©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - USHA MATHS (ODIA ENGLISH)

VECTORS THREE DIMENSIONAL
 GEOMETRY

Exercise

1. Write the values of a and b, for which the
vectors $\quad(a-1) \hat{i}+(b+2) \hat{j}+4 \hat{k} \quad$ and
$(a+1) \hat{i}+(b-2) \hat{j}+8 \hat{k}$ will be parallel.

D Watch Video Solution

2. Find the value of 'a' do the which the pointA,B,C with position vectors
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k} \quad$ and $\quad a \hat{i}-3 \hat{j}+\hat{k}$ respectively are the vertices of a right angled
triangle with $\angle C=\frac{\pi}{2}$.
3. find the unit vector in the direction of 'PQ' where P and Q are the points $(1,2,3)$ and $(4,5,6)$.

- Watch Video Solution

4. If A, B, C and D are the vertices of a square,
find $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D A}$.

- Watch Video Solution

5. If $\overrightarrow{O P_{1}}=4 \hat{i}+3 \hat{j}$ and $\overrightarrow{O P_{2}}=8 \hat{i}-5 \hat{j}$ find
$\overrightarrow{p_{1} p_{2}}$

D Watch Video Solution

6. If A, B, C and D are the vertices of a square,
find $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D A}$.
(Watch Video Solution
7. Find the magnitude: $\frac{5}{2}$ and is parallel to the vector $3 \hat{i}+4 \hat{j}$.

D Watch Video Solution

8. Find the vector from the origin O to the centroid of the triangle whose vertices are $(1,-1,2),(2,1,3)$, and ($-1,2,-1$).

D Watch Video Solution
9. If G is centroid of the $\triangle A B C$, then find
$\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}$.

- Watch Video Solution

10. Find $\vec{a} \cdot(\vec{a} \times \vec{b})$.

D Watch Video Solution

11. Find $\vec{i} \cdot(\vec{k} \times \vec{j})$
12. Find $\vec{i} \cdot(\vec{j} \times \vec{k})$

D Watch Video Solution

13. find the position vector of the mid point of
the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.

- Watch Video Solution

14.

Evaluate:
$\hat{i} \times(\hat{j} \times \hat{k})+\hat{j} \times(\hat{k} \times \hat{i})+\hat{k} \times(\hat{i} \times \hat{j})$

D Watch Video Solution

15. Using vector method find the area of the triangle with vertices $(1,0,0)(0,1,0)$ and $(0,0$,
1)

D Watch Video Solution
16. What is the distance of the point $(4,5,-3)$
from y-axis ?

D Watch Video Solution
17. What is the distance of point ($1,2,3$,)from yz plane?

- Watch Video Solution

18. What is the distance of the point (x, y, z)
from x-axis?

- Watch Video Solution

19. Find the image of the point $(5,3,-2)$ w.r.t $y z-$ plane.

D Watch Video Solution
20. Find the number of points (x, y, z) in space other than the point $(1,-2,3)$, such that $|x|=1$, $|y|=2$ and $|z|=3$.

- Watch Video Solution

21. Find the ratio in which the line segment
through ($1,3,-1$) and ($2,6,-2$) is divided by zx plane.
22. Write the value of y so that the points
$(1, y, 2),(3,2,-1)$ and $(-4,6,3)$ are collinear.

- Watch Video Solution

23. If O be the origin and P is the point $(3,4,5)$, what are the direction cosine of OP?

- Watch Video Solution

24. If a line makes angles α, β and γ with the positive direction of coordinate axes, then write the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

- Watch Video Solution

25. If the d.cs of a straight line be $\left\langle\frac{2}{7}, \frac{3}{7}, \frac{k}{7}\right\rangle$, then what is the value of k ?

- Watch Video Solution

26. Fill in the blanks in the length of the projection of the line segment joining ($1,3,-1$) and ($3,2,4$) on z-axis is \qquad
$[1,3,4,5]$

- Watch Video Solution

27. The projection of a line segment axes are

3,4,12. Find the length and direction cosines of the line.
28. Find the equation of the plane passing through the line $x=y=z$ and the point $(3,2,1)$.

D Watch Video Solution

29. State true or False .The planes
$2 x+4 y-z+1=0 \quad$ and
$x-2 y-6 z+3=0$ are perpendicular to each other.
30. Write the equation of the plane $3 x-4 y+z+5=0$ in normal form.

D Watch Video Solution
31. Write the equation of the plane $x+3 y-7 z+2=0$ in the intercept from.
(Watch Video Solution
32. Find the equation of the plane passing through the point $(2,3,1)$ and direction ratios of the normal to the plane being $<3,5,7>$.

D Watch Video Solution

33. Show that the $a x+b y+d=0$ is perpendicular to $x y$-plane.

D Watch Video Solution
34. What are the direction cosines of the normal to the plane $X+y+1=0$?

D Watch Video Solution
35. Write the equation of the plane passing through ($3,-6,-9$) and parallel to $x y$-plane.

- Watch Video Solution

36. Write the equation of the plane passes
through y-axis and z-axis.

D Watch Video Solution
37. What is the distance of the point $(1,1,1)$ from
the plane $y=x$?

- Watch Video Solution

38. Find the direction cosines of the line segment joining (3,6,1) and (4,-1,5).

D Watch Video Solution
39. What is the number of line which are equally inclined to the axes?

D Watch Video Solution
40. If the equation of x-axis is
$\frac{x}{a}=\frac{y-d}{b}=\frac{z}{c}$, what is the value of $a, b, c, d ?$

- Watch Video Solution

41. What are the direction cosines of the line $\frac{x-2}{2}=\frac{y+4}{3}=\frac{z-1}{6}$

D Watch Video Solution

42. Write the symmetrical from of the line $X=5$,
$\mathrm{y}=4$.

- Watch Video Solution

43. If the plane $a x+b y+c z=1$ meets the coordinate axes at A, B, C, what is the centroid of the triangle $A B C$?

- Watch Video Solution

44. If the points $P(2,-1,1), Q(1,-3 c)$ and $R(3,-4,-4)$ are the vertices of a right triangle PQR, then
find c if any.

- Watch Video Solution

45. Show by vector method that the point $P(3,-2,4), Q(1,11)$ and $R(-1,4,-2)$ are collinear.

D Watch Video Solution

46. If the vertices A, B, C of a triangle $A B C$ are
$A(1,1,8), B(4,-3,-4)$ and $C(-3,1,5)$ respectively then find $\angle B A C$.

D Watch Video Solution

47. If \vec{a} makes equal angles with \hat{i}, \hat{j} and \hat{k}
has magnitude 3, prove that the angle between \vec{a} and each of \hat{i}, \hat{j} and \hat{k} is $\cos ^{-1} \frac{1}{(\sqrt{3})}$.
48. If $|\vec{a}|=3,|\vec{b}|=1,|\vec{c}|=4 \quad$ and
$\vec{a}+\vec{b}+\vec{c}=0$, find the value of
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

D Watch Video Solution

49. Let $\widehat{a}, \hat{b}, \hat{c}$ be unit vectors. Suppose that and the angle between $\widehat{a} \cdot \hat{b}=\widehat{a} \cdot \hat{c}=0$ and the angle between \hat{b} and \hat{c} is $\frac{\pi}{6}$.
50. Calculate the area of the triangle ABC (by vector method) where $\mathrm{A}(1,1,2), \mathrm{B}(2,2,3), \mathrm{C}(3,-1,-1)$

- Watch Video Solution

51. If the co-ordinates of the two given point s
A and B are ($3,-1,7$) and ($4,-3,-1$) respectively,find the magnitude and direction cosines of $\overline{A B}$.
52. Find the co-ordinates of the foot of the perpendicular from the point $(1,1,1)$ on the line joining $(1,4,6)$ and $(54,4)$.

D Watch Video Solution

53. Write the vector equation of a line through
the point (1,2,3) and parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

54. Show that the line through the point $(4,7,8)$,
(2,3,4)is parallel to the line through the points(-1,-2,1)and (1,2,5)

- Watch Video Solution

55. If $\mathrm{P}(1, y, z)$ lies on the line through $(3,2,-1)$ and $(-4,6,3)$ find $y \& z$.

- Watch Video Solution

56. Find the perpendicular distance of the point $(-1,3,9)$ from the line $\frac{x-13}{5}=\frac{y+8}{-8}=\frac{z-31}{1}$

D Watch Video Solution

57. Find the direction cosines of the unit vector perpendicular to the plane
$\vec{r} \cdot(2 \hat{i}+3 \hat{j}-6 \hat{k})-21=0$, through the origin.
58. Find the equation of the plane through the points $(1,0,-1),(3,2,-2)$ and parallel to the line $x-1=\frac{y-1}{-2}=\frac{z-2}{3}$.

- Watch Video Solution

59. A variable plane passes through a fixed point ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) and meets the co-ordinate axes at
$\mathrm{A}, \mathrm{B}, \mathrm{C}$. Show that the locus of the point common to the planes drawn through A, B and

C parallel to the co-ordinate planes is
$\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$

- Watch Video Solution

60. Find the equation plane passing through
the point (2,3,1) and perpendicular to the line $\frac{x-1}{1}=\frac{y-2}{-2}=\frac{z+1}{3}$

D Watch Video Solution

61. Find the equation of the plane passing through the line $x=y=z$ and the point $(3,2,1)$.

D Watch Video Solution

62. Prove the following by vector method.

Median to the base of an isosceles triangle is perpendicular to the base.

D Watch Video Solution

63. Prove the following by vector method. In a triangle $\mathrm{AOB}, m \angle A O B=90^{\circ}$. If P and Q are the points of trisection of $A B$, prove that $O P^{2}+O Q^{2}=\frac{5}{9} A B^{2}$

D Watch Video Solution

64. show that the direction of cosines of a
vector equally inclined to the axes OX,OY and $O Z$ are ' $1 / 3^{\wedge} 1 / 2,1 / 3^{\wedge} 1 / 2,1 / 3^{\wedge} 1 / 2$.
65. If veca=vecb+vecc, then write the value of $\vec{a} \cdot(\vec{b} \times \vec{c})$
(Watch Video Solution
66. If D is the mid point of side $B C$ of a
$\triangle A B C$, show by vector method that
$A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
67. Find the scalar components of a unit vector which is perpendicular to the vectors $\hat{i}+2 \hat{j}-\hat{k}$ and $3 \hat{i}-\hat{j}+2 \hat{k}$.

D Watch Video Solution

68. Decompose the vector $6 \hat{i}-3 \hat{j}-6 \hat{k}$ into
vectors which are parallel and perpendicular to the vector $\hat{i}+\hat{j}+\hat{k}$.

- Watch Video Solution

69. Express $2 \hat{i}-\hat{j}+3 \hat{k}$ as the sum of a vector parallel, and a vector perpendicular to $2 \hat{i}+4 \hat{j}-2 \hat{k}$.

D Watch Video Solution

70. Resolve the vector $\vec{b}=\hat{i}+\hat{j}+\hat{k}$ into vectors parallel and perpendicular to the vector $\vec{a}=\hat{i}+\hat{j}$.
71. Find the angle between the following pair of the planes. $2 x+y+2 z-4=0$ and $3 x+5 y+z-8=0$

D Watch Video Solution

72. Show that the join of the points $(6,-4,4)$ and ($0,0,-4$) intersects the join of $(-1,-2,-3)$ and $(1,2,-5)$.

D Watch Video Solution

73. Show that the points ($2,3,-5$) and ($3,4,7$) lie on the opposite side of the plane $x+2 y-2 z=9$

- Watch Video Solution

74. Find $d y / d x$ if $y=\log (\sec x+\tan x)$.

- Watch Video Solution

75. Obtain the equation of the line through
the point $(1,2,-3)$ and perpendicular to each of the lines
$x+4 y-3 z=0=2 x-5 y+7$
$y+3 z-2=0=x+2 z+5$

- Watch Video Solution

76. Find the shortest distance between the lines

$$
\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}
$$

$$
\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2} .
$$

77. Find the equation of the plane passing
through the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point $(0,7,7)$. Also show that the line $x=\frac{7-y}{3}=\frac{z+7}{2}$ lies in this plane.

D Watch Video Solution

78. Find the equation of the plane containing the line $\frac{x+3}{3}=\frac{y-1}{4}=\frac{z-2}{-2}$ and the point (0,2,4).

- Watch Video Solution

$$
\begin{aligned}
& \text { 79. } \\
& \vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j}) \\
& \vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k}) \text { intersect each }
\end{aligned}
$$

other. Find their point of intersection.

- Watch Video Solution

80. If P is the point $(2,1,6)$, then find the point Q
such that PQ is perpendicular to the plane
passing through the points $(2,1,0),(5,0,1),(4,1,1)$ and the mid point of $P Q$ lies on it.

D Watch Video Solution

81. The plane $l x+m y=0$ is rotated about its
line of intersection with the plane $z=0$ through
angle measure alpha. Prove that the equation
of the plane in new position is
$l x+m y \pm z \sqrt{l^{2}+m^{2}} \tan \alpha=0$
