

MATHS

BOOKS - USHA MATHS (ODIA ENGLISH)

PREVIOUS YEAR QUESTION 2016

Previous Year Question

1. If p and q are the order and degree of the differential

$$y igg(rac{dy}{dx} igg)^2 + x^2 rac{d^2 y}{dx^2} + xy = \sin x,$$
 then choose the

correct statement out of (i) p>q, (ii) p=q, (iii)

p < q.

2. If
$$\left|\overrightarrow{a}\right| = 3$$
, $\left|\overrightarrow{b}\right| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, then write the value of $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$.

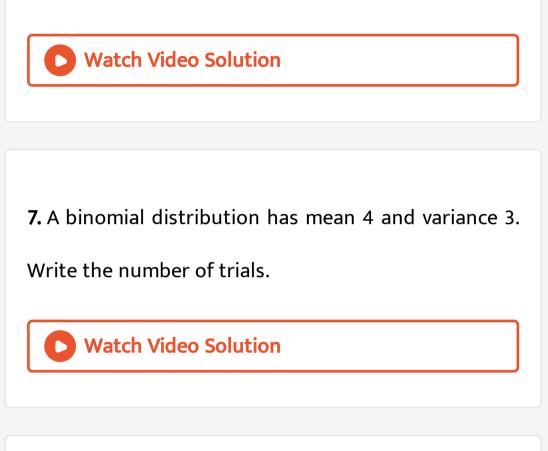
Watch Video Solution

3. Write the distance between parallel planes
$$2x - y + 3z = 4$$
 and $2x - y + 3z = 18$.

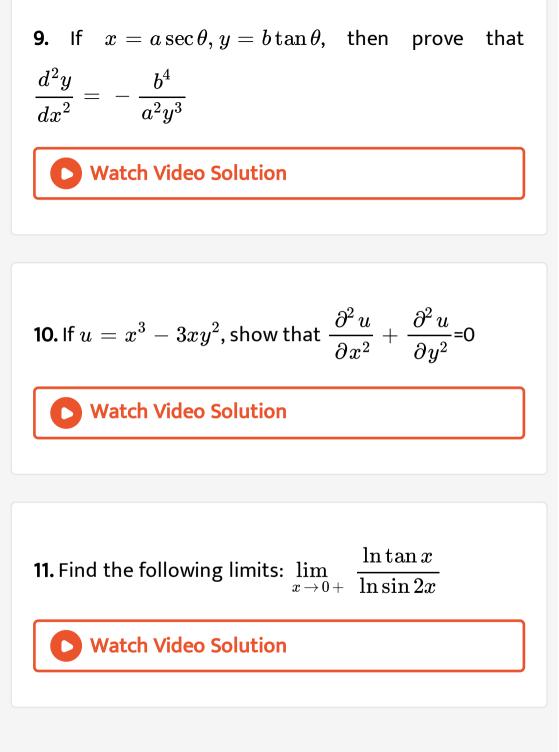
4. Write the equation of the sphere concentric with

the sphere

 $x^2+y^2+z^2-4x-2x-2y+2z-30=0$ and


passing through the origin.

Watch Video Solution


5. If A is a 4×5 matrix and B is a matrix such that A^TB and BA^T both are defined, then write the order of B.

6. If ${}^{n}C_{r} = {}^{n}P_{r}, r \neq 1$, then write the value of r.

8. Find
$$\displaystyle rac{dy}{dx}$$
, if $x^my^n=\left(\displaystyle rac{x}{y}
ight)^{m+n}$

12. The radius of a spherical soap bubble is increasing at the rate of 0.2cm/sec. Find the rate of increase of its surface area, when the radius is 7cm. ($\pi = 3.141$ approx)

Watch Video Solution

13. If
$$f'(x) = e^x + \frac{1}{1+x^2}$$
 and $f(0) = 1$, then find f(x).

14. Evaluate :
$$\int (\log x)^2 dx$$

Watch Video Solution

15. Evaluate:
$$\int rac{2x+9}{\left(x+3
ight)^2} dx$$

16.
$$\int_{0}^{1} rac{x^{5} \left(4-x^{2}
ight)}{\sqrt{1-x^{2}}} dx$$

Watch Video Solution

17. Evaluate
$$\int \frac{\sin x \cos x}{\sin^2 x - 2 \sin x + 3} dx$$

18. Obtain the general solution of the following differential equations.

 $ydy + e^{-y}x\sin xdx = 0$

Watch Video Solution

19. Solve:
$$ig(x^2-1ig)rac{dy}{dx}+2xy=1$$

20. Prove that :
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| \leq \left| \overrightarrow{a} \right| + \left| \overrightarrow{b} \right|$$

21. Calculate the area of the triangle ABC (by vector

method) where A(1,2,4), B(3,1,-2), C(4,3,1)

Watch Video Solution

22. The projection of a line segment \overline{OP} , through origin O, on the co-ordinate axes are 6, 2, 3. Find the length of the line segment OP and its direction cosines.

23. passing through the point (-1, 3, 2)perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

Watch Video Solution

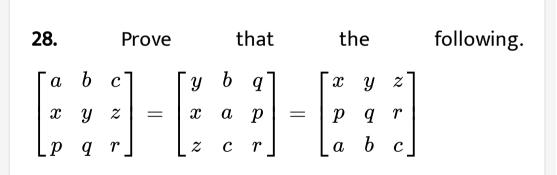
24. Prove that the lines
$$\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$$

and $3x - 2y + z + 5 = 0 = 2x + 3y + 4z - 4$ are co-planar.

25. Solve the following LPP graphically

Maximize, Z=20x+30y

Subject to $3x+5y\leq 15$


 $x,y\geq 0.$

Watch Video Solution

26. Find the feasible region of the following system

$$2x+y\geq 6, x-y\leq 3, x\geq 0, y\geq 0$$

27. Show that (a+1) is a factor of $\begin{vmatrix} (a+1) & 2 & 3 \\ 1 & a+1 & 3 \\ 3 & -6 & a+1 \end{vmatrix}$

29. If $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, show that for no values of α , $A^2 = B$.

Watch Video Solution

30. How many 4 digit numbers each greater than

6000 can be formed with be digits 5, 6, 7 and 8?

31. If
$$m = {}^nC_2$$
, prove that ${}^nC_2 = 3(n+1)C_4$.

32. If the ratio of the 3rd term from the beginning to

the 3rd term from the end in the expansion of $\left(1+\sqrt{2}
ight)^n$ is $rac{1}{8}$, then find the value of n.

Watch Video Solution

33. Let A and B be events with
$$P(A) = \frac{1}{3}, P(A \cup B) = \frac{3}{4}, P(A \cap B) = \frac{1}{4}$$
, find $P(A \cup B^C)$.

34. If X follows a binomial distribution with parameter

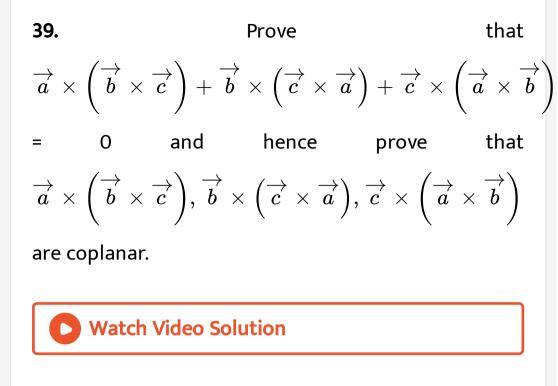
n=6 and p with 4P(X=4)=P(X=2), find p.

Watch Video Solution
35. If
$$x = \frac{1 - \cos^2 \theta}{\cos \theta}$$
, $y = \frac{1 - \cos^{2n} \theta}{\cos^n \theta}$ then show
that $\left(\frac{dy}{dx}\right)^2 = n^2 \left(\frac{y^2 + 4}{x^2 + 4}\right)$
Watch Video Solution

36. Shows that the triangle of greatest area that can

be inscribed in a circle is equilateral.

\A/_L_


37. Determine the area common to the parabola

$$y^2=x$$
 and the circle $x^2+y^2=2x.$

Watch Video Solution

38. Find the solution of the following differential equations:

$$xdy-ydx=\sqrt{x^2+y^2}dx$$

40. A variable plane meets the coordinate axes at P, Q, R points. If the plane passes through a fixed point (a, b, c), prove that the centre of the shpere passing the origin and P, Q, R will lie on the surface $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$


41. Solve the following LPP graphically : Maximize : $Z = 5x_1 + 3x_2$ subject to : $3x_1 + 5x_2 \le 15$ $5x_1 + 2x_2 \le 10 x_1, x_2 \ge 0$ Watch Video Solution

42. Solve the following system of equations by the matrix inversion method.

x + y + z = 4

2x - y + 3z = 1

and 3x + 2y - z = 1

44. Three persons hit a target with probability $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. If each one shoot at the target once,

find the probability that exactly one of them hits the

target

