©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - USHA MATHS (ODIA ENGLISH)

PREVIOUS YEAR QUESTION 2017

Previous Year Question

1. Write the minimum value of n such that
$\frac{d^{n}\left(3 x^{3}+7\right)^{15}}{d x^{n}}=0$

- Watch Video Solution

2. Write the interval in which the function $\sin ^{2} x-x$ is increasing.

- Watch Video Solution

3. Write the value of $\int_{0}^{1}\{x\} d x$ where $\{x\}$ stands for fractional part of x.

- Watch Video Solution

4. Write the order of the differential equation of the
family of circles $a x^{2}+a y^{2}+2 g x+2 f y+c=0$.
5. It the vectors \vec{a}, \vec{b} and \vec{c} form the sides $\overrightarrow{B C}, \overrightarrow{C A}$ and $\overrightarrow{A B}$ respectively of a triangle $A B C$, then write the value of $\vec{a} \times \vec{c}+\vec{b} \times \vec{c}$.

6. Write the equation of the plane meeting the coordinate axes in A, B and C in order, given that ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) is the centroid of $\triangle A B C$.

- Watch Video Solution

7. Write the value of k such that the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies on the plane $2 x-4 y+z=7$

- Watch Video Solution

8. If ${ }_{n}$ is an identity matrix of order n , then k being a natural number, write the matrix ${ }_{n}{ }^{k}$.

D Watch Video Solution

9. Write the number of ways in which 5 boys and 5 girls can sit around a round table.

- Watch Video Solution

10. One card is drawn from a pack of 52 cards. Write
the probability that the card drawn is either a king
or a spade.

- Watch Video Solution

11. What is the derivative of $\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$,with respect to $\left(\sqrt{1-x^{2}}\right)$?

- Watch Video Solution

12. If $y=x+\frac{1}{x+\frac{1}{x+\ldots \infty}}$ find $\frac{d y}{d x}$, the rhs being a valid expression.
13. If $U=\ln \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, show that $\frac{\delta u}{\delta x}+\frac{\delta u}{\delta y}+\frac{\delta u}{\delta z}=\frac{3}{x+y+z}$

- Watch Video Solution

14. $\lim \cos (1 / x)$

$$
x \rightarrow 0
$$

- Watch Video Solution

15. Verify Cauchy's mean value for the functions $f(x)=\sin x, g(x)=\cos x$ in $\left[0, \frac{\pi}{2}\right]$
16. Find the equation of the normal to the curve
$y=(\log x)^{2}$ at $x=\frac{1}{e}$.

- Watch Video Solution

17. Evaluate $\int_{-1}^{2}\{|x|+[x]\} d x$

D Watch Video Solution
18. $\int_{0}^{a} x^{3}\left(a^{2}-x^{2}\right)^{\frac{5}{2}} d x$
19. Evaluate $\int \frac{d x}{e^{4 x}-5}$

- Watch Video Solution

20. $\int x^{2} \tan ^{-1} x d x$

- Watch Video Solution

21. Find the particular solution of the following differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$ given that $y=\sqrt{3}$ when $x=1$.
22. Solve the following differential equation
$\left(x+2 y^{3}\right) \frac{d y}{d x}=y$.

- Watch Video Solution

23. Solve the following second order equations
$\cos e c x \frac{d^{2} y}{d x^{2}}=x$
24. Prove that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$, $3 \hat{i}-4 \hat{j}-4 \hat{k}$ are the sides of a right angled triangle.

- Watch Video Solution

25. If $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ then verify that $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b}.
26. If $\vec{p}=\frac{1}{\lambda}(\vec{b} \times \vec{c}), \vec{q}=\frac{1}{\lambda}(\vec{c} \times \vec{a})$ and
$\vec{r}=\frac{1}{\lambda}(\vec{a} \times \vec{b})$ where $\lambda=[\vec{a} \vec{b} \vec{c}] \neq 0$ then
show that $(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{p}+\vec{q}+\vec{r})=3$.

- Watch Video Solution

27. Find the equation of the plane through the point
$(2,1,0)$ and passing through the intersection of the planes $3 x-2 y+z-1=0$ and $x-2 y+3 z=1$.

- Watch Video Solution

28. Find the co-ordinates of the point where the perpendicular from the origin meets the line joining the points $(-9,4,5)$ and $(11,0,-1)$.

- Watch Video Solution

29. Find the value of a for which the plane $x+y+z-a=0 \quad$ will touch the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-6=0$
30. Find the feasible region of the system. $2 y-x \geq 0,6 y-3 x \leq 21, x \geq 0, y \geq 0$

- Watch Video Solution

31. Solve the following LPP graphically: Maximize

$$
\begin{aligned}
& z=20 x+30 y \quad \text { subject } \quad \text { to } \quad 3 x+5 y \leq 15, \\
& x \geq 0, y \geq 0 /
\end{aligned}
$$

- Watch Video Solution

32. Solve by Cramer's rule $2 x-y=2,3 x+y=13$
33. If the matrix A is such that
$\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right] A=\left[\begin{array}{cc}-4 & 1 \\ 7 & 7\end{array}\right]$, find A .

- Watch Video Solution

34. Find the inverse of the following matrix:
$\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 0\end{array}\right]$

- Watch Video Solution

35. If $P(n-1,3): P(n+1,3)=5: 12$, find n.

D Watch Video Solution

36. A cricket team consisting of 11 players is to be chosen from 8 batsmen and 5 bowlers. In how many
ways can the team be chosen so as to include at least 3 bowlers.

- Watch Video Solution

37. Write the principal value of
$\sin ^{-1} \frac{1}{2}+\cos ^{-1}\left(-\frac{1}{2}\right)$

- Watch Video Solution

38. Five boys and four girls randomly stand in a line.

Find the probability that no two girls come together.

- Watch Video Solution

39. If a random variable X has a binomial distribution $B\left(8, \frac{1}{2}\right)$, then find X for which the outcome is most likely.

- Watch Video Solution

40. If $(a+b x) e^{\frac{y}{x}}=x$, then show that

$$
x^{3} \frac{d}{d x}\left(\frac{d y}{d x}\right)=\left(x \frac{d y}{d x}-y\right)^{2}
$$

- Watch Video Solution

41. A cylindrical open water tank with a circular base is to be made out of 30 sq metres of metal sheet.

Find the dimensions so that it can hold maximum water. (Neglect thickness of sheet).

- Watch Video Solution

42. Evaluate $\int \frac{d x}{\cos x(1+2 \sin x)}$

- Watch Video Solution

43. Solve $\frac{d x}{d y}=\frac{3 x-7 y+7}{3 y-7 x-3}$
44. Prove the following by vector method. An angle inscribed in a semi-circle is a right angle.

- Watch Video Solution

45.

Show
that
$\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$

D Watch Video Solution
46. Show that the line joining the points $(0,2,-4)$
and ($-1,1-2$) and the lines joining the points
$(-2,3,3)$ and $(-3,-2,1)$ are co-plannr. Find their point of intersection.

- Watch Video Solution

47. Solve the following LPP graphically: Maximize:
$Z=4 x_{1}+3 x_{2} \quad$ subject \quad to $\quad x_{1}+x_{2} \leq 50$,

$$
x_{1}+2 x_{2} \leq 80,2 x_{1}+x_{2} \geq 20, x_{1}, x_{2} \geq 0
$$

- Watch Video Solution

48. Prove the following:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
(b+c)^{2} & a^{2} & b c \\
(c+a)^{2} & b^{2} & c a \\
(a+b)^{2} & c^{2} & a b
\end{array}\right]} \\
& =\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)(b-c)(c-a)(a-b)
\end{aligned}
$$

- Watch Video Solution

49.

Show

that:
$C_{1}^{2}+2 C_{2}^{2}+3 C_{3}^{2} \ldots+n C_{n}^{2}=\frac{(2 n-1)!}{\{(n-1)!\}^{2}}$

- Watch Video Solution

50. The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1 . If the probability of passing English examination is 0.75 , what is the probability of passing the Hindi

Examination?

- Watch Video Solution

51. If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.3$ and $P\left(B^{c} \mid A^{c}\right)=0.2$.
find
$P(A \mid B)$
\square
