - a^3$	b^2	b	
				$c^{3} - a^{3}$	c^2	c	

without expanding.

54. Prove the following:

_

-

$$\begin{bmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{bmatrix}$$
$$= (a^2 + b^2 + c^2)(a+b+c)(b-c)(c-a)(a-b)$$

Watch Video Solution

55. Show that

$$egin{array}{cccc} \left. \left(b+c
ight)^2 & a^2 & a^2 \ b^2 & \left(c+a
ight)^2 & b^2 \ c^2 & c^2 & \left(a+b
ight)^2 \end{array}
ight| = 2abc(a+b+c)^3$$

56. If
$$D = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$$
 and $D' = \begin{vmatrix} b+c & c+a & a+b \\ a+b & b+c & c+a \\ c+a & a+b & b+c \end{vmatrix}$ prove that D'=2D

58. Show that

$$egin{array}{cccc} \left. \left(b+c
ight)^2 & a^2 & a^2 \ b^2 & \left(c+a
ight)^2 & b^2 \ c^2 & c^2 & \left(a+b
ight)^2 \end{array}
ight| = 2abc(a+b+c)^3$$

Watch Video Solution

