

MATHS

BOOKS - USHA MATHS (ODIA ENGLISH)

MODEL QUESTION SET

MODEL QUESTION SET

1. What is
$$\int rac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx$$
?

Watch Video Solution

2. Write the minimum value of n such that $rac{d^n}{dx^n}ig(3x^4+5ig)^{20}=0$

write the matrix I_n^k .

 $x_1, x_2 \geq 0$

Watch Video Solution

10. Show that if R is an equivalence relation on X then dom R=rngR =X.

11. Prove that:
$$\cos^{-1}\left(rac{12}{13}
ight) + \sin^{-1}\left(rac{3}{5}
ight) = \sin^{-1}\left(rac{56}{65}
ight)$$

12. Solve
$$\sin^{-1}(1-x) - 2\sin^{-1}x = rac{\pi}{2}$$

Watch Video Solution

13. Let f be a real function. Prove that f(x) - f(-x) is an odd function

and f(x) + f(-x) is an even function.

Watch Video Solution

14. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then prove that $A^2 - 5A + 7I = O$

15. Express as a sum of a symmetric and a skew symmetric matrix:

$$\begin{bmatrix} 4 & -3 \\ 1 & 2 \end{bmatrix}$$

1

$$a$$
 bc
 1
 a
 b^2
17. Evaluate
 1
 b
 ca
 1
 a
 b^2
 1
 c
 ab
 1
 b
 b^2
 1
 c
 ab
 1
 c
 c^2

Watch Video Solution

18. Find the inverse of the matrix

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

19. Find the number of critical points of $f(x) = rac{|x-1|}{x^2}$

Watch Video Solution

20. If
$$f(x) = \left\{egin{array}{ccc} ax^2+b & {
m if} & x<1 \ 1 & {
m if} & x=1 \ 2ax-b & {
m if} & x>1 \end{array}
ight.$$

is continuous at x=1, then find a and b.

Watch Video Solution

21. Find the equation of the tangent to the curve $x=y^2-1$ at the point

where the slope of the normal to the curve is 2.

22. If
$$y = \sin^{-1}(x^3)$$
, then find that dy/dx

23. If
$$y = e^{x^{e^{x^{e^x}}}}$$
, then find $\frac{dy}{dx}$.

24. Evaluate
$$\int_0^2 \left|x^2+2x-3
ight|dx$$

Watch Video Solution

25. Find the area of the region bounded by the curve $y = \sin^3 x$ and the

straight lines

$$x = -rac{\pi}{4}, x = rac{\pi}{4} ext{ and } y = 0.$$

Watch Video Solution

26.
$$\int \frac{dx}{1+\tan x}$$

27. Evaluate
$$\int e^{\tan -1} x \left(\frac{1 + x + x^2}{1 + x^2} \right) dx$$
.
Watch Video Solution
28. Find the solution of the following differential equations:
 $(4x+6y+5)dx-(2x+3y+4)dy=0$
Watch Video Solution

29. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ and $\left|\overrightarrow{a}\right| = 3, \left|\overrightarrow{b}\right| = 5, \left|\overrightarrow{c}\right| = 7$. Then prove that the angle between \overrightarrow{a} and \overrightarrow{b} is 60° .

30. Find the image of the point (2, -1, 3) in the plane 3x - 2y + z - 9 = 0

31. Find the co-ordinates of the foot of the perpendicular from the point

 $(1,\,1,\,1)$ on the line joining $(1,\,4,\,6)$ and $(54,\,4).$

Watch Video Solution

32. Resolve the vector $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$ into vectors parallel and perpendicular to the vector $\overrightarrow{a} = \hat{i} + \hat{j}$.

Watch Video Solution

33. Find the foot of the perpendicular drawn from the point (5,7,3) to the

line $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$. Find the length of the perpendicular.

34. If
$$x = \frac{1 - \cos^2 \theta}{\cos \theta}, y = \frac{1 - \cos^{2n} \theta}{\cos^n \theta}$$
 then show that $\left(\frac{dy}{dx}\right)^2 = n^2 \left(\frac{y^2 + 4}{x^2 + 4}\right)$

35. Show that the sum of the intercepts on the coordinate axes of any tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ is constant.

Watch Video Solution

36. Find
$$\frac{dy}{dx}$$
 if y=([sinx+x^2]/[cot2x])`.

Watch Video Solution

37. Integrate
$$\int \frac{\left(\sin^2 x + \cos 2x\right)}{\cos^2 x} \bigg] dx$$

38. Solve the following differential equations

$$(x+\tan y)dy=\sin 2ydx$$

Watch Video Solution

39. Evaluate
$$\int_0^1 rac{\ln(1+x)}{1+x^2} dx$$

Watch Video Solution

40. Let $f \colon X \to Y$ and $g \colon Y \to Z$. Prove that gof is bijective if both f and

g are bijective. Also prove that $\left(gof\right)^{-1}=f^{-1}og^{-1}.$

Watch Video Solution

41. If
$$\sin^{-1}\left(\frac{x}{a}\right) + \sin^{-1}\left(\frac{y}{b}\right) = \sin^{-1}\left(\frac{c^2}{ab}\right)$$
,

then prove that $b^2x^2+2xy\sqrt{a^2b^2-c^4}+a^2y^2=c^4$

42. Solve the following LPP graphically Maximizez = 20x + 10y

Subject to $x+2y\leq 40$ $3x+y\geq 30$ $4x+3y\geq 60$ $x,y\geq 0$

Watch Video Solution

43. A variable plane meets the coordinate axes at A, B, C and is at a constant distance d from origin. Prove that the locus of the centroid of the triangle ABC is $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{9}{d^2}$

Watch Video Solution

44. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitude, show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} . \overrightarrow{b} . \overrightarrow{c} .

45. If 2s=a+b+c show that

$$egin{bmatrix} a^2 & (s-a)^2 & (s-a)^2 \ (s-b)^2 & b^2 & (s-b)^2 \ (s-c)^2 & (s-c)^2 & c^2 \end{bmatrix}$$
= $2s^3(s-a)(s-b)(s-c)$

Watch Video Solution

46. If
$$A=egin{bmatrix} 3&-4\\ 1&-1 \end{bmatrix}$$
 then show that $A^k=egin{bmatrix} 1+2k&-4k\\ k&1-2k \end{bmatrix}$, $karepsilon N$

Watch Video Solution

47. Solve the following system of equations by matrix method x + 2y + 3z = 8, 2x + y + z = 8 and x + y + 2z = 6

48. What is the number of solution of the following system: 2x + 3y = 6, x + y = 3

Watch Video Solution

Watch Video Solution

50. Write the equation of the plane passing through the point(1,0,0),

(0,2,0)and (0,0,3).

Watch Video Solution

51. Given an example of a function which is both odd and even function.

57. If
$$\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$$
, prove that

$$x^2 + y^2 + z^2 + 2xyz = 1.$$

58. Find the domain of the function
$$f(x) = \sqrt{\log \left(rac{12}{x^2 - x}
ight)}.$$

Watch Video Solution

59. Solve the pair of these equations`x+y=10,3x+y=12,

60. Show that
$$\sin^{-1}\left(\frac{1}{\sqrt{10}}\right) + \cos^{-1}\left(\frac{2}{\sqrt{5}}\right) = \frac{\pi}{4}$$

61. If a relation R:A
ightarrow A is an equivalence relation then prove that R^-1:A

toA is also an equivalence relation.

63. Verify that
$$[AB]^T = B^T A^T$$
 where $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$

	an A	1	$1 \mid$	
66. If ABC is a triangle, then prove that	1	an B	1	= 2
	1	1	$\tan C$	

67. Solve by matrix method 2x + y = 5, x - y = 1

68. Find the point on the curve $y^2 - x^2 + 2x - 1 = 0$

where the tangent is parallel to the x - axis.

69. If
$$2y = x \left(1 + rac{dy}{dx}
ight)$$
, then show that y_2 is a constant.

Watch Video Solution

70. If
$$y = an^{-1} igg(rac{\cos x}{1 + \sin x} igg),$$
 then prove that $rac{dy}{dx} = -rac{1}{2}$

Watch Video Solution

71. Examine the continuity of the following functions at indicated points.

$$f(x) = [3x+11]atx = \ - \ rac{11}{3}$$

72. If f(x+y) = f(x)f(y) for all real x, y, f(2) = 3, f'(0) = 1 then what

is the value of f'(2)?

73. Find the area of the circle

$$x^2 + y^2 = 2ax.$$

Watch Video Solution

74.
$$\int\!\!\frac{dx}{\sqrt{x}-\sqrt[3]{x}}ig(x=t^6ig)$$

Watch Video Solution

75. Solve
$$rac{dy}{dx}+rac{y}{x}=xy^2.$$

76. Evaluate
$$\int_0^2 \left|x^2+2x-3
ight|dx$$

Watch Video Solution

77. Evaluate
$$\int_{-2}^{2} ig[x^2+3x+2ig]dx.$$

78. Find the point where the line $\frac{x-2}{1} = \frac{y}{-1} = \frac{z-1}{2}$ meets the plane 2x + y + z = 2. **Watch Video Solution**

79. Find the vector projection of $\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k}on\overrightarrow{b} = 3\hat{i} + \hat{j} + 3\hat{k}.$

80. Show that the line passing through the points (a_1, b_1, c_1) and (a_2, b_2, c_2) passes through the origin , if $a_1a_2 + b_1b_2 + c_1c_2 = p_1p_2$. where p_1 and p_2 are distances of the points from origin.

84. Show that the semivertical angle of a cone of given slant height is

 $\tan^1\sqrt{2}$ when its volume is maximum.

85. If $a=2\hat{i}+\hat{k}, b=\hat{i}+\hat{j}+\hat{k}$ and $c=4\hat{i}-3\hat{j}+7\hat{k}$, then find the

vector \overrightarrow{r} which satisfies $r \times b = c \times b$ and r. a = 0.

Watch Video Solution

86. If a line in the space makes angles α, β and γ with the coordinate

axes, then find the value of $\cos 2lpha + \cos 2eta + \cos 2\gamma + \sin^2 lpha + \sin^2 eta + \sin^2 \gamma.$

87. If x,y,z are positive and are the pth, qth and rth terms of a G.P. then

prove that

 $egin{array}{ccc} \log x & p & 1 \ \log y & q & 1 \ \log z & r & 1 \end{array}
ight| = 0$

Watch Video Solution

88. If
$$A = \begin{bmatrix} 0 & -\tan\left(\frac{\alpha}{2}\right) \\ \tan\left(\frac{\alpha}{2}\right) & 0 \end{bmatrix}$$
 show that
 $(I+A) = (I-A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Watch Video Solution

89. Prove that
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)(ab+bc+ca)$$

90. Prove that
$$\tan\left\{\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right\} + \tan\left\{\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\left(\frac{a}{b}\right)\right\} = \frac{2b}{a}.$$

91.
$$\int \!\! \frac{x^2+1}{x^4+x^2+1} dx$$

92. Show that

$$\int_0^1rac{Inx}{\sqrt{1-x^2}}dx=rac{\pi}{2}Inrac{1}{2}$$

93. Solve the following differential equations

$$ig(1-x^2ig)rac{dy}{dx}+2xy=x\sqrt{1-x^2}$$

94. If A is a non-singular square matrix of order n, then what is |adjA|?

99. What is the order of the matrix B if [2 3 5 -1] B=[1 3 2 5 -4 1].

Watch Video Solution

100. What is
$$\left| \overrightarrow{a} - \overrightarrow{b} \right| = \text{ if } \left| \overrightarrow{a} \right| = 3, \left| \overrightarrow{b} \right| = 4 \text{ and } \left| \overrightarrow{a} + \overrightarrow{b} \right| = 5?$$

Watch Video Solution

101. Find the principal value of $\sin^1\left(\sin\frac{2\pi}{3}\right)$

102. What is the value of
$$rac{d}{dx} \int_{150}^{300} \left(x^3+3x^2
ight)^3 dx$$
 ?

106. Prove that
$$f\colon X o$$
 Y is surjective iff for all $B\subseteq Y, fig(f^{-1}(B)ig)=B.$

107. Find the maximum value of Z = 2x + 3y subject to conditions

 $x+y\leq 1$ and $x\geq 0, y\geq 0.$

Watch Video Solution

108.Provethat
$$sin^{-1}\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{2}\right) = \frac{\pi}{4} + \frac{1}{2}cos^{-1}x, 0 < x < 1$$
 $\raiset Watch Video Solution$

109. Show that the relation ~ on $\mathbb{Z} - \{0\} \times \mathbb{Z} - \{0\}$ defined by $(m, n) \sim (p, q) \Leftrightarrow mq = np$ is an equivalence relation.

110. Solve by matrix method. 2x + y = 5, x-y =1

111. If
$$A=\left[egin{array}{cc} 1&1\ 1&1\end{array}
ight]$$
 and $n\in N$, then $A^n=2^{n-1}A$.

Watch Video Solution

112. If
$$\begin{bmatrix} x & y \\ x & \frac{x}{2} + x \end{bmatrix} + \begin{bmatrix} y & x+t \\ \frac{x}{2} & \frac{x}{2} \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 2 \end{bmatrix}$$
 then find the values of

x,y,z and t.

Watch Video Solution

113. Evaluate the determinant |(4, 6, -2), (1, -4, 3), (7, -2, 1)|

114. If
$$\begin{vmatrix} a & b & a-b \\ b & c & b-c \\ 2 & 1 & 0 \end{vmatrix} = 0$$
, then prove that a,b,c are in GP.

115. evaluate
$$\lim_{x
ightarrow 1} rac{x^2-3x+2}{x-1}$$

Watch Video Solution

116. If
$$x^2+y^2=t-rac{1}{t}$$
 and $x^4+y^4=t^2+rac{1}{t^2}$ then prove that $x^3yrac{dy}{dx}=1.$

Watch Video Solution

117. Find the maximum and minimum of f(x)=|x+3|, for all x belongs to R.

120. Integrate
$$\int \left(\frac{1-\cos x}{1+\cos x} \right) dx$$
 .

121. Solve
$$(x+y)^2rac{dy}{dx}=a^2.$$

122. If f is periodic with period 3 and f(1) = 1 then what is the value of

$$\int_{1}^{3}f(x)e^{x}dx+\int_{1}^{3}f^{\,\prime}(x)e^{x}dx$$
 ?

Watch Video Solution

123. Evaluate
$$\int_{-2}^2 |[x]| dx$$

Watch Video Solution

124. Prove that
$$\left(\overrightarrow{a}\times\overrightarrow{b}\right)^2=a^2b^2-\left(\overrightarrow{a}.\overrightarrow{b}\right)^2$$
.

Watch Video Solution

125. Find the perpendicular distance of the point (-1, 3, 9) from the

line
$$\frac{x-13}{5} = \frac{y+8}{-8} = \frac{z-31}{1}$$

126. Prove that
$$(\overrightarrow{a} \times \hat{i})^2 + (\overrightarrow{a} \times \hat{j})^2 + (\overrightarrow{a} \times \hat{k})^2 = 2\overrightarrow{a}^2$$
.
Watch Video Solution
127. Find the equation of planes passing throught the points $(6, -1, 1)$, $(5,1,2)$ and $(1,-5,-4)^{\circ}$
Watch Video Solution

128. Find the co-ordinates of the foot of the perpendicular drawn from the point (1,3,4) to the line joining the points (3, 0, -1) and (0, 1, -2).

129. If
$$e^{y/x}=rac{x}{a+bx}$$
 then show that $x^3rac{d}{dx}igg(rac{dy}{dx}igg)=igg(xrac{dy}{dx}-yigg)^2$

130. If $2x = y^{\frac{1}{m}} + y^{-\frac{1}{m}}$, then prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$.

131. Show that the rectangle of maximum area that can be inscribed in a given circle is a square.

Watch Video Solution

132. Prove the following by vector method. Altitudes of a triangle are concurrent.

Watch Video Solution

133. Find the magnitude and equation of the line of shotest distance

between the lines
$$rac{x-3}{2}=rac{y+15}{-7}=rac{z-9}{5}$$
 and

$$\frac{x+1}{2} = \frac{y-1}{1} = \frac{z-9}{-3}$$
Watch Video Solution

134. Solve the following by matrix method x-y+z=4, 2x+y-3z=0, x+y+z=2

Watch Video Solution

135. Prove that $\begin{vmatrix} -2a & a+b & c+a \\ a+b & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix} = 4(b+c)(c+a)(a+b)$

Watch Video Solution

136. Show that the function $f\!:\!R^+ o R^+$ defined by $f(x)=x+rac{1}{x}$ is

injective, but not surjective .

137. Solve

$$\sin^{-1}x - \cos^{-1}x = \cos^{-1}rac{\sqrt{3}}{2}$$

Watch Video Solution

138. Solve:
$$2\sin^{-1}x + \sin^{-1}(1-x) = \frac{\pi}{2}$$

Watch Video Solution

139. Evaluate
$$\int \!\! \ln (x^2 + x + 2) dx$$

Watch Video Solution

140.
$$\int_0^\pi \left(rac{x \tan x}{\sec x + \tan x}
ight) \mathsf{d} \mathsf{x}$$

142. Differentiate $\cos^{-1}(\sin x)$ w.r.t.x.

Watch Video Solution

143.
$$\int \frac{\cot x dx}{\ln \sin x} = ?$$

Watch Video Solution

144. How many independent constants are there in the general equation

of a plane ax + by + cz + d = 0?

145. What is the range of the signum function?

147. Between tan 1 and $\tan^{-1} 1$, which is greater?

148. Answer the following: In which inverval does the determinant

$$\mathsf{A} = \begin{bmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{bmatrix} \text{ lie?}$$

$$y = ax^2 + b$$

152. Consider the binary operation * on the set

{1,2,3,4,5} defined by $a * b = min{a,b}$. Write operation table of operation *.

156. Construct an example to show that $f(A \cap B)
eq f(A) \cap f(B)$ where

 $A\cap B
eq heta$.

157. Express
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 0 & 1 \\ -1 & 5 & -2 \end{bmatrix}$$
 as a sum of a symmetric and a skew –

symmetric matrix.

Watch Video Solution

	bc	a	a^2		1	a^2	a^3
158. Without expanding prove	ca	b	b^2	=	1	b^2	b^3
	ab	c	c^2		1	c^2	c^3

Watch Video Solution

159. Find the inverse of the matrix
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Watch Video Solution

160. Find A and B where

$$2\mathsf{A}+\mathsf{B}=\begin{bmatrix} 2 & 2 & 5\\ 5 & 4 & 3\\ 1 & 1 & 4 \end{bmatrix} \text{and} A - 2B = \begin{bmatrix} 1 & 6 & 5\\ 5 & 2 & -1\\ -2 & -2 & 2 \end{bmatrix}$$

161. Solve for x,

 $egin{array}{ccccccc} 15-2x & 11 & 10 \ 11-3x & 17 & 16 \ 7-x & 14 & 13 \ \end{array} = 0$

Watch Video Solution

162. Find absolute maximum and absolute minimum of $f(x) = \begin{cases} (x+1)^2 & x \le 0\\ (x-1)^2 & x > 0 \end{cases}$ in [-1,1]
Watch Video Solution

163. If
$$x^7y^3=(x+y)^{10}$$
 , then find $\displaystyle rac{d^2y}{dx^2}$

165. Find the equation of tangent to the curve $x=y^2-2$ at the points

where slope of the normal equal to (-2).

Watch Video Solution

166. Find the intervals in which the function $y = \frac{\ln x}{x}$ is increasing and

decreasing.

Watch Video Solution

167. Solve
$$\displaystyle rac{dy}{dx} = x + y$$

$$168. \int \frac{2\sin x + 3\cos x}{3\sin x + 4\cos x} dx = ?$$

169. Solve
$$rac{dy}{dx} = rac{y^2}{xy-x^2}.$$

170. Integrate
$$\int_{-3/5}^{3/5} [2x+1] dx$$

Watch Video Solution

171. Evaluate
$$\int_0^1 rac{x^5}{\sqrt{1-x^2}} dx$$

172. Find the co-ordinates of the point where the perpendicular from the

origin meets the line joining the points (-9, 4, 5) and (11, 0, -1).

Watch Video Solution

173. Resolve the vector $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$ into vectors parallel and perpendicular to the vector $\overrightarrow{a} = \hat{i} + \hat{j}$.

Watch Video Solution

174. Find the equation of the plane passing through the line x = y = z and

the point (3,2,1).

175. Find the equation of the line through (-1,0,1) and perpendicular to the

plane x + 2y + 1=0.

178. Prove the following by vector method. Altitudes of a triangle are concurrent.

179. Prove that the measure of the angle between two main diagonals of a

cube is
$$\cos^{-1}\frac{1}{3}$$
.

Watch Video Solution

180. Let $f: R \rightarrow R$ be defined by f(x)=3x+5. Show that f is bijective. Find $f^{-1}(1)$ and $f^{-1}(0)$.

Watch Video Solution

181. Prove that
$$an\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right) + an\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right) = \frac{2b}{a}$$

Watch Video Solution

182. Find the extreme values of the function $f(x)=x^2e^{-x^2}$ and show that $f(x)\leq e^{-1}\,orall x\in R.$

183. Find the extreme points of the following functions. Specify if the extremum is a maximum or minimum. Find the extreme values. $y = (x-2)^3 (x+3)^4$

Watch Video Solution

184. Show that
$$f(x) = [3x + 11]$$
 is discontinuous at $x = -\frac{11}{3}$

Watch Video Solution

185. Find the solution of the following differential equations:

(4x+6y+5)dx-(2x+3y+4)dy=0

186.
$$\int_0^\pi \frac{x dx}{1+\sin x}$$

187. Show that

$$\int_0^\pi x In\sin x = rac{\pi^2}{2} Inrac{1}{2}$$

Watch Video Solution

188. If A is a 4 imes 5 matrix and B is a matrix such that A^TB and BA^T both

are defined, then write the order of B.

Watch Video Solution

189. What is
$$F'(x)$$
 if $F(x)=\int_0^x e^{3t}\cos 4t dt$?

Watch Video Solution

190. Find r if $-501 \in [r]_5$.

193. What is the value of
$$\int \!\! rac{d}{dx} f(x) dx - rac{d}{dx} \! \int \!\! f(x) dx$$
?

196. Write a logarithmic functions which is differentiable atevery point in R.

Watch Video Solution

197. Write the equation of the tangent to the curve $y = \sqrt{x}$ at the point

(-4, 4).

198. Solve: $\sin^{-1} x + \sin^{-1}(1-x) = \cos^1 x$

203. Solve graphically: Maximize Z=3x+ 5y Subject to

$$x + y \le 1, x \ge 0, y \ge 0$$

Watch Video Solution
204. Express the value of $\sin^{-1}\frac{1}{\sqrt{5}} + \cos(-1)\frac{3}{\sqrt{10}}$ in simplest form.
Watch Video Solution

205. If f:X \rightarrow Y and g:Y \rightarrow Z be two bijective functions, then prove that $(gof)^{-1} = f^{(-1)og(-1)}$.

Watch Video Solution

206. Show that x=2 is a root of

$$egin{bmatrix} x & -6 & -1 \ 2 & -3x & x-3 \ -3 & 2x & x+2 \end{bmatrix} = 0$$

Solve this completely,

207. Find A if
$$A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$$

Watch Video Solution

208. If
$$A = \begin{bmatrix} 1 & -2 & 2 \\ 3 & 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 4 \\ 1 & 2 \\ 3 & -1 \end{bmatrix}$, then verify that $(AB)^{T} = B^{T}A^{T}$.

Watch Video Solution

209. Find B if
$$B^2=egin{bmatrix} 17 & 8\ 8 & 17 \end{bmatrix}$$

210. Prove that:
$$\begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1 \end{vmatrix}$$
 is a perfect square.
Watch Video Solution
211. If $y\sqrt{x^2+1} = \log\{\sqrt{x^2+1}-x\}$ then prove that $(x^2+1)\frac{dy}{dx} + xy + 1 = 0$

212. If
$$y = an^{-1} igg(rac{\cos x}{1 + \sin x} igg),$$
 then prove that dy/dx=-1

Watch Video Solution

213. Let
$$f(x) = \begin{cases} rac{1}{x+\lfloor x
floor} & ext{if} \quad x < 0 \ -1 & ext{if} \quad x \geq 0 \end{cases}$$
 Examine the continuity of f(x) at

x=0.

217. Evaluate
$$\int \!\! e^x igg(rac{1+\sin x}{1+\cos x} igg) dx.$$

218. Evaluate the integral: $\displaystyle{\int} rac{x^2-4}{x-2} dx$

219. Solve the following differential equations

 $(x+\tan y)dy=\sin 2ydx$

Watch Video Solution

220. Evaluate
$$\int_0^7 \Big[rac{x}{3}\Big] dx$$

Watch Video Solution

221. Prove that the point (1,2,3),(-1,1,0),(2, 1, 3) and (1, 1, 2) are coplanar.

222. If \overrightarrow{a} and \overrightarrow{b} are unit vectors represented by the adjacent sides of a regular hexagon, taken in order, what are the vectors represented by the other sides taken in order?

223. Find the distance of the point (1, -2, 3) from the plane x - y + z = 5, measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$

Watch Video Solution

224. Find the angle which a diagonal of a cube makes with one of its edges.

225. Find the value of k for which A (1,0,3), B'(-1,2,4), C(1,2,1) and D(k,2,5) are

coplaner.

Watch Video Solution

226. Show that
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + \overrightarrow{b}\right) = 2\left(\overrightarrow{a} \times \overrightarrow{b}\right)$$
. Interpret this

result geometrically.

Watch Video Solution

227. Find the area of the parallelogram whose diagonals are vectors $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$.

228. Prove that the lines
$$\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$$
 and $3x - 2y + z + 5 = 0 = 2x + 3y + 4z - 4$ are co-planar.

229. Find the equation of the tangent and normal to the curve y(x-2)(x-3)-

x+7=0 at the point where it cuts the x-axis.

Watch Video Solution

230. Show that the semivertical angle of a cone of given slant height is

 $an^1\sqrt{2}$ when its volume is maximum.

Watch Video Solution

231. Let f be defined by f(x)=2x+1 for all ξnR . Show that f is bijective

and determine the inverse of f. Find $f^{-1}(0), f^{-1}(2)$ and $f^{-1}(-1)$.

232. Show that the relation ~ on $\mathbb{Z}-\{0\} imes \mathbb{Z}-\{0\}$ defined by

(m,n)- $(p,q) \Leftrightarrow mq = np$ is an equivalence relation.

234. Find the inverse of the following matrix using elementary

transformation : $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 1 & 0 & 2 \end{bmatrix}$

235. Express A = ((1,2),(2,3) as the sum of a symmetric and a skew

symmetric matrix.

237. Solve (x-y+1)dx-(x+y+5)dy=0

Watch Video Solution

238. Give example of a function whose is continuous but not differentiable at x=2.

239. If
$$|\vec{a}| = 10$$
, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 0$ then what is the value of $|\vec{a} \times \vec{b}|$?
Watch Video Solution
240. Express the value of $\sin \cos^{-1} \tan \sec^{-1} \sqrt{2}$ in simplest form.
Watch Video Solution
241. Give example of a function which is increasing in $(-\infty, 2)$ and $(3, \infty)$ and decreases in $(2,3)$.
Watch Video Solution
242. For a 2×2 matrix A, if A, adjA= $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, then what is the value of |A|
?
Watch Video Solution

243. What is the distance of point (3,-4, 5) from z-axis ?

247. Prove the
$$\sin^{-1}\sqrt{\frac{x-q}{p-q}} = \cos^{-1} \operatorname{sqrt}((p-x)/(p-q)) = \operatorname{cot}^{-1} \operatorname{sq$$

248. Let X and Y be sets containing m and n elements respectively. What is

the total number of functions from X to Y.

Watch Video Solution

249. Solve the following LPP graphically: maximize Z=5x+7y subject to

 $3x+y\leq 3, x\geq 0, y\geq 0$

250. Solve:
$$\sin^{-1}2x + \sin^{-1}x = \frac{\pi}{3}$$

254. Find the adjoint of the following matrice.

 $\begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 2 \\ 1 & 3 & -2 \end{bmatrix}$

Watch Video Solution

255. If A and B are matrices of the same order and AB=BA, Then prove that

$$A^2 - B^2 = (A - B)(A + B)$$

Watch Video Solution

256. Solve by matrix method: 2x + 3y=1,4x+5y=3

Watch Video Solution

257. If
$$e^x + e^y = e^{x+y}$$
, find $\displaystyle \frac{dy}{dx}.$

258. If
$$x^7y^3 = (x+y)^{10}$$
, then find $\frac{d^2y}{dx^2}$

Watch Video Solution

259. Determine the values of x for which the function $f(x)=x^x, x>0$ is

increasing or decreasing.

Watch Video Solution

260. If
$$x=\cos^{-1}\left(rac{1}{\sqrt{1+t^2}}
ight)$$
, $y=\sin^{-1}\left(rac{1}{\sqrt{t^2+1}}
ight)$ then $rac{dy}{dx}$ is

independent of t.

Watch Video Solution

261. Find the angle between the tangents to the curve $y=x^2-5x+6$

at the points (2,0) and (3,0).

262. Find the area of the region bounded by $y=6x-x^2$ x-axis and

between ordinates x = 0 and x = 6.

Watch Video Solution

263.
$$\int \sin^{-1} \sqrt{rac{x}{a+x}} dx =$$
 _____.

Watch Video Solution

264. Solve :
$$x rac{dy}{dx} + y = xy^2$$

Watch Video Solution

265. Evaluate
$$\int_3^6 rac{\sqrt{x}}{\sqrt{(9-x)}+\sqrt{x}} dx$$

266. Evaluate
$$\int_{-1}^{2} \{|x|+[x]\}dx$$

267. The plane 4x + 7y + 4z + 81 = 0 is rotated through a right angle about its line of intersection with the plane 5x + 3y + 10z - 25 = 0. Find the equation of the plane in new position.

269. Find the image of the point (2, -1, 3) in the plane

3x - 2y + z - 9 = 0

270. Prove that the measure of the angle between two main diagonals of

a cube is $\cos^{-1}\frac{1}{3}$.

Watch Video Solution

271. Show that the vectors $4\hat{i}+4\hat{j}+4\hat{k},7\hat{i}+6\hat{j}-\hat{k}$ and $3\hat{i}+2\hat{j}-5\hat{k}$

form a right angled triangle and find its area.

Watch Video Solution

272. Integrate
$$\int \! {dx \over x^4 + 1}$$

273. Solve
$$x^2ydx-ig(x^3+y^3ig)dy=0.$$
274. Prove by vector method that in any triangle ABC, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$

Watch Video Solution

Watch Video Solution

275. If a line in the space makes angles lpha,eta and γ with the coordinate

axes, then find the value of $\cos 2lpha + \cos 2eta + \cos 2\gamma + \sin^2 lpha + \sin^2 eta + \sin^2 \gamma.$

276. If the mapping f and g are given by f= $\{(1,2), (3, 4), (5, 6), (7, 8)\}$, g= $\{(2, 5), (4, 7), (6, 3), (8, 1)\}$ then find (i) gof (ii) fog. Hence show that composition of functions is not commutative.

277. Prove that
$$\cos^{-1} \left(rac{b+a\cos x}{a+b\cos x}
ight) = 2 an^{-1} \left(\sqrt{rac{a-b}{a+b}} an rac{x}{2}
ight)$$

278. Show that the line y=mx+c touches the curve $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ if

$$c^2 = a^2 m^2 - b^2$$

Watch Video Solution

279. Show that the shrtest distance of the point (0, 8a) from the curve $ax^2 = y^3$ is $2a\sqrt{11}$.

Watch Video Solution

280. Show that the curves $y = 2^x$ and $y = 5^x$ intersect at an angle

$$an^{-1} igg| rac{1n \Big(rac{5}{2}\Big)}{1+1n21n5} igg|$$

Note Angle between two curves is the angle between their tangents at the point of intersection.

Watch Video Solution

281. Prove the following:

$$\begin{bmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{bmatrix}$$
$$= (a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)$$

Watch Video Solution

282. Find the inverse of the following matrix using elementary transformation: $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 1 & 0 & 2 \end{bmatrix}$ Watch Video Solution

283. If A is a singular matrix, then what is A(adjA)?

287. Write the integrating factor of the differential equation $\frac{dy}{dx}(x+y+1) = 1.$

Watch Video Solution

288.
$$\tan\left\{\left(\frac{1}{2}\right)\sin^{-1}\left(\frac{2x}{1+x^2}\right) + \frac{1}{2}\cos^{-1}\left(\frac{1-y^2}{1+y^2}\right)\right\}.$$

Watch Video Solution

289. What is the angle between \overrightarrow{a} and \overrightarrow{b} if $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a} - \overrightarrow{b}\right|$?

Watch Video Solution

290. If
$$M = egin{bmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix}$$
 ,then what is M^{50} ?

291. Write the value x for which $rac{d}{dx} \mathrm{sin} ig(\mathrm{sin}^{-1} x ig) = 1$

Watch Video Solution

292. What is the value of
$$\int_{-1}^{1} \ln \left(\frac{4-x}{4+x} \right) dx$$
?

Watch Video Solution

293. Prove the following statements

$$\cot^{-1}9 + \csc^{-1}rac{\sqrt{41}}{4} = rac{\pi}{4}$$

Watch Video Solution

294. Show that if R is an equivalence relation on X then dom R=rngR =X.

295. Solve graphically: Maximize Z=5x+6y subject to

$$2x + 3y \le 6, x, y \ge 0$$

Watch Video Solution
296. Solve $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$

297. Let f = {(1,3), (2,4), (3,7)} and g = {(3,2), (4,3), (7,1)} determine gof?

Watch Video Solution

298. Prove that
$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$

299. If
$$\begin{vmatrix} a & b & a-b \\ b & c & b-c \\ 2 & 1 & 0 \end{vmatrix} = 0$$
, then prove that a,b,c are in GP.

300. Verify that
$$A = egin{bmatrix} a & b \ c & d \end{bmatrix}$$

satisfies the equation $A^2-(a+d)A+(ad-bc)I=0$ where I is the 2

x2 unit matrix.

Watch Video Solution

301. Solve :
$$\begin{bmatrix} 7 & 6 & x \\ 2 & x & 2 \\ x & 3 & 7 \end{bmatrix} = 0$$

302. Verify that
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$$

$$\left[AB\right]^T = B^T A^T$$
 where

303. Prove the inequality

$$x^2e^{-x^2}\leq e^{-1}, x\in R.$$

Watch Video Solution

304. Prove that
$$rac{d}{dx} \ln an \left(rac{\pi}{4} + rac{x}{2}
ight) = \sec x.$$

Watch Video Solution

305. Determine the point on the curve $y = \ln x$, at which the tangent will

be parallel to the chord joining the points P(1, 0) and Q(e, 1).

Watch Video Solution

306. Find the angle of intersection of two curves $y = 2^x$ and $y = 5^x$

307. If
$$2y = x \left(1 + rac{dy}{dx}
ight)$$
, then show that y_2 is a constant.

308. Find the solution of the following differential equations:

(4x+6y+5)dx-(2x+3y+4)dy=0

Watch Video Solution

309.
$$\int\!\!\frac{xe^x}{1+x^2}dx$$

Watch Video Solution

310. Solve
$$rac{dy}{dx} - y = e^x.$$

311. Evaluate
$$\int_{-2}^{2} |[x]| dx$$
.

312.
$$\int\!\! {dx\over \sqrt{x}-\sqrt[3]{x}} ig(x=t^6ig)$$

Watch Video Solution

313. Find the co-ordinates of the foot of the perpendicular from the point

(1, 1, 1) on the line joining (1, 4, 6) and (54, 4).

Watch Video Solution

314. Show that
$$\left[\overrightarrow{a} + \overrightarrow{b}\overrightarrow{b} + \overrightarrow{c}\overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$$

$$\begin{bmatrix} a^2 & (s-a)^2 & (s-a)^2 \\ (s-b)^2 & b^2 & (s-b)^2 \\ (s-c)^2 & (s-c)^2 & c^2 \end{bmatrix} = 2s^3(s-a)(s-b)(s-c)$$

321. Find the distance of the point (3,-4,5)from the plane 2x+5y-6z-19=0 x - 1 y z + 3

measured parallel to the line
$$\frac{x-1}{2} = \frac{y}{1} = \frac{z+3}{-2}$$
.

322. Prove that the two lines whose direction cosines are connected by equations $l + 2m + 3n = 0, 3lm - 4\ln + mn = 0$ the are perpendicular to each other. Watch Video Solution **323.** Integrate the following $\int e^{\cos^2 x} \sin 2x dx$ Watch Video Solution **324.** Solve the differential equation $\frac{dy}{dx} = \frac{y-x+1}{y+x+5}$. Watch Video Solution 325. Prove that $\int_{0}^{\frac{\pi}{2}} \ln \sin x dx = \frac{\pi}{2} \ln \left(\frac{1}{2} \right)$ Watch Video Solution

327. Let $f \colon X o Y$ and $g \colon Y o Z$. Prove that gof is bijective if both f and

g are bijective. Also prove that $\left(gof\right)^{-1}=f^{-1}og^{-1}.$

Watch Video Solution

328.

$$\cos^{-1}\Bigl(rac{x}{a}\Bigr) = \cos^{-1}\Bigl(rac{y}{b}\Bigr) = heta, ext{ prove that } rac{x^2}{a^2} - rac{2xy}{ab} \cos heta + rac{y^2}{b^2} = \sin^2 heta.$$

If

329. Minimize: $Z = 20x_1 + 10x_2$

Subject to: $x_1 + 2x_2 \leq 40$

 $3x_1-x_2\geq 30$

 $x_1, x_2 \geq 0$

Watch Video Solution

330. If
$$y = x \sin^{-1} x + x \cos^{-1} x$$
, then what is $\frac{dy}{dx}$?

Watch Video Solution

331. Give an example of a relation which is symmetric and anti-symmetric.

Watch Video Solution
332. What is the value of
$$\int_0^1 \sin^2 t dt + \int_0^1 \cos^2 t dt - \int_0^1 dr$$
?
Watch Video Solution

333. What is the principal value of $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$?

Watch Video Solution

334. What is the value of
$$\begin{vmatrix} i^{103} & 3 & i^{101} \\ i^{56} & 5 & i^{54} \\ i^{23} & 7 & i^{21} \end{vmatrix}$$

Watch Video Solution

335. What is the value of $\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}$ if $\hat{a} + \hat{b} + \hat{c} = \overrightarrow{0}$?

Watch Video Solution

336. The distance between the parallel planes 2x - 3y + 6z + 1 = 0 and

4x-6y+12z-5=0 is____

337. If is a 3 imes 3 matrix and |A| = 7, then which matrix is represented by

A imes adjA?

Watch Video Solution

338. What is the value of
$$\int \sin^2 x d(\sin x)$$
?

Watch Video Solution

339. Write the subinterval of $(0, \pi)$ in which sin $\left(x + \frac{\pi}{4}\right)$ is increasing.

Watch Video Solution

340. Write whether the equation $\tan^{-1}(\cot x) = 2x$ has exactly two real

solutions statements are true or false.

341. Find the feasible solution region of the following: $3x + y \ge 3, x + y \ge 1, x \ge 0, y \ge 0$

342. Prove statement
$$an \left(2 an^{-1}rac{1}{5}-rac{\pi}{4}
ight)+rac{7}{17}=0$$

Watch Video Solution

343. Prove that for any $f \colon X o Y,$ $foid_x = f = id_Y$ of.

Watch Video Solution

344. If
$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
, then find A^{-1}

345. Evaluate
$$\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} - \begin{vmatrix} 1 & a & b^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$

346. If $\begin{bmatrix} x+y & y-z \\ 5-t & 7+x \end{bmatrix} = \begin{bmatrix} t-x & z-t \\ z-y & x+z+t \end{bmatrix}$, then find the values of x,

y, z and t.

Watch Video Solution

347. Express as a sum of a symmetric and a skew symmetric matrix:

 $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 0 & 1 \\ -1 & 5 & -2 \end{bmatrix}$

Watch Video Solution

348. Prove the following : $\begin{bmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{bmatrix} = (1-x^3)^2$

349. Find the intervals where the following functions are (a) increasing

and (b) decreasing. $y= an x-4(x-2), x\in$

$$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$

Watch Video Solution

350. Find
$$rac{dy}{dx}$$
, if $y= an^{-1}igg(rac{\cos x}{1+\sin x}igg).$

Watch Video Solution

351. Show that the line y = mx + c touches the parabola $y^2 = 4ax$ if c

$$= \frac{a}{m}$$

352. Use the function $f(x)=x^{1/x}, x>0$ to show that $e^{\pi}>\pi^{e}.$

353. Let
$$f(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 Examine the continuity of f(x) at x=0.

Watch Video Solution

354.
$$\int \frac{1+x^2}{x\sqrt{x^4+1}} dx$$

Watch Video Solution

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1.$$

356.
$$\int_{0}^{\pi} \frac{x \sin x dx}{1 + \cos^{2} x}$$
Watch Video Solution 357. Evaluate the following integrals $\int \frac{3 \sin x + 28 \cos x}{5 \sin x + 6 \cos x} dx$
358. Find the equation of the plane passing through the line $\frac{x - 8}{3} = \frac{y + 19}{-16} = \frac{z - 10}{7}$ and the point $(1, 2, -4)$.
Watch Video Solution

359. Prove that the sum of the vectors directed from the vertices to the mid points of opposite sides of a triangle is zero

360. If A (1,0,-1), B (-2,4,-2) and C(1,5,10) be the vertices of a triangle and the bisector of the angle BAC, meets BC at D, then find the coordinates of the

point D.

362. Prove the following by vector method. The diagonals of a rhombus are at right angles.

Watch Video Solution

363. Prove that
$$\displaystyle \int \!\!\! \frac{dx}{(x-1)^2(x+2)} = rac{1}{9} {
m ln} \Big| rac{x+2}{x-1} \Big| - rac{1}{3(x-1)} + c$$

$$\textbf{364.} \int_0^\pi \left(\frac{x\tan x}{\sec x + \tan x}\right) \mathsf{d} \mathsf{x}$$

Watch Video Solution

365. Solve:
$$(1+x^2)rac{dy}{dx}+2xy-x^3=0$$

366. Find
$$\displaystyle rac{dy}{dx}$$
 if $x=\displaystyle rac{3at}{1+t^3}, y=\displaystyle rac{3at^2}{1+t^3}$ at $t=\displaystyle rac{1}{2}$

Watch Video Solution

367. If $x \cos lpha + y \sin lpha = p$ is a tangent to the curve

$$\left(rac{x}{a}
ight)^{rac{n}{n}-1}+\left(rac{y}{b}
ight)^{rac{n}{n}-1}=1$$
then so that

 $(a\coslpha)^n+(b\sinlpha)^n=p^n.$

368. Prove the following:

$$\begin{bmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{bmatrix}$$
$$= (a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)$$

Watch Video Solution

369. If
$$A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
, then show that $A^3 - A^2 + I_3 = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$

Watch Video Solution

370.

$$\cos^{-1}\Bigl(rac{x}{a}\Bigr) = \cos^{-1}\Bigl(rac{y}{b}\Bigr) = heta, ext{ prove that } rac{x^2}{a^2} - rac{2xy}{ab} ext{cos} heta + rac{y^2}{b^2} = \sin^2 heta.$$

If

371. Solve the following LPP graphically: Maximize: $Z = 4x_1 + 3x_2$ subject

to $x_1+x_2 \leq 50$, $x_1+2x_2 \leq 80$, $2x_1+x_2 \geq 20$, $x_1,x_2 \geq 0$

373. A line makes angles α , β , γ , δ with the four main diagonals of a cube.

Prove that
$$\cos^2lpha+\cos^2eta+\cos^2\gamma+\cos^2\delta=rac{4}{3}$$

Watch Video Solution

374. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitude, show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} . \overrightarrow{b} . \overrightarrow{c} .

375. The equation of a plane passing through (1, 1, 2) and parallel to

> Watch Video Solution

376. What is the value of
$$\int_0^{100} ig[an^{-1}xig] dx$$
 ?

Watch Video Solution

377. What is the trigonometric function f(x) such that f''(x) + f(x) = 0

?

378. Write whether the following statements are true or false.

sec⁻¹
$$\frac{1}{2} + \csc^{-1}\frac{1}{2} = \frac{\pi}{2}$$

Watch Video Solution
379. What is the minimum value of $\begin{vmatrix} \sin x & \cos x \\ -\cos x & 1 + \sin x \end{vmatrix}$?
Watch Video Solution
380. What is the value of $\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}$ if $\hat{a} + \hat{b} + \hat{c} = \overrightarrow{0}$?
Watch Video Solution
381. if A is a 3 × 3 matrix and |A| = 3, then write the matric represented by $A \times adjA$.

382. What is the slope of the normal to the curve $x^{rac{2}{3}}+y^{rac{2}{3}}=20$ at the

point (8, 64)?

383. Find the degree and the order of the differential equation

$$\left(rac{dy}{dx}
ight)+1+rac{d^2y}{dx^2}=0.$$

Watch Video Solution

384. Prove statement
$$an^2 \cos^{-1} rac{1}{\sqrt{3}} + \cot^2 \sin^{-1} rac{1}{\sqrt{5}} = 6$$

Watch Video Solution

385. Let $R = \{(m, n): 2 \text{ divides } m + n\}$ on Z. Show that R is an equivalence relation on Z.

386. Find the feasible solution region of
$$x + y \le 1, 2x + 3y \le 6, x \ge 0, y \ge 0.$$

Watch Video Solution
387. Prove statement $\tan\left(2\tan^{-1}\frac{1}{5} - \frac{\pi}{4}\right) + \frac{7}{17} = 0$
Watch Video Solution
388. Prove that for any $f: X \to Y$, $foid_x = f = id_Y$ of.
388. Prove that for any $f: X \to Y$, $foid_x = f = id_Y$ of.
389. If ABC is a triangle, then prove that $\begin{vmatrix} \tan A & 1 & 1 \\ 1 & \tan B & 1 \\ 1 & 1 & \tan C \end{vmatrix} = 2$
Watch Video Solution

390. Find B if
$$B^2 = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$$

391. If
$$f(x) = \begin{bmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 2x \end{bmatrix}$$

what is the maximum value of f(x).

Watch Video Solution

392. Solve the following :
$$\begin{bmatrix} x & 1 & 3 \\ 1 & x & 1 \\ 3 & 6 & 3 \end{bmatrix} = 0$$

Watch Video Solution

393. If f(x) = a In $x + bx^2 + x$ has extreme values at x = -1 and x = 2

then find a and b.

394. If cos y = x cos(a+y) then prove that

 $rac{dy}{dx} = rac{\cos^2(a+y)}{\sin a}$

Watch Video Solution

395. If
$$y\sqrt{x^2+1} = \log\left\{\sqrt{x^2+1}-x\right\}$$
 then prove that $(x^2+1)\frac{dy}{dx} + xy + 1 = 0$

396. Find the equation of normal to the curve $x^3 = 4y$ which passes through (1,2).

397. If
$$y = x^2 \cos^{-1} \left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1} \right) + x^2 \cos ec^{-1} \left(\frac{\sqrt{x} + 1}{\sqrt{x} - 1} \right)$$
 then prove that $\frac{d^2 y}{dx^2} = \pi$

398. Integrate
$$\int \!\! \left(rac{x-1}{2x+1}
ight) \! dx$$

399.
$$\int_0^2 \left[x^2
ight] dx$$

Watch Video Solution

400.
$$\int_0^{\frac{\pi}{2}} e^x \cos x dx$$

401. Solve
$$(x \log x) \frac{dy}{dx}$$
+y= $2 \log x$.

402. Find the area of the portion of the parabola $y^2 = 4x$ bounded by the double ordinate through(3,0).

403. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

Watch Video Solution

404. Prove that
$$: \left| \overrightarrow{a} + \overrightarrow{b} \right| \le \left| \overrightarrow{a} \right| + \left| \overrightarrow{b} \right|.$$

405. If A (1,0,-1), B (-2,4,-2) and C(1,5,10) be the vertices of a triangle and the bisector of the angle BAC, meets BC at D, then find the coordinates of the point D.

408. Find
$$\frac{dy}{dx}$$
 if $y = \tan^{-1}\left(\frac{\sqrt{a^2 + x^2} + \sqrt{a^2 - x^2}}{\sqrt{a^2 + x^2} - \sqrt{a^2 - x^2}}\right) + \frac{1}{2}\cos^{-1}\left(\frac{1 - x}{1 + x}\right)$, by

substitution.

Watch Video Solution

409. A curve passes through the point (2, 0) and slope of the tangent at any point (x, y) is $x^2 - 2x$ for all $x \in R$. Show that the point where ordinate is maximum is $\left(0, \frac{4}{3}\right)$.

Watch Video Solution

410. Prove that
$$\int_0^\pi rac{x dx}{1+\sin x} = \pi$$

411. Find the solution of the following differential equations:

(2x+3y-5)dy/dx+3x+2y-5-0

412. Prove that
$$\cos^{-1}\left(rac{b+a\cos x}{a+b\cos x}
ight) = 2\tan^{-1}\left(\sqrt{rac{a-b}{a+b}} anrac{x}{2}
ight)$$

Watch Video Solution

413. Maximize:
$$Z=10x_1+12x_2+8x_3$$

Subject to: $x_1+2x_2\leq 30$
 $5x_1-7x_3\geq 12$
 $x_1+x_2+x_3=20$
 $x_1,x_2\geq 0$

414. Let f: X o Y

If there exists a map g:Y \rightarrow X such that gof = id_X and fog = id_y , then show that

f is bijective and (ii) $g=f^{\,-1}$

Watch Video Solution

415. Using vector method prove that $\cos A = rac{b^2 + c^2 - a^2}{2bc}$

Watch Video Solution

416. A variable plane meets the coordinate axes at A, B, C and is at a constant distance d from origin. Prove that the locus of the centroid of the triangle ABC is $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{9}{d^2}$

417. Show that the shortest distance between the lines x + a = 2y = -12z and x = y + 2a = 6z - 6a is 2a.

Watch Video Solution

418. Prove that the following.
$$\begin{bmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{bmatrix} = (b-c)(c-a)(a-b)(bc+ca+ab)$$
Watch Video Solution

419. Solve the following system of equations by matrix method x + 2y + 3z = 8, 2x + y + z = 8 and x + y + 2z = 6

420. Find the distance between the parallel planes 2x - 2y + z + 1 = 0

and 4x - 4y + 2z + 3 = 0.

421. If
$$y = x^{-1} \sin \cos e c^{-1} rac{1}{x}$$
, then what is $rac{dy}{dx}$?

422. Write down the smallest and the largest equivalence reaction on a

set A ={1,2,3}..

Watch Video Solution

423. Differentiate twice
$$\int \sin^{-1} x dx + \int \cos^{-1} x dx$$

Watch Video Solution

424. If x+y=4, xy=1 then what is the value of $\tan^{-1} x + \tan^{-1} y$?

425. What is the value of $\hat{a} \cdot \hat{b} + \hat{b} \cdot \hat{c} + \hat{c} \cdot \hat{a}$ if $\hat{a} + \hat{b} + \hat{c} = \overrightarrow{0}$?

426. What is the value of
$$\begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix}$$
?

Watch Video Solution

427. If A is a 2 imes 2 non-singular matrix and $|A| = rac{1}{2}$ then which matrix is

```
represented by A \times adjA?
```

Watch Video Solution

428. Write the subinterval of $(0,\pi)$ in which sin $\left(x+rac{\pi}{4}
ight)$ is increasing.

429. What is the value of $\int_0^2 |x-1| dx$?

Watch Video Solution

430. Solve for x,
$$\cos^{-1}x + \sin^{-1}\left(rac{x}{2}
ight) = rac{\pi}{6}.$$

Watch Video Solution

431. If R and S are two equivalence relation on the set then prove that

 $R\cap S$ is also an equivlaence relation on the set.

432. Show that:
$$4\left(\cot^{-1}\left(rac{3}{2}
ight)+\cos ec^{-1}\sqrt{26}
ight)=\pi.$$

433. Prove that $f\!:\!R o R$ such that $f(x)=rac{2x^2}{x^2+1}$ is neither one-one

nor onto function.

Watch Video Solution

434. Factorize the following.
$$\begin{bmatrix} a & b & c \\ b+c & c+a & a+b \\ a^2 & b^2 & c^2 \end{bmatrix}$$

Watch Video Solution

435. Find B if
$$B^2 = egin{bmatrix} 17 & 8 \ 8 & 17 \end{bmatrix}$$

prove that

 $egin{array}{c|c} \log x & p & 1 \ \log y & q & 1 \ \log z & r & 1 \end{array} = 0$

440. Find
$$rac{dy}{dx}$$
, if $y = an^{-1} igg(rac{\cos x}{1 + \sin x} igg)$

441. Find the equation of the tangent and normal to the curve y(x-2)(x-3)-

x+7=0 at the point where it cuts the x-axis.

Watch Video Solution

442. If f(x) = a In
$$x + bx^2 + x$$
 has extreme values at $x = -1$ and $x = 2$

then find a and b.

Watch Video Solution

443. If
$$y = x + rac{1}{x + rac{1}{x + ...\infty}}$$
 find $rac{dy}{dx}$, the rhs being a valid expression.

444. Solve
$$(x+y+1)rac{dy}{dx}=1$$

445. Integrate
$$\int rac{ an x + an lpha}{ an x - an lpha} dx$$

446. Integrate the following
$$\int_0^1 rac{x^7}{\sqrt{1-x^2}} dx$$

Natch Video Solution

447. Find the area of the circle

$$x^2 + y^2 = 2ax.$$

Watch Video Solution

448.
$$\int_0^2 \left[x^2\right] dx$$

449. Show that the line passing through the points (a_1, b_1, c_1) and (a_2, b_2, c_2) passes through the origin , if $a_1a_2 + b_1b_2 + c_1c_2 = p_1p_2$. where p_1 and p_2 are distances of the points from origin.

Watch Video Solution

450. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

Watch Video Solution

451. Calculate the area of the triangle ABC (by vector method) where

A(1,2,4), B(3,1,-2), C(4,3,1)

452. The plane 4x + 7y + 4z + 81 = 0 is rotated through a right angle about its line of intersection with the plane 5x + 3y + 10z - 25 = 0. Find the equation of the plane in new position.

456. Solve
$$x rac{dy}{dx} + y = x^4$$

457. If $f\colon X o Y$ is onto, then prove that $fig(f^{-1}(B)ig)=B$ for all $B\subseteq Y$

Watch Video Solution

458. Prove that $f: X \to Y$ is injective iff $f^{-1}(f(A)) = A$ for all $A \subseteq X$.

Watch Video Solution

459. Prove that
$$\cos^{-1}\left(rac{b+a\cos x}{a+b\cos x}
ight)=2 an^{-1}\left(\sqrt{rac{a-b}{a+b}} anrac{x}{2}
ight)$$

460. Prove that the measure of the angle between two main diagonals of

a cube is $\cos^{-1}\frac{1}{3}$.

Watch Video Solution

461. Show that the shortest distance between the lines x + a = 2y = -12z and x = y + 2a = 6z - 6a is 2a.

Watch Video Solution

462. If
$$e^{y/x} = rac{x}{a+bx}$$
 then show that $x^3 rac{d}{dx} \left(rac{dy}{dx}
ight) = \left(xrac{dy}{dx}-y
ight)^2$

Watch Video Solution

463. Find the extreme values of the function $f(x) = x^2 e^{-x^2}$ and show

that $f(x) \leq e^{-1} \, orall x \in R.$

464. Shows that the triangle of greatest area that can be inscribed in a

circle is equilateral.

467. If A
$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2 \end{bmatrix}$

Show that AB=AC

though B '!=C`.Verify that: A(B+C)=AB+AC

Watch Video Solution

468. Let $f \colon R o R$ be defined as f(x) = 3x. Then f is one-one and onto

Watch Video Solution

469. Let $f \colon R o R$ be defined as f(x) = 3x. Then f is one-one and onto

470. Let $f \colon R o R$ be defined as f(x) = 3x. Then f is one-one and onto

474. Let A be square matrix of order 3×3 , then find |KA| where, k is a

scalar.

475. If A is an invertible matrix of order 2, then find $\det(A^{-1})$.

478. In triangle ABC, find
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$$

479. Let the vectors \overrightarrow{a} and \overrightarrow{b} such that $\left|\overrightarrow{a}\right| = 3$ and $\left|\overrightarrow{b}\right| = \frac{\sqrt{2}}{3}$. If $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

480. Are the planes 2x - y + 4z = 5 and 5x - 25y + 10z = 6 are perpendicular?

Watch Video Solution

481. Find fog(2) and gof(1), when $f\!:\!R o R$ defined by $f(x)=x^2+8$

and $g \colon R o R, g(x) = 3x^3 + 1.$

Watch Video Solution

482. Solve
$$\cos^{-1} x + \sin^{-1} \frac{x}{2} = \frac{\pi}{6}$$

483. Solve LPP: Maximize $Z=5x_1+7x_2$ subject to the constrains $3x_1+4x_2\leq 12,\,x_1,\,x_2\geq 0$

Watch Video Solution

484. Show the
$$f: R - \{-1\} \rightarrow R - \{1\}$$
 given by $f(x) = \frac{x}{x-1}$ is invertible. Also find f^{-1} .

Watch Video Solution

485. Prove the following

$$an^{-1}rac{2a-b}{b\sqrt{3}}+ an^{-1}rac{2b-a}{a\sqrt{3}}=rac{\pi}{3}$$

486. Express $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ as the sum of a symmetric and a

skew symmetric matrix.

Watch Video Solution

487. Using the properties of determinants, show that
$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)^3$$

Watch Video Solution

488. If
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
, then prove that $A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}$, $n \in N$.

491. Discuss the continuity of the function defined by $f(x) = \begin{cases} x+1 & \text{if } x \leq 1 \\ x-2 & \text{if } x > 1 \end{cases}$

Watch Video Solution

492. Differentiate the functions w.r.t x $x^{x\cos x} + rac{x^2+1}{x^2-1}$

493. Find the tangent to the curve $y = \cos(x+y), 0 \le x \le 2\pi$ which is parallel to the line x + 2y = 0

494. Find the intervals in which the function f given by $f(x) = \sin x + \cos x, 0 \le x \le 2\pi$ is strictly increasing or strictly decreasing.

495. If
$$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}$$
 and $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$, then find $\frac{dy}{dx}$.
Watch Video Solution

496. Find the integral
$$\int rac{x^3 \sin(an^{-1} x^4)}{1+x^8} dx$$

497. Find the integral
$$\int rac{x+3}{(5-4x+x^2)} dx$$

498. Evaluate
$$\int_0^{\pi/2} \log \sin x dx$$
.

Watch Video Solution

499. Form the differential equation of the family of all circles of radius r.

Watch Video Solution

 500. Solve the differential equation
$$\frac{dy}{dx} = \log(x+1)$$

 Watch Video Solution

501. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector parallel to its diagonal. Also find its area.

502. Prove the following by vector method. In a triangle AOB, $m \angle AOB$ =

 $90^{\,\circ}$. If P and Q are the points of trisection of AB, prove that

$$OP^2 + OQ^2 = \frac{5}{9}AB^2$$

Watch Video Solution

503. Find the distance of the point (2,3,4) from the plane 3x + 2y + 2z + 5 = 0 measured parallel to the line $\frac{x+3}{3} = \frac{y-2}{6} = \frac{z}{2}$.

504. Prove by vector method that in a parallelogram, the line joining a

vertex to the midpoint of an oppositeside trisects the other diagonal.

505.

 $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \pi$ prove that $x^4 + y^4 + z^4 + 4x^2y^2z^2 = 2(x^2y^2)^2$

If

Watch Video Solution

507. Show the $f: R - \{-1\} \rightarrow R - \{1\}$ given by $f(x) = \frac{x}{x-1}$ is invertible. Also find f^{-1} .

509. Show that P(m,1) + P(n,1) = P(M+n,1)for all positive integers m, n.

Watch Video Solution

510. Prove that the curves $x = y^2$ and xy = k cut at right angles, if $8k^2 = 1$.

511. Show that the semivertical angle of a cone of given slant height is $\tan^1 \sqrt{2}$ when its volume is maximum.

512. A ladder 5m long is leaning against a wall. The bottom of ladder is pulled along the ground, away from the wall, at the rate of 2cm / sec. How fast is its height on the wall is decreasing when the foot of ladder is 4m away from the wall.

513. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$

514. Find the co-ordinates of the foot of the perpendicular from the point (1,1,2) to the plane 2x - 2y + 4z + 5 = 0. Also,find the length of the perpendicular.

Watch Video Solution

515. If with reference to the eight handed system of mutually perpendicular unit vectors $\hat{i}, \hat{j}, \hat{k}, \vec{\alpha} = 3\hat{i} - \hat{j}, \beta = 2\hat{i} + \hat{j} - 3\hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.

Watch Video Solution

516. Prove that the lines
$$\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$$
 and $3x - 2y + z + 5 = 0 = 2x + 3y + 4z - 4$ are co-planar.

517. What is
$$\int 5^x \cdot e^{3x}$$
?

518. If |X| = m and |Y|= n, then what is the total number of functions

from X to Y.

Watch Video Solution

519. If the tangent to the curve $y = x^2 + 3x$ at P has slope 5, then what

are the coordinates of P?

Watch Video Solution

520. Fill in the blank choosing correct answer from the brackets

$$\cot^{-1}\left[\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\left(\sqrt{1}+\sin x\right)}\right] = - - -$$
$$\left(2\pi - \frac{x}{2}, \frac{x}{2}, \pi - \frac{x}{2}\right)$$

524. If A is a symmetric matrix, then A- A is both symmetric and skew

symmetrix. State true or false.

525. If
$$f(x)=egin{cases} x&0\leq x\leq 1\\ 2-x&1\leq x\leq 2 \end{cases}$$
 then what is the value of $\int_0^2 f(x)dx?$

Watch Video Solution

526. Solve
$$\sin^{-1} x + \sin^{-1}(1-x) = \frac{\pi}{2}$$
.

Watch Video Solution

527. Let f be a real function. Show that h(x) = f(x)=f(-x) is always an even

function and g(x) = f(x) - f(-x) is always an odd fuction.

528. Minimize: $Z = 6x_1 + 7x_2$

 $ext{Subject to:} x_1 + 2 x_2 \geq 4$

 $x_1, x_2 \geq 0$

Watch Video Solution

529. If
$$r^2 = x^2 + y^2 + z^2$$
, Prove that

$$\tan^{-1}\frac{yz}{xr} = \tan^{-1}\frac{zx}{yr} + \tan^{-1}\frac{xy}{zr} = \frac{\pi}{2}$$

530. Find
$$A^{-1}$$
 if $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$ by using elementary row operations.

531. Evaluate
$$\begin{bmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{bmatrix} - \begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$$

Solution
532. Define involuntary matrix and show that $\begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ is an involuntary matrix.
Solution
533. If $\begin{bmatrix} 3 & -2 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 \\ 7 \end{bmatrix}$, then find xand y.
Solution
534. If ABC is a triangle, then prove that $\begin{vmatrix} \tan A & 1 & 1 \\ 1 & \tan B & 1 \\ 1 & 1 & \tan C \end{vmatrix} = 2$

535. If
$$\sqrt{1-x^2}+\sqrt{1-y^2}=a(x-y)$$
 , then prove that $rac{dy}{dx}=\sqrt{rac{1-y^2}{1-x^2}}$

536. If
$$y=e^{m\cos^{-1}x}ig(1-x^2ig)y_2-xy_1=m^2y$$

Watch Video Solution

537. Differentiate with respect to x: $y = 3^{x^2} + an^{-1} igg(rac{\cos x + \sin x}{\cos x - \sin x} igg)$

Watch Video Solution

538. Show that $f(x) = x^3 - 6x^2 + 24x + 4$ has neither a maximum nor

a minimum value.

539. Find Integrating factor of:
$$(x\log x)rac{dy}{dx} + y = 2\log x$$

540. Integrate
$$\int rac{x+7}{x^2+8x} dx$$

Watch Video Solution

541. Solve
$$rac{dy}{dx}+rac{y}{x}=xy^2.$$

Watch Video Solution

542. Prove that
$$\int_{\pi/6}^{\pi/3} rac{1}{1+\sqrt{ an X}} dx = rac{\pi}{12}$$

543. Prove that the measure of the angle between two main diagonals of

a cube is $\cos^{-1}\frac{1}{3}$.

544. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

545. Find the foot of the perpendicular drawn from the point (5,7,3) to the

line $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$. Find the length of the perpendicular.

Watch Video Solution

546. Show that the vector area of the triangle whosse vertices have position vector \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is $\frac{1}{2} \left(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \right)$.

547. passing through the point (-1, 3, 2) perpendicular to the planes

x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

548. If
$$y = x^{\sin x} + (\sin x)^{\cos x}$$
, then find $\frac{dy}{dx}$.

Watch Video Solution

549. Show that $\sin^P \theta \cos^q \theta$ attains a maximum value, when $\theta = \tan^{-1} \sqrt{\frac{p}{q}}.$

Watch Video Solution

550. Show that the sum of the intercepts on the coordinate axes of any

tangent to the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ is constant.

551. Prove by vector method that the mid-point of the hypotentise of a

right angles triangle is equidistance from the vertices.

equation of the line of shortest distance.

Watch Video Solution

553. Let f be defined by f(x)=4x + 3 for all `x""inR. Show that it is bijective and determine the inverse of f.

554. If
$$\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \pi$$
, show that $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz$
Watch Video Solution

555. Prove that
$$\int_0^{rac{\pi}{2}} \ln \sin x dx = -rac{\pi}{2} \ln 2$$

556. Evaluate
$$\int \frac{dx}{\cos x(1+2\sin x)}$$

Watch Video Solution

557. Solve the following differential equations

 $(x + \tan y)dy = \sin 2ydx$

558. Express
$$\begin{vmatrix} a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2 \end{vmatrix}$$
in the form of a perfect square.

559. If
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 & 2 \\ -2 & 3 & 0 \end{bmatrix}$ verify
(i) $(A + B)C = AC + BC$

(ii)
$$(AB)C = A(BC)$$

Watch Video Solution

560. If
$$f(x) = \int_0^x e^{2t} . \sin 3t dt$$
 then what is $f^1(x)$?

Watch Video Solution

561. What does the solution set of the inequation 2x + y > 5 represents?

563. What is the general solution of
$$an^{-1}\sqrt{rac{dy}{dx}}=x$$
 ?

564. Give an example of symmetric matrix.

566. If
$$y = \cos^{-1}\left(rac{x-rac{1}{x}}{x+rac{1}{x}}
ight)$$
, then what is $rac{dy}{dx}$?

567. What is the restriction on the formula $\int a^x dx = rac{a^x}{Ina}$?

Watch Video Solution

568. Write down the symmetric from of the equation of y-axis.

Watch Video Solution

569. Solve:
$$\sin^{-1}2x + \sin^{-1}x = \frac{\pi}{3}$$

570. Find all possible equivalence relations on $X = \{1, 2, 3\}$

573. If $f\colon X o Y$ is onto, then prove that $fig(f^{-1}(B)ig)=B$ for all $B\subseteq Y$

574. If A is a 3 imes 3 matrix and |A|=2, then which matrix is represented

by A imes adjA?

Watch Video Solution

575.
$$\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x & 2 \\ 1 & y \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ -1 & 4 \end{bmatrix}$$
, find x and y.

Watch Video Solution

576. Solve :
$$\begin{bmatrix} 7 & 6 & x \\ 2 & x & 2 \\ x & 3 & 7 \end{bmatrix} = 0$$

Watch Video Solution

577. Prove that:
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

578. If A is square matrix, then prove that A. $(adj \cdot A) = |A|I$.

580. Shows that the following functions do not possess maximum or minimum. $3x^3 - 12x^2 + 16x - 15$

581. Show that
$$rac{x}{1+x an x,}x\in \left(0,rac{\pi}{2}
ight)$$
 is maximum when x = cos x.

583. Show that the line y = mx + c touches the parabola y^2 = 4ax if c

 $=\frac{a}{m}.$

584. Solve
$$x \sin rac{y}{x} dy = \Big(y \sin rac{y}{x} - x\Big) dx$$

Watch Video Solution

585. Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx.$$

586. Determine the area within the ellipse

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$

Watch Video Solution

587. Integrate the following
$$\int \left[\frac{2x+1}{\sqrt{x^2+10x+29}} \right] dx$$

Watch Video Solution

588. If
$$\overrightarrow{a} = \hat{i} + 2\hat{j} - 3\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} - \hat{j} + 2\hat{k}$, then find the angle between $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

589. Find the equation of plane passing through the intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$ and parallel x-axis.

590. Find the co-ordinates of the foot of the perpendicular from the point

(1, 1, 1) on the line joining (1, 4, 6) and (54, 4).

Watch Video Solution

591. Prove that
$$\left(\overrightarrow{a} imes \hat{i}
ight)^2 + \left(\overrightarrow{a} imes \hat{j}
ight)^2 + \left(\overrightarrow{a} imes \hat{k}
ight)^2 = 2\overrightarrow{a}^2$$

Watch Video Solution

593. Evaluate the following integrals $\int \frac{3}{x^3-1} dx$

594. Show that

$$\int_0^\pi x In \sin x = rac{\pi^2}{2} In rac{1}{2}$$

Watch Video Solution

595. Solve
$$rac{dy}{dx}+rac{y}{x}=rac{\sin x}{x},$$
 $y(0)=0$

Watch Video Solution

596. If
$$x = \frac{1 - \cos^2 \theta}{\cos \theta}, y = \frac{1 - \cos^{2n} \theta}{\cos^n \theta}$$
 then show that $\left(\frac{dy}{dx}\right)^2 = n^2 \left(\frac{y^2 + 4}{x^2 + 4}\right)$

597. A figure consists of a semi-circle with a rectangle on its diameter. Given that the perimeter of the figure is 20 cm. Find the dimensions in order that its area may be maximuum.

598. Find the points on the curve $y = x^2 + 1$ which are nearest to the

point (0,2).

Watch Video Solution

599. Prove that $a \equiv b \mod 3$ is an equivalence relation on the set of

integers Z. Find its congruence classes.

600.

$$\cos^{-1}\Bigl(rac{x}{a}\Bigr) = \cos^{-1}\Bigl(rac{y}{b}\Bigr) = heta, ext{ prove that } rac{x^2}{a^2} - rac{2xy}{ab} ext{cos} heta + rac{y^2}{b^2} = \sin^2 heta.$$

Watch Video Solution

601. A factory uses three different respurce for the manufacture of two different products, 20 units of the resource A, 12 units of B and 16 unit of C being available. One unit of the first product requires 2,2 and 4 units of the resources and one unit of the second product requires 4,2 and 0 units of the resources taken in order. It is known that the first product gives a profit of ₹20 per unit and the second ₹ 30 prt uniy. Formulate the LPP so as to earn maximum profit.

Watch Video Solution

602. If the edges of a rectangular parallelopiped are of lengths a, b, c, then the angle between four diagonals are $\cos^{-1}\left(\frac{\pm a^2 \pm b^2 \pm c^2}{a^2 + b^2 + c^2}\right)$.

603. Find the distance of the point (3,-4,5) from the plane 2x+5y-6z-19=0

measured parallel to the line
$$rac{x-1}{2} = rac{y}{1} = rac{z+3}{-2}.$$

Watch Video Solution

604. A variable plane is at a constant distance p from the origin and meets the axes at A,B,C. Through A,B,C plane are drawn parallel to the coordinate planes. Show that the locus of their points of intersection is $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}.$ Watch Video Solution

605. Without expanding show that the following determinant is equal to

Ax+B where A and B are determinants of order 3 not involning x.

$$egin{bmatrix} x^2+x & x+1 & x-2\ 2x^2+3x-1 & 3x & 3x-3\ x^2+3x+3 & 2x-1 & 2x-1 \end{bmatrix}$$

606. If
$$A = \begin{bmatrix} 0 & -\tan\left(\frac{\alpha}{2}\right) \\ \tan\left(\frac{\alpha}{2}\right) & 0 \end{bmatrix}$$
 show that
 $(I+A) = (I-A) \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

607. Find the probability distribution of number of doublets in four throws of a pair of dice. Find also the mean and the variance of the number of doublets.

• Watch Video Solution
608. What is the value of
$$\int_0^{\pi} \cos^{101} x dx$$
?
• Watch Video Solution

609. If
$$f(x)=egin{cases} 3x+2 & x\leq 0\ 2-3x & x>0 \end{cases}$$

610. What is the equation of the plane $\perp r$ to y-axis and passing through(2,-3,5)?

Watch Video Solution

612. For a 2xx2 matrix A,if Axxadj
$$A = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$
 then what is the value of

|A|?

613. Write the Order and degree of the differential equation whose general solution is y=A sinx +Bcosx.

614. With 4 different elements how many different determinant of order 2

can be constructed.

Watch Video Solution

615. What is the value of a so that $6\hat{i}+2\hat{j}-3\hat{k}$ and $\hat{i}-4\hat{j}+a\hat{k}$ are

orthogonal to each other ?

616. If
$$\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \pi$$
, show that $x\sqrt{1-x^2} + y\sqrt{1-y^2} + z\sqrt{1-z^2} = 2xyz$
Watch Video Solution

617. Find the feasible solution region of the following system: $-x+y \geq -1, x+y \leq 6, y \leq 5, x \geq 0, y \geq 0.$

> Watch Video Solution

618. lf
$$an^{-1}x + an^{-1}y + an^{-1}z - \pi$$

show that x+y+z=xyz.

Watch Video Solution

619. If p is a prime and $ab\equiv 0 \pmod{p}$ then show that either a=0 (mod p)

or $b \equiv 0 \pmod{p}$.

620. If A+B+C=pi,then show that
$$\begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix} = 0$$

621. Prove that the following.
$$\begin{bmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{bmatrix}$$

= abc(1+1/a+/b+1/c)

Watch Video Solution

622. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 & 0 \\ 1 & 2 & 3 \end{bmatrix}$, then verify that $(AB)^T = B^T A^T$.

623. Find A^-1 if A=
$$\begin{bmatrix} 4 & -1 \\ 2 & 3 \end{bmatrix}$$

624. Express
$$\begin{bmatrix} 3 & -1 & 0 \\ 2 & 2 & 5 \\ 1 & 3 & 2 \end{bmatrix}$$
 as sum of a symmetric and a skew symmetric

matrix.

Watch Video Solution

625. Find the point on the curve $x^2 + y^2 - 4xy + 2 = 0$

where the normal is paralell to the x-asis.

Watch Video Solution

626. If sin(x + y) = y cos(x + y) then prove that

 ${dy\over dx}=~-~{1+y^2\over y^2}$

627. Find the interval where $f(x) = \sin x, x \in [0, 2\pi]$ increasing.

628. If
$$\sin y = x \cos(a+y)$$
, show that $\frac{dy}{dx} = \frac{\cos^2(a+y)}{\cos a}$ and find the value of $\frac{dy}{dx} atx = 0$

Watch Video Solution

629. Determine the area of the region bounded by $y^2 = x^3$ and the

double ordinate through (2,0).

630.
$$\int \frac{xe^x}{1+x^2} dx$$

631. Evaluate
$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx$$

Watch Video Solution

632. Find the solution of the following differential equations:

$$xrac{dy}{dx}+\sqrt{x^2+y^2}=y$$

Watch Video Solution

633.
$$\int_{\pi/6}^{\pi/3} rac{dx}{1+\sqrt{\cot x}}$$

634. Prove the following by vector method. The diagonals of a rhombus are at right angles.

635. Show that the vector area of the triangle whosse vertices have position vector \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is $\frac{1}{2} \left(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \right)$.

Watch Video Solution

636. Find the perpendicular distance of the point (-1, 3, 9) from the x - 13 y + 8 z - 31

line
$$\frac{x-10}{5} = \frac{y+0}{-8} = \frac{z-0}{1}$$

Watch Video Solution

637. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

638. Find the image of the point (3,5,7) with respect to the plane 2x + y + z = 6.

639. Prove that
$$\int x \log \left(1 + \frac{1}{x}\right) dx = \frac{x^2}{2} \log \left(\frac{x+1}{x}\right) - \frac{x^2}{2} \log x - \frac{1}{2} \log(x+1) + \frac{1}{2}x + \frac{1}{2} \log(x+1) + \frac{1}{2} \log($$

640. Prove that
$$\int\!\!\frac{dx}{2+\sin x}=rac{2}{\sqrt{3}} an^{-1}\!\left(rac{2 an x/2+1}{\sqrt{3}}
ight)+c.$$

Natch Video Solution

641. Solve
$$\frac{dy}{dx} - \frac{y}{x} = xy^2$$
.

642. Let f: X o Y

If there exists a map g:Y \rightarrow X such that gof = id_X and fog = id_y , then show that

f is bijective and (ii) $g=f^{\,-1}$

Watch Video Solution

643.

$$\cos^{-1}igg(rac{x}{y}igg)+\cos^{-1}igg(rac{y}{3}igg)= heta, ext{ prove that }9x^2-12xy ext{cos} heta+4y^2=36 ext{sin}^2 heta$$

If

Watch Video Solution

644. Maximize: $Z=10x_1+12x_2+8x_3$ Subject to: $x_1+2x_2\leq 30$ $5x_1-7x_3\geq 12$ $x_1+x_2+x_3=20$ $x_1,x_2\geq 0$ **645.** Prove by vector method that the medians of a triangle are concurrent.

Watch Video Solution

646. If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are the direction cosines of two mutually perpendicular lines show that the d.cs. Of the line perpendicular to both of them are $m_1n_2 - n_1m_2$, $n_1l_2 - l_1n_2$, $l_1m_2 - m_1l_2$

Watch Video Solution

647. If 2s=a+b+c show that

$$\begin{bmatrix} a^2 & (s-a)^2 & (s-a)^2 \\ (s-b)^2 & b^2 & (s-b)^2 \\ (s-c)^2 & (s-c)^2 & c^2 \end{bmatrix} = 2s^3(s-a)(s-b)(s-c)$$

648. If
$$A = \begin{bmatrix} 1 & -2 & 2 \\ 3 & 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 4 \\ 1 & 2 \\ 3 & -1 \end{bmatrix}$, then verify that $(AB)^T = B^T A^T$.

649. Let A={1,2,3}, which of the following functions on A is invertible?

Watch Video Solution

650. Let A={1,2,3}, which of the following functions on A is invertible?

651. Let A={1,2,3}, which of the following functions on A is invertible?

652. Let A={1,2,3}, which of the following functions on A is invertible?

653. Find
$$\sin\left[\frac{\pi}{2} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$$

Watch Video Solution

654. Find the number of all possible matrices of order 3 imes 3 with each of

entry 0 or 1.

655. Find the value of x if
$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$

656. If A is a square matrix of order 2, then find det(adjA).

660. Find the value of
$$\hat{i} \cdot (\hat{j} imes \hat{k}) + \hat{j} \cdot (\hat{i} imes \hat{k}) + \hat{k} \cdot (\hat{i} imes \hat{j}).$$

661. Are the lines
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 and $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$ parallel?

Watch Video Solution

662. Solve LPP : Maximize $Z=20x_1+30x_2$ subject to constraints

 $3x_1+5x_2\leq 15, x_1, x_2>0$

Watch Video Solution

663. Solve
$$\sin^{-1}x + \sin^{-1}(1-x) = \frac{\pi}{2}$$
.

664. Let * be a binary operation on the set of real numbers, defined by $a * b = \frac{ab}{5}$, for all $a, b \in R$. Show that * is both commutative and associative.

665. Let * be a binary operation on the set of real numbers, defined by $a * b = \frac{ab}{5}$, for all $a, b \in R$. Find the identity element.

Watch Video Solution

666. Let * be a binary operation on the set of real numbers, defined by

$$a * b = rac{ab}{5}$$
, for all $a, b \in R$. Find the inverse elements.

667. If a relation R is defined on the set Z of integers as following $(a,b)\in R\Leftrightarrow a^2+b^2=25,$ then find domain R.

Watch Video Solution

668. If
$$A = \begin{bmatrix} 2 & 0 & -3 \\ 4 & 3 & 1 \\ -5 & 7 & 2 \end{bmatrix}$$
 is expressed as sum of a symmetric and skew

symmetric matrix, then find the symmetric matrix.

Watch Video Solution

669. Given the equations

x=cy+bz, y=az+cx and z=bx+ay

where x,y and z are not all zero, prove that $a^2+b^2+c^2+2abc=1$ by

determinant method.

670. Find
$$A^2 - 5A + 6$$
 if $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$

$$\Delta = egin{bmatrix} b+c & c+a & a+b \ c+a & a+b & b+c \ a+b & b+c & c+a \end{bmatrix} = 0$$

Watch Video Solution

672. If
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$
 and $A + A' = I$, then find the value of α

Watch Video Solution

.

673. Find the value of a and b if the function given below is continuous.

$$f(x) = egin{cases} 5 & ext{if} \;\; x \leq 2 \ ax + b & ext{if} \;\; 2 < x < 10 \ 21 & ext{if} \;\; x \geq 10 \end{cases}$$

Watch Video Solution

674. If
$$y = (\sin x)^{\tan x}$$
, find $\frac{dy}{dx}$

675. If
$$y = \log[x + \sqrt{x^2 + 1}]$$
, then prove that $(x^2 + 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 0.$

origin.

678. Find
$$\int \sec^3 x dx$$

Watch Video Solution

$$\mathbf{679.} \int_0^{\frac{\pi}{2}} \sin 2x \log(\tan x) dx$$

680. Solve
$$(1+x^2)rac{dy}{dx}+2xy-4x^2=0$$
 subject to the initial condition $y(0)=0$

Watch Video Solution

681. Evaluate:
$$\int rac{x+3}{\sqrt{5-4x+x^2}} dx$$

Watch Video Solution

682. If with reference to the eight handed system of mutually perpendicular unit vectors $\hat{i}, \hat{j}, \hat{k}, \vec{\alpha} = 3\hat{i} - \hat{j}, \beta = 2\hat{i} + \hat{j} - 3\hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$.

683. Let \overrightarrow{a} and \overrightarrow{b} be two unit vector and α be the angle between them and $\overrightarrow{a} + \overrightarrow{b}$ is unit vector. Find α .

684. Find the distance between the two planes 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12.

Watch Video Solution

685. Solve for x:
$$\cot^{-1}(x-1) + \cot^{-1}(x-2) + \cot^{-1}(x-3) = 0$$

Watch Video Solution

686. Show that
$$\sin^{-1} \frac{12}{13} + \cos^{-1} \frac{4}{5} + \tan^{-1} \frac{63}{16} = \pi$$

687. Prove that the following.

$$\begin{bmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{bmatrix} = (b-c)(c-a)(a-b)(bc+ca+ab)$$

Watch Video Solution

688. It is given that for the function f given by
$$f(x)=x^3+bx^2+ax, x\in [1,3].$$
 Rolle's theorem holds with $c=2+rac{1}{\sqrt{3}}.$ Find the values of a and b.

Watch Video Solution

689. If
$$x = \frac{1 - \cos^2 \theta}{\cos \theta}, y = \frac{1 - \cos^{2n} \theta}{\cos^n \theta}$$
 then show that $\left(\frac{dy}{dx}\right)^2 = n^2 \left(\frac{y^2 + 4}{x^2 + 4}\right)$

Watch Video Solution

690. Evaluate
$$\int_0^{rac{\pi}{2}} \sin 2x \cdot \log(\tan x) dx$$

691. Evaluate
$$\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$$

692. Prove by vector method that the medians of a triangle are concurrent.