© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - USHA MATHS (ODIA ENGLISH)

PREVIOUS YEAR QUESTION 2018

Previous Year Question

1. Sets A and B have respectively m and n elements. The total number of relations from A to

B is 64. If $m<n$ and $m \neq 1$, write the values of m
and n respectively.

- Watch Video Solution

2. Write the principal value of
$\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)+\cos ^{-1}\left(-\frac{1}{2}\right)$.

D Watch Video Solution

3. If every element of a third order determinant of
value 8 is multiplied by 2 , then write the value of the new determinant.
4. A bag contains 5 white and 3 black balls, a second bag contains 4 white and 5 black balls, a third bag contains 3 white and 6 black balls. A bag is selected at rendom and a ball is drawn. Find the probability that the ball is black.

Do the problem assuming that the probability of choosing each bag is same.

- Watch Video Solution

5. Write the interval in which the function
$f(x)=\sin ^{-1}(2-x)$ is differentiable.
6. A balloon is pumped at the rate of $2 \mathrm{~cm}^{3} /$ minute. Write the rate of increase of the surface area, when the radius is 0.5 cm .

D Watch Video Solution

7. Write the definite integral which is equal to
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{r}{\sqrt{n^{2}+r^{2}}}$

D Watch Video Solution

8. If p and q are respectively degree and order of the differential equation $y=e^{d y / d x}$, then write the relation between p and q .

- Watch Video Solution

9. If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=144$, write the value of $a b$.
10. Write the equations of the line
$2 x+z-4=0=2 y+z$ in the symmetrical form.

- Watch Video Solution

11. Let R be a relation on the set A of ordered pairs
of positive integers defined by $(x, y) R(u, v)$, if and only if $x v=y u$. Show that R is an equivalence relation.
12. Let $f(x)=\sqrt{x}, g(x)=1-x^{2}$. Compute fog and gof and find their natural domains.

- Watch Video Solution

13. Show that $\sin ^{-1} \frac{4}{5}+2 \tan ^{-1} \frac{1}{3}=\frac{\pi}{2}$.

- Watch Video Solution

> 14. $\sin ^{-1} \sqrt{\frac{x-q}{p-q}}=\cos ^{-1} \sqrt{\frac{p-x}{p-q}}=\cot ^{-1} \sqrt{\frac{p-x}{x-q}}$
15. Sole the following LPP graphically

Minimize $Z=4 x+3 y$
subject to $2 x+5 y \geq 10$ and $x, y \geq 0$.

(D) Watch Video Solution

16. If A, B, C are matrices of order 2×2 each and
$2 A+B+C=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$
$A+B+C=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$
$A+B-C=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ find A, B and C .
17. Find the inverse of the following matrix $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$.

D Watch Video Solution

18. Prove that the following.

$$
\left[\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right]=(a+b+c)^{3}
$$

- Watch Video Solution

19. A bag A contains 2 white and 3 red balls and another bag B contains 4 white and 5 red balls. One ball is drawn at random from a bag chosen at random and it is found to be red. Find the probability that it was drawn from bag B.

D Watch Video Solution

20. If $P(A)=0.6, P\left(\frac{B}{A}\right)=0.5$, find $P(A \cup B)$ when A and B are independent.
21. Differentiate
$\tan ^{-1} \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}$

D Watch Video Solution

22. Differentiate $y=(\sin y)^{\sin 2 x}$

- Watch Video Solution

23. Test the differentiability and continuity of the
following function at $\mathrm{x}=0$:
$f(x)= \begin{cases}\frac{1-e^{-x}}{x} & x \neq 0 \\ 1 & x=0\end{cases}$

(D) Watch Video Solution

24. Show that the sum of the intercepts on the coordinate axes of any tangent to the curve
$\sqrt{x}+\sqrt{y}=\sqrt{a}$ is constant.

D Watch Video Solution

25. Show that $2 \sin x+3 \tan x>3 x$ for all
$\xi n\left(0, \frac{\pi}{2}\right)$
26. Evaluate $\int \frac{d x}{(x+1) \sqrt{1-x^{2}}}$

D Watch Video Solution

27. Show that
$\int_{0}^{1} \frac{\operatorname{In} x}{\sqrt{1-x^{2}}} d x=\frac{\pi}{2} \operatorname{In} \frac{1}{2}$

- Watch Video Solution

28. Find the area enclosed bt the two paraboles
$y^{2}=4$ ax and $x^{2}=4 \mathrm{ay}$.

- Watch Video Solution

29. From the differential equation whose general solution is $y=a \sin t+b e^{t}$.

- Watch Video Solution

30. Solve the following differential equations

$$
\left(1+y^{2}\right) d x+\left(x-e^{-\tan ^{-1} y}\right) d y=0
$$

- Watch Video Solution

31. Find the area of the triangle $A B C$ with vertices
$A(1,2,4), B(3,1,-2)$ and $C(4,3,1)$ by vector method.

D Watch Video Solution
32.

Show
that
$[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$
D Watch Video Solution
33. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

D Watch Video Solution

34. Prove that the measure of the angle between two main diagonals of a cube is $\cos ^{-1} \frac{1}{3}$.

- Watch Video Solution

35. If the position vectors of two points A and B are $3 \hat{i}+\hat{k}$ and $2 \hat{i}+\hat{j}-\hat{k}$, then the vector $\overrightarrow{B A}$ is

- Watch Video Solution

36. If A and B are invertible matrices of the same order, then prove that $(A B)^{-1}=B^{-1} A^{-1}$

D Watch Video Solution

37. In a triangle $A B C$ if $m \angle A=90^{\circ}$,
prove that $\tan ^{\wedge}(-1) \mathrm{b} /(\mathrm{a}+\mathrm{b})+\frac{\tan ^{-1} c}{a+b}=\frac{\pi}{4}$. where a, b, c, are sides of the triangle.
38. Solve the following LPP graphically: Maximize

$$
Z=3 x_{1}+2 x_{2}, x_{1} \leq 2, x_{1}+x_{2} \leq 3, x_{1}, x_{2} \geq 0
$$

(D) Watch Video Solution

39. Solve the following system of equations by the matrix inversion method.
$x+y+z=4$
$2 x-y+3 z=1$
and $3 x+2 y-z=1$

D Watch Video Solution
40. Two cards are drawn successively with replacement from a well-shuffled deck of 52 cards.

Find the probability distribution of the number of aces.

- Watch Video Solution

41. By elementary operations, find A^{-1} for the
following: $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 2\end{array}\right]$

D Watch Video Solution

42. If $x=\frac{1-\cos ^{2} \theta}{\cos \theta}, y=\frac{1-\cos ^{2 n} \theta}{\cos ^{n} \theta}$ then
show that $\left(\frac{d y}{d x}\right)^{2}=n^{2}\left(\frac{y^{2}+4}{x^{2}+4}\right)$

- Watch Video Solution

43. Find the coordinates of the point on the curve
$x^{2} y-x+y=0$
where the slope of the tangent is maximum.

- Watch Video Solution

44. Evaluate $\int \frac{2 \cos x+7}{4-\sin x} d x$
45. Find the solution of the following differential equations:
$(4 x+6 y+5) d x-(2 x+3 y+4) d y=0$

D Watch Video Solution

46. Find the area enclosed bt the two paraboles
$y^{2}=4$ ax and $x^{2}=4$ ay.
$a=2 \hat{i}+\hat{k}, b=\hat{i}+\hat{j}+\hat{k}$ and $c=4 \hat{i}-3 \hat{j}+7 \hat{k}$
, then find the vector \vec{r} which satisfies $r \times b=c \times b$ and $r . a=0$.

D Watch Video Solution

48. Find the shortest distance between the lines
$\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$
and
$\frac{x+3}{-3}=\frac{y-7}{2}=\frac{z-6}{4}$ Find also the equation of the line of shortest distance.
