

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

THREE DIMENSIONAL GEOMETRY

Others

1. Let L be the line of intersection of the planes 2x+3y+z=1 and x+3y+2z=2 . If L makes an

angles lpha with the positive x-axis, then $\cos\!lpha$ equals

2. If (2, 3, 5) is one end of a diameter of the sphere $x^2+y^2+z^2-6x-12y-2z+20=0$, then the coordinates of the other end are

- A. (4, 9, -3)
- B. (4, 3, 5)
- C. (4, 3, -3)
- D. (4, -3, 9)

Answer: null

3. If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of each of x-axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is $(1) \frac{\pi}{6} (2) \frac{\pi}{3} (3) \frac{\pi}{4} (4) \frac{\pi}{2}$

Watch Video Solution

4. The line passing through the points (5, 1, a) and (3, b, 1) crosses the yzplane at the point $\left(0,\frac{17}{2},\frac{-13}{2}\right)$.Then (1) a=2,b=8 (2) a=4,b=6 (3) a=6,b=4 (4) a=8,b=2

5. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the

Watch Video Solution

integer k is equal to (1) -5 (2) 5 (3) 2 (4) -2

6. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the plane $x+3y-\alpha z+\beta=0$. Then (α,β) equals (1) (6,-17)

(2)
$$(-6,7)$$
 (3) $(5,-15)$ (4) $(-5,5)$

7. Statement-1: The point A(3, 1, 6) is the mirror image of the point B(1, 3, 4) in the plane xy+z=5 . Statement-2:

The plane x xy + z = 5 bisects the line segment joining A(3, 1, 6) and B(1, 3, 4). (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-1 is true, Statement-2 is the correct explanation for Statement-1

8. A line AB in three-dimensional space makes angles 45° and 120° with the positive x-axis and the positive y-axis respectively. If AB makes an acute angle q with the positive z-axis, then q equals

9. If the angle between the line $x=\frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane x+2y+3z=4 .is $\cos^{-1}\Bigl(\sqrt{rac{5}{14}}\Bigr),$ then λ equals: (1) $\frac{2}{3}$ (2) $\frac{3}{2}$ (3) $\frac{2}{5}$ (3) $\frac{5}{2}$

Watch Video Solution

10. If the lines
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then k is equal to (1) -1 (2) $\frac{2}{9}$ (3) $\frac{9}{2}$ (4) 0

11. Distance between two parallel planes 2x+y+2z=8 and 4x+2y+4z+5=0 is (1) $\frac{5}{2}$ (2) $\frac{7}{2}$ (3) $\frac{9}{2}$ (4) $\frac{3}{2}$

View Text Solution

- 12. The equation of the plane containing the line
- $2x-5y+z=3;\,x+y+4z=5$, and parallel to the

plane, x + 3y + 6z = 1 , is : (1) 2x + 6y + 12z = 13 (2)

x + 3y + 6z = -7 (3) x + 3y + 6z = 7 (4)

2x + 6y + 12z = -13

13. The distance of the point (1, 0, 2) from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane x y + z = 16, is : (1) $2\sqrt{14}$ (2) 8 (3) $3\sqrt{21}$ (4) 27

View Text Solution

14. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the place, lx+my-z=9 , then l^2+m^2 is equal to: (1) 26 (2) 18 (3) 5 (4) 2

View Text Solution

15. If the image of the point $P(1,\,-2,3)$ in the plane, 2x+3y-4z+22=0 measured parallel to the line,

 $3\sqrt{5}$ (4) $3\sqrt{42}$

16. The distance of the point
$$(1,3,-7)$$
 from the plane passing through the point $(1,-1,-1)$, having normal

both

the

lines

 $rac{x}{1}-rac{y}{4}-rac{z}{5}$ is Q , then PQ is equal to : $\sqrt{42}$ (2) $6\sqrt{5}$ (3)

perpendicular to
$$x + 2$$

ar to
$$+2$$
 z -

perpendicular to both the lines
$$rac{x-1}{1}=rac{y+2}{-2}=rac{z-4}{3} and rac{x-2}{2}=rac{y+1}{-1}=rac{z+7}{-1} is:$$

$$\frac{1}{\sqrt{83}}$$
 (2) $\frac{-2}{\sqrt{74}}$ (3) $\frac{20}{\sqrt{74}}$ (4) $\frac{10}{\sqrt{83}}$