びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - USHA MATHS (ODIA ENGLISH)

PREVIOUS YEAR QUESTION 2020

Previous Year Question

1. If \vec{a} and \vec{b} are unit vectors and $\vec{a}-\vec{b}$ is also a unit vector, then write the measure of the angle between \vec{a} and \vec{b}.

- Watch Video Solution

2. Write the axis to which the plane by $+\mathrm{cz}+\mathrm{d}=0$ is parallal.
3. Write down all the partitions of the set $\{a, b, c\}$.

- Watch Video Solution

4. Write the domain of the function defined by $\mathrm{f}(\mathrm{x})=\sin ^{-1} x+\cos x$

- Watch Video Solution

5. A is a square matrix of order 3 . write the value $\mathrm{n},|2 A|=n|A|$.

- Watch Video Solution

6. A discrete random variable X has the probability distribution as given below:

$\times \quad 0.5$

Then, find the value of k.

- Watch Video Solution

7. Find the derivative of $\tan ^{-1}\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)$ w.r.t. x.

- Watch Video Solution

8. If $f(x)=\sin x+2$ in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, what can you say about the greatest value of $f(x)$?

- Watch Video Solution

9. If $\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \operatorname{In} \frac{1+x}{1-x} d x=k \operatorname{In}^{2}$ then write the value of k.
10. Write the differential equation of all non-horizontal lines in a plane.

- Watch Video Solution

11. Prove that for any $f: X \rightarrow Y$, foid $_{x}=f=i d_{Y}$ of.

- Watch Video Solution

12. Solve equation $3 \tan ^{-1} \frac{1}{(2+\sqrt{3})}-\tan ^{-1} \frac{1}{x}=\tan ^{-1} \frac{1}{3}$

- Watch Video Solution

13.

Prove

that
$\tan \left\{\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right\}+\tan \left\{\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right\}=\frac{2 b}{a}$.
14. A man plans to start a poultry farm by investing at most ₹ 3000 . He can buy old hens for ₹ 80 each and young ones for ₹ 140 each, but he cannot house more than 30 hens. Old hens lay 4 eggs per week ,each ell bing sold at ₹ 5 . It costs ₹ 5 to feed an old hen and ₹ 8 to feed a young hen per week. Formulate his problem determining the number of hens of each type he should buy so as to earn a proft of more than ₹ 300 per week.

- Watch Video Solution

15. Test whether the relation : $R=\{(m, n): 2 \mid(m+n)\}$ on \mathbb{Z} is reflexive, symmetric or transitive.

- Watch Video Solution

16. There are two families A and B. There are 4 men, 6 women and 2 children in family A and 2 men, 2 women and 4 children in family B. The recommended daily amount of calories is 2400 for men, 1900 for women
and 1800 for children, and 45 g of proteins for men, 55 g for women and 33 g for children. Represent the above information by matrices. Using matrices multiplication, calculate the total requirement of calories and proteins for each of the 2 families.

- Watch Video Solution

17. Eliminate x, y, z from
$a=x / y-z, b=y / z-x, c=z / x-y$

- Watch Video Solution

18. There are 25 girls and 15 boys in class XI and 30 boys and 20 girls in class XII. If a student chosen from a class, selected at random, happens to be a boy, find the probability that he has been chosen from class XII.

- Watch Video Solution

19. Four cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces. Calculate the mean and variance of the number of aces.

- Watch Video Solution

20. Find the inverse of the matrix $\left[\begin{array}{ll}4 & -2 \\ 3 & 1\end{array}\right]$

- Watch Video Solution

21. If $\sin (x+y)=y \cos (x+y)$ then prove that
$\frac{d y}{d x}=-\frac{1+y^{2}}{y^{2}}$

(Watch Video Solution

22. What is the derivative of $\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$, with respect to $\left(\sqrt{1-x^{2}}\right) ?$
23. Find the approximate value of $\sqrt{0.24}$.

- Watch Video Solution

24. Show that the tangent to the curve $x=a(t-\sin t), y=a t(1+\cos t)$ at
$t=\frac{\pi}{2}$ has slope.(1- pi/2)

- Watch Video Solution

25. Examine the contiunity of the following functions at the indicated points $f(x)=\left\{\begin{array}{ll}2 x+1 & \text { if } x \leq 0 \\ x & \text { if } 0<x<1 \text { at } x=0,1 \text {. } \\ 2 x-1 & \text { if } x \geq 1\end{array}\right.$.

- Watch Video Solution

26. Evaluate the following integrals :
$\int_{0}^{\pi / 2} \log \left|\frac{4+3 \sin x}{4+3 \cos x}\right| d x$.

- Watch Video Solution

27. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$. Find the value of a .

- Watch Video Solution

28. Solve the following differential equation:- $x \frac{d y}{d x}+y=y^{2} \ln x$

- Watch Video Solution

29. Solve : $\operatorname{In}\left(\frac{d y}{d x}\right)=3 x+4 y$ given that $\mathrm{y}=0$, when $\mathrm{x}=0$.

- Watch Video Solution

30. Evaluate the following integrals $\int \frac{3 \sin x+28 \cos x}{5 \sin x+6 \cos x} d x$

- Watch Video Solution

31. If $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ then verify that $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b}.

- Watch Video Solution

32. Passing throughthe point $(2,-3,1)$ and $(-1,1-7)$ and perpendicular to the plane $x-2 y+5 z+1=0$.

- Watch Video Solution

33. Find the perpendicular distance of the point $(-1,3,9)$ from the line $\frac{x-13}{5}=\frac{y+8}{-8}=\frac{z-31}{1}$
34. Prove that the measure of the angle between two main diagonals of a cube is $\cos ^{-1} \frac{1}{3}$.

- Watch Video Solution

35. Prove that the four points with position vectors $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.

- Watch Video Solution

36. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are matrices of order 2×2 each and $2 A+B+C=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$ $A+B+C=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$
$A+B-C=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ find A, B and C .

- Watch Video Solution

37. The probability of a shooter hitting a target is $\frac{3}{4}$ Find the minimum number of times he must fire, so that the probability of hitting the target atleast once is greater than 0.999 .

- Watch Video Solution

38. Prove the following:
$\left[\begin{array}{lll}(b+c)^{2} & a^{2} & b c \\ (c+a)^{2} & b^{2} & c a \\ (a+b)^{2} & c^{2} & a b\end{array}\right]$
$=\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)(b-c)(c-a)(a-b)$

- Watch Video Solution

39. Show that the semivertical angle of a cone of given slant height is $\tan ^{1} \sqrt{2}$ when its volume is maximum.

- Watch Video Solution

40. If $y=x^{\sin x}+x^{3} \frac{\sqrt{x^{2}+4}}{\sqrt{x^{3}+3}}$ find $\frac{d y}{d x}$.

- Watch Video Solution

41. Evaluate : $\int \frac{x^{5}+x^{4}+x^{3}+x^{2}+4 x+1}{x^{2}+1} d x$

- Watch Video Solution

42. Find the solution of the following differential equations:
$(4 x+6 y+5) d x-(2 x+3 y+4) d y=0$

- Watch Video Solution

43. Find the area of the smaller region bounded by the ellipse
$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$.

- Watch Video Solution

44. Find the shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y-7}{2}=\frac{z-6}{4}$ Find also the equation of the line of shortest distance.

- Watch Video Solution

45. Solve the following LPP graphically Optimize $Z=5 x_{1}+25 x_{2}$ subject to $-0.5 x_{1}+x_{2} \leq 2, x_{1}+x_{2} \geq 2,-x_{1}+5 x_{2} \geq 5, x_{1}, x_{2} \geq 0$

- Watch Video Solution

46.

$\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$ prove that $x^{4}+y^{4}+z^{4}+4 x^{2} y^{2} z^{2}=2\left(x^{2} ?\right.$

- Watch Video Solution

