

MATHS

BOOKS - USHA MATHS (ODIA ENGLISH)

PREVIOUS YEAR QUESTION 2020

Previous Year Question

1. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are unit vectors and $\overrightarrow{a} - \overrightarrow{b}$ is also a unit vector, then write the measure of the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

2. Write the axis to which the plane by+cz+d=0 is parallal.

6. A discrete random variable X has the probability distribution as given

below:

If
$$\int_{-\frac{1}{2}}^{-\frac{1}{2}} \cos x In \frac{1+w}{1-x} dx = k In^2$$
 then write the value of

14. A man plans to start a poultry farm by investing at most ₹ 3000. He can buy old hens for ₹80 each and young ones for ₹ 140 each, but he cannot house more than 30 hens. Old hens lay 4 eggs per week ,each ell bing sold at ₹5. It costs ₹ 5 to feed an old hen and ₹8 to feed a young hen per week. Formulate his problem determining the number of hens of each type he should buy so as to earn a proft of more than ₹ 300 per week.

Watch Video Solution

15. Test whether the relation : $R = \{(m, n) : 2 \mid (m + n)\}$ on \mathbb{Z} is reflexive, symmetric or transitive.

16. There are two families A and B. There are 4 men, 6 women and 2 children in family A and 2 men, 2 women and 4 children in family B. The recommended daily amount of calories is 2400 for men, 1900 for women

and 1800 for children, and 45 g of proteins for men, 55 g for women and 33 g for children. Represent the above information by matrices. Using matrices multiplication, calculate the total requirement of calories and proteins for each of the 2 families.

Watch Video Solution

18. There are 25 girls and 15 boys in class XI and 30 boys and 20 girls in class XII. If a student chosen from a class, selected at random, happens to be a boy, find the probability that he has been chosen from class XII.

19. Four cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces. Calculate the mean and variance of the number of aces.

22. What is the derivative of $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$, with respect to $\left(\sqrt{1-x^2}\right)$?

25. Examine the contiunity of the following functions at the indicated

$$ext{points} . f(x) ext{=} \left\{egin{array}{cccc} 2x+1 & ext{if} & x \leq 0 \ x & ext{if} & 0 < x < 1 ext{ at } x = 0, 1. \ 2x-1 & ext{if} & x \geq 1 \end{array}
ight.$$

26. Evaluate the following integrals :

$$\int_0^{\pi/2} \log \Bigl| rac{4+3\sin x}{4+3\cos x} \Bigr| dx.$$

Watch Video Solution

27. The area between $x=y^2$ and x=4 is divided into two equal parts by

the line x = a. Find the value of a.

Watch Video Solution

28. Solve the following differential equation:- $x rac{dy}{dx} + y = y^2 \ln x$

Watch Video Solution

29. Solve :
$$In\left(rac{dy}{dx}
ight)=3x+4y$$
 given that y=0, when x=0.

30. Evaluate the following integrals

$$\int \frac{3\sin x + 28\cos x}{5\sin x + 6\cos x} dx$$

Watch Video Solution

31. If
$$\overrightarrow{a} = 3\hat{i} + \hat{j} - 2\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ then verify that $\overrightarrow{a} \times \overrightarrow{b}$ is perpendicular to both \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

32. Passing through the point (2, -3, 1) and (-1, 1-7) and perpendicular to the plane x - 2y + 5z + 1 = 0.

Watch Video Solution

33. Find the perpendicular distance of the point (-1, 3, 9) from the line

$$\frac{x-13}{5} = \frac{y+8}{-8} = \frac{z-31}{1}$$

34. Prove that the measure of the angle between two main diagonals of a

cube is
$$\cos^{-1}\frac{1}{3}$$
.

Watch Video Solution

35. Prove that the four points with position vectors $2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c}, \overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, 3\overrightarrow{a} + 4\overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{a} - 6\overrightarrow{b} + 6\overrightarrow{c}$

are coplanar.

Watch Video Solution

36. If A,B,C are matrices of order 2×2 each and $2A + B + C = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$

$$A+B+C = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$$

 $A+B-C = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ find A,B and C.

37. The probability of a shooter hitting a target is $\frac{3}{4}$ Find the minimum number of times he must fire, so that the probability of hitting the target atleast once is greater than 0.999.

38. Prove the following:

$$\begin{bmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{bmatrix}$$
$$= (a^2 + b^2 + c^2)(a+b+c)(b-c)(c-a)(a-b)$$

Watch Video Solution

39. Show that the semivertical angle of a cone of given slant height is

 $an^1\sqrt{2}$ when its volume is maximum.

40. If
$$y=x^{\sin x}+x^3rac{\sqrt{x^2+4}}{\sqrt{x^3+3}}$$
 find $rac{dy}{dx}.$

Watch Video Solution

41. Evaluate :
$$\int \!\! rac{x^5+x^4+x^3+x^2+4x+1}{x^2+1} dx$$

Watch Video Solution

42. Find the solution of the following differential equations:

(4x+6y+5)dx-(2x+3y+4)dy=0

Watch Video Solution

43. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$.

44. Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y-7}{2} = \frac{z-6}{4}$ Find also the equation of the line of shortest distance. **Vatch Video Solution**

45. Solve the following LPP graphically Optimize $Z = 5x_1 + 25x_2$ subject

 ${\sf to} - 0.5 x_1 + x_2 \le 2, \, x_1 + x_2 \ge 2, \, -x_1 + 5 x_2 \ge 5, x_1, x_2 \ge 0$

Watch Video Solution

If

 $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \pi ext{prove that} x^4 + y^4 + z^4 + 4x^2y^2z^2 = 2ig(x^2y^2)$