

CHEMISTRY

BOOKS - MBD CHEMISTRY (ODIA ENGLISH)

ELECTROCHEMISTRY

QUESTION BANK

1. What is the difference between electrochemical equivalent and chemical equivalent ?

Watch Video Solution

2. What is the value of one faraday ?

. What is fact cer

16. Write the relationship between cell potential and equilibrium

constant.

18. How does specific conductance vary with dilution?

Watch Video Solution

19. What is the charge carried by 1 mole nitride ion?

20. What is the ECE of Ag ?

Watch Video Solution

21. Define molar conductance.

Watch Video Solution

22. What is the potential of a standard hydrogen electrode ?

Watch Video Solution

23. What happens to equivalent conductance when solution is diluted?

28. What happens to conductance of an electrolyte on dilution ?

Watch Video Solution
29. Give an example of an inert electrode .
Watch Video Solution
30. State Faradey.s 1st law.
31. State Faradey.s 2nd law.
Watch Video Solution

32. What is the difference between electrochemical equivalent and chemical equivalent ? Watch Video Solution 33. How atomic weight, valency, eq.weight of a metal related ? Watch Video Solution **34.** Define specific conductance. Watch Video Solution 35. Define equivalent conductance.

Watch Video Solution
37. What is the unit of cell constant ?
Watch Video Solution
38. Define the equivalent conductance and specific conductance. Watch Video Solution
39. Give two applications of Kohlraush's law
Watch Video Solution

40. How degree of dissociation is related with eqconductacne of week

electro-lytes ?

44. Can you store copper sulphate solution in an iron vessel? Why ?
Vatch Video Solution
45. If a spoon to be electroplated with silver , would it be made as cathode or anode in the cell?
Watch Video Solution
46. Galvanic cell converts into
Watch Video Solution
47. Specific conductance=x cell constant.
Watch Video Solution

48. The unit of cell constant is
Watch Video Solution
49. Molar conductance for weak electrolyte on dilution
Vatch Video Solution
50. Charge on one mole of electron is
Watch Video Solution
51. Copper sulphate solution stored in an iron vessel.
Watch Video Solution
52. I mole of electronscoulomb.

O Watch Video Solution
53. Reduction takes place at during electrolysis.
Watch Video Solution
54. Oxidation takes place at druing electrolyses.
O Watch Video Solution
55. Equivalent conductance for strong electrolyte on dilution
Watch Video Solution
56. The unit of specific conductance is
Vatch Video Solution

61. Equivalent conductance with dilution.
Watch Video Solution
62. What is the unit of molar conductance ?
Watch Video Solution
63. Relation between standard e.m.f. of a cell and equilibrium constant is
Vatch Video Solution
64. In an electrochemical cell, reduction taken place at
Vatch Video Solution

65. In the electrochemical cell, oxidation takes place at
Watch Video Solution
66. Electroplated silver spoon acts asin a cell.
Watch Video Solution
67. The process of splitting up of electrolytes into the $+ve$ and $-ve$ ions
are called
Watch Video Solution
68. For strong electrolytes degree of ionisation is
O Watch Video Solution

69. I coulonmb=x 1 second.
Watch Video Solution
70. Units of specific conductivity are
Vatch Video Solution
71. Electrochemical cell is also known as
O Watch Video Solution
72. In an electrochemical cell, reduction taken place at
Watch Video Solution

73. In an electrochemical cell, reduction taken place at
Watch Video Solution
74. Molten sodium chloride conducts electricity due to the presence of
Watch Video Solution
75. The electric charge for electrode deposition of the gram equivalent of a substance is
O Watch Video Solution
76. 96500 Coulomb will deposite of metal.
Watch Video Solution

77. Unit of electrochemical equivalent is
Watch Video Solution
78. pH value of aqueous solution of Nacl after electrolysis is
Vatch Video Solution
79. The unit of specific conductance is
Watch Video Solution
80. How does specific conductance vary with dilution?
Vatch Video Solution

81. How does specific conductance vary with dilution?
Watch Video Solution
82. Equivalent conductance for strong electrolyte on dilution
Watch Video Solution
83. Equivalent conductance for week electrolyte on dilution
View Text Solution
84. Molar conductance for weak electrolyte on dilution
Vatch Video Solution

85.	The	best	electr	onic	conductor	is	

Watch Video Solution
86. Electrolysis of molten sodium hydride liberates
the
Vatch Video Solution
87. Oxidation takes place at druing electrolyses.
Watch Video Solution
88. Reduction takes place at during electrolysis.
Watch Video Solution
89. Charge carried by 1 mole of electrons is
Watch Video Solution

90. I coulomb is aboutelectrons.
Watch Video Solution
91. The unit of electrochemical equivalent is
Watch Video Solution
92. Molar conductance for weak electrolyte on dilution
Watch Video Solution
93. Specific conductance=x cell constant.
Watch Video Solution

94. Equivalent conductance for strong electrolyte on dilution decreases

rapidly.

View Text Solution
95. In an electrochemical cell, reduction taken place at
Watch Video Solution
96. In the electrochemical cell, oxidation takes place at
Watch Video Solution
97. Molten sodium chloride conducts electricity due to the presence of

98. The electric charge for electrode deposition of the gram equivalent of

a substance is

Watch Video Solution

99. How much time is required to pass 18000 coulombs of electricity

through an electrolyte if the current strenght is 10 amperes?

Watch Video Solution

100. I coulomb of charge contains how many number of electrons ?

101. In an electrolytic cell 10 gm of chlorine is liberated from NaCl solution

in 30 minutes. Find the amount of current passed.

102. How many coulombs of electricity are required for reduction of 1 mol

of $Cu^{2\,+}$ to Cu ?

Watch Video Solution

103. How many moles of electrons are given by 45 coulombs ?

Watch Video Solution

104. Calculate the value of equilibrium constant for the reaction at 298 k.

$$Cu(s)+2Ag^+(aq)
ightarrow Cu^{2+}(aq)+2Ag(s)$$

cathode and Cl_2 at anode.

108. State and explain Kohlrausch's law of independeat migration of ions.

O Watch Video Solution		

109. Define molar conductance . Write its unit.

Watch Video Solution

110. The specific conductance of a solution is 0.356 $ohm^{-1} cm^{-1}$. The conductance of this solution in a cell was 0.0268 ohm^{-1} . Calculate the cell constant.

111. What is the potential of a standard hydrogen electrode ?

112. A 0.1N solution of NaCl has specific conductance $0.0011 ohm^{-1} cm^{-1}$

. Find its equivalent conductance.

Watch Video Solution 113. What do you mean by strong and weak electrolytes ? Watch Video Solution

114. In a cell
$$Zn[Zn^{2+}(aq)(1.0M)][Cu^{2+}(aq)(1.0M]Cu$$
, the standard

reduction potentials are :

 $Cu^{2+}+2e^{-\,
ightarrow}Cu, E^{\,\circ}\,=0.350V$ and

$$Zn^{2\,+} + 2e^{-\,
ightarrow}Zn, E^{\,\circ} = \,-\,0.763V.$$

What is the e.m.f.of the cell ?

115. What is the basis on which anode or cathode identified in a chemical

cell?

119. What is electrolysis ? Watch Video Solution 120. Give relation between specific conductance and Equivalent conductance ? Watch Video Solution

121. What is Galvanic cell ? Discuss the construction and working of Daniell cell.

Watch Video Solution

122. Write two applications of electrochemical series.

123. State and explain Kohlrausch's law. How can this law be used to find equivalent conductance of acetic acid at infinite dilution?

Watch Video Solution

124. Three faradays of electricity are passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and molten NaCl taken in different electrolytic cells. Calculate the molar ratio of Al, Cu and Na deposit at the cathodes .

125. Represent the cell and calculate the Standard e.m.f. of the cell having

following

cell

reaction:

$$2Cr(s)+3Cd^{2+}(aq)
ightarrow 2Cr^{3+}(aq)+3Cd(s)E^{0}Cr^{3+}\,/\,Cr=\,-\,0.73vo$$
 <

and $E^0 C d^{2\,+} \,/\, C d = \,-\,0.40\,$ volt

126. Define equivalent conductance.

Watch Video Solution
127. Define specific conductance.
Watch Video Solution
128. What is galvantic cell?
Watch Video Solution
129. Write two applications of electrolysis.
Watch Video Solution

130. State and explain Faraday's laws of electrolysis. How many grams of aluminium can be produced by the electrolysis of molten alumina with a current of 3 amperes for 10 minutes?

Watch Video Solution

131. grams of chlorine can be prepared by the electrolysis of

molten sodium chloride with 10 amperes current passed for 10min.

Watch Video Solution

132. Calculate the quantity of electricity required to deposit 0.108gm. of

silver from $AgNO_3$ soln.

(At. Mass of Ag=108).

134. The specific conductance of a solution is 0.356 $ohm^{-1} cm^{-1}$. The conductance of this solution in a cell was 0.0268 ohm^{-1} . Calculate the cell constant.

Watch Video Solution

135. The equivalent conductance of 0.001N KCl solutin is 147 $ohm^{-1}cm^2gmeq^{-1}$ at $25^{\circ}C$. Find the specific conductance.

Watch Video Solution

136. How many moles of copper will be deposited at the cathode by passing 1.5 faraday of electricity through a sol^n of $CuSO_4$? (At. Mass of

140. From the following molar conductivities at infinite dilution.

 Λ_m° for $Ba(OH)_2 = 457.6\Omega^{-1}cm^2 {
m mol}^{-1}$

 Λ_m° for $BaCl_2=240.6\Omega^{-1}cm^2 {
m mol}^{-1}$

 Λ_m° for $NH_4Cl=129.8\Omega^{-1}cm^2\mathrm{mol}^{-1}$

Calculate Λ_m° for NH_4OH .

Watch Video Solution

141. A metal wire carries a current of 1 ampere. How many electrons pass a

point in the wire in one second ?

Watch Video Solution

142. A0.1N soln. of NaCl has specific conductance $0.001119ohm^{-1}cm^{-1}$. Find out equivalent conductance.

145. Why Ag will not react with dilute H_2SO_4 whereas Zn reacts rapidly ?

146. Colour of KI slon. containing starch turns blue when Cl_2 water is

added. Why?

147. The metals given below are in the increasing order of their reduction

potential.

Mg,Zn,Co,H,Cu,Ag

Which of these metals displaces hydrognen from dilute acid ?

Watch Video Solution

148. State whether the following representation of the cell is correct or not .

$$Pbig[Pb^{+\,+}\left(IM
ight)ig]ig[Mg^{+\,+}\left(1M
ight)ig]Mg$$

Watch Video Solution

149. Write each half cell reaction and also the net cell reaction for a cell.

(i)
$$Cu\Big[Cu^{++(aq)}\Big]\Big[Ag^{+(aq)}\Big]Ag$$

(ii) $Cd\big[Cd^{+2}\big][Ni^{+2}]Ni$

154. How many grams of aluminium can be produced by electrolysis of molten alumina with a current of 1 amperes for 1 minutes ?

O Watch Video Solution

155. 20 ampere current is flowing through $CuSO_4$ solution for 60 minutes. Find the amonut of cupper deposited. (At .wt. of Cu = 63.5)

> Watch Video Solution

156. Calculate the normality of KCI solution having resistance 2000 ohm.

The cell constant is $5.53 cm^{-1}$ and the equivalent conductance is $138.25 ohm^{-1} cm^2 eq^{-1}$.

157. Calculate the value of equilibrium constant for the reaction at 298 k.

$$Cu(s)+2Ag^+(aq)
ightarrow Cu^{2+}(aq)+2Ag(s)$$

 $E^{\,\circ}$ (Ag2+/Ag) = 0.80V

and $E^{\,\circ}(extsf{Cu2+/Cu})=0.34V$

Watch Video Solution

158. How does molar conductivity vary with concentration for weak and strong electrolyte ?

Watch Video Solution

159. The specific conductance of a 0.12N solution of an electrolyte is

 $2.4 imes 10^{-2} \ ohm^{-1} cm^{-1}$ Calculate its equivalent conductance.

163. The resistance of a soln. is 3 ohms. The electrodes in the cell are 1.5 cm. apart and have an area of $4.5cm^2$. What is specific conductance ?

164. A current of 0.15 amperes strength is passed for 150 minutes through a soln. of a metal, 0.785 gm of metal was deposited. Find the valency of the metal. (At.wt.of the metal : 112)

165. A current of 0.5 ampere is passed through acidulated water for 30 minutes. Calculate the wt. of H_2 and oxygen evolved ?

Watch Video Solution

166. When an electric current is passed simultaneously through acidulated water and copper sulphate soln.wt. of hydrogen and copper deposited are 0.0131 and 0.4164gm respectively. Calculate eq. mass of copper.

167. State and explain Faraday's laws of electrolysis.

Watch Video Solution

168. When a current of 0.15 ampere is passsed through a solution of a salt

of a metal for 150 minutes, 0.783 gm of the metal is deposited . Find the

valency of the metal.(At. Wt. of metal = 112)

Watch Video Solution

169. State and explain Faraday's laws of electrolysis.

Watch Video Solution

170. How many grams of aluminium can be produced by electrolysis of molten alumina with a current of 3 amperes for 10 minutes ?

171. Define and explain electrochemical equivalent. How is it related with chemical equivalent of the substance ?

C	Watch	Video	So	lution

172. A current of 5 amperers is passed through an electrolyte for 15 minutes when 3 gm of the metal is deposited . Calculate the equivalent weight of the metal.

Watch Video Solution

173. Define equivalent and molar conductance. Give their relationship with specific conductance. How does equivalent conductance vary with increase in temperature?

How many atoms of calcium will be deposited from fused $CaCl_2$ by a

current of 25 mA passes for 60 sec?

174. Define equivalent and molar conductance. Give their relationship with specific conductance. How does equivalent conductance vary with increase in temperature?

How many atoms of calcium will be deposited from fused $CaCl_2$ by a current of 25 mA passes for 60 sec?

Watch Video Solution

175. Define specific, equivalent and molar conductance. Write their units.

Derive the relation between specific conductance and molar conductance.

What is the effect of dilution on specific and equivalent conductance?

176. The specific conductivity of an N/20 solution of KCI at `25^@ C is 0.002765 mhos. If the resistance of the same solution placed in the cell is

181. Write notes on Fuel Cell
Natch Video Solution
Watch video solution
182. Write notes on Corrosion
Natch Video Solution

183. The algebrac sum of potential of two electrodes of a galvanic cell is

called :

A. Potential defference

B. Ionic difference

C. EMF

D. Electrode difference

Answer: C

Watch Video Solution

184. The standard emf of a galvanic cell can be calculated from :

A. The size of the solution

B. The pH of the solution

C. The amount of metal in the anode

D. The $E^{\,\circ}$ values of the two half cells

Answer: D

Watch Video Solution

185. The electrode potential of a glass electrode depends upon:

A. Concentration of chloride ions

- B. Concentration of hydrogen ions
- C. Concentration of KCl solution.
- D. None of these

Answer: B

Watch Video Solution

186. Which solution will show highest resistance during the passage of current:

A. $1\mathbb{N}aCI$

 $\mathsf{B.}\, 0.1 \mathbb{N} a CI$

C. $2\mathbb{N}aCI$

D. $0.05\mathbb{N}aCI$

Answer: C

187. The standard reduction potential at 290K for the following half reactions are,

$$egin{aligned} ext{(i)} Zn^{2+} + 2e &
ightarrow Zn(s), E^\circ = &-0.762V \ ext{(ii)} Cr^{3+} + 3e &
ightarrow Cr(s), E^\circ = &-0.740V \ ext{(iii)} 2H^+ 2e &
ightarrow H_2(g), E^\circ = &-0.000V \ ext{(iv)} Fe^{3+} + e &
ightarrow Fe^2 + , E^\circ = &+0.77V \end{aligned}$$

Which it the strongest reducing agent :

A. Zn

B. Cr

 $\mathsf{C}.\,Fe^{2\,+}$

 $\mathsf{D}.\,H_2$

Answer: A

188. Which represents disproportionation :

A.
$$2Cu^+
ightarrow Cu^{2+} + Cu$$

B. $3I_2
ightarrow 5I^- + I^{5+}$

C. $H_2O + Cl_2 \rightarrow Cl^- + ClO^- + 2H^+$

D. All of these

Answer: D

Watch Video Solution

189. Electrochemical equivalent of a substance is equal to its quantity

liberated at electrode on passing electricity equal to :

A.1 coulomb

B.1 ampere

C.1 volt

D. 96,500 coulomb

Answer: A

190. Consider the standard potential of the following cells,

(i) $Mg^{2+} + 2e \rightarrow Mg, E^{\circ} = -2.37V$ (ii) $Zn^{2+} + 2e \rightarrow Zn, E^{\circ} = -0.76V$ (iii) $Ni^{2+} + 2e \rightarrow Ni, E^{\circ} = -0.25V$ (iv) $Fe^{3+} + 3e \rightarrow Fe, E_0 = -0.04V$ find the strongest reducing agent : A. Mg^{2+}

B. Zn^{2+}

 $\mathsf{C.}\,Fe^{3\,+}$

D. Ni^{2+}

Answer: B

191. The most poweful oxidising agent is :

A. F_2

 $\mathsf{B.}\,Cl_2$

 $\mathsf{C}.\,Br_2$

D. I_2

Answer: A

Watch Video Solution

192. The product $(ampere imes sec \, ond)$ is equal to the number of :

A. Coulomb transferred

B. Electrons transferred

C. Faraday transferred

D. Volt

Answer: A

Watch Video Solution

193. The oxidation potential of Mg and Al are `+2.37 and +1.66 volt respectively. The Mg in chemical reactions :

A. Will be replaced by Al

B. Will replace Al

C. Will not be able to replace Al

D. None of these

Answer: B

194. When an aqueous solution of lithium chloride is electrolysesd using

graphite electrodes :

A. pH of the resulting solution increases

B. pH of the resulting solution decreases

C. As the current flows, pH of the solution around the cathode

increases

D. None of these

Answer: A

Watch Video Solution

195. A ditute aqueous solution of sodium fluoride is electrolysed, the products at the anode and cathode are:

A. O_2, H_2

 $B. F_2, Na$

 $\mathsf{C}.O_2, Na$

 $\mathsf{D}.\,F_2,\,H_2$

Answer: A

Watch Video Solution

196. Of the following matals that cannot be obtained by electrolysis of the aqueous solutions of their cathode are :

A. Ag and Mg

B. Ag and Al

C. Mg and Al

D. Cu and Cr

Answer: C

197. A certain metal fails to liberate H_2 gas from a moderately conc. HCI

solution. However it desplaces Ag from $AgNO_3$ solution. Which among

the following may it be :

A. Mg

B. Fe

C. Cu

D. Cd

Answer: C

Watch Video Solution

198. $Cu^{2+} + 2e
ightarrow Cu, \log ig[Cu^{2+} ig]$ vs E_{red} .graph is of the type as shown

in figure where OA = 0.34V then electrode otential of the half cell of

 $Cu^{2\,+}\,(0.1M)$ will be :

A.
$$-0.34+rac{0.0591}{2}V$$

 ${\rm B.}\, 0.34 + 0.0591 V$

 $\mathsf{C.}\,0.34V$

D. None

Answer: A

199. For which cell emf is independent of the concentration of electrolytes used :

A.
$$Fe[FeO(s)]KOH(aq)[NiO(s)[Ni_2O_3(s)]Ni$$

 $\mathsf{B}. Pt(H_2)[HCI](Cl_2)$

 $\mathsf{C.}\,Zn\big[Zn(NO_3)_2\big][CuSO_4]Cu$

 $\mathsf{D}.\,Hg,\,HgCl_2[KCI][AgNO_2]Ag$

Answer: A

Watch Video Solution

200. The reaction,

$$Cu^{2+}(aq)+2CI^{-}$$
 (aq) $ightarrow Cu(s)+CI_2(g)$ has $E_{cell}^{\,\circ}=1.03V.$ This

reaction :

A. Can be made to produce electricity in voltaic cell

B. Can be made to occur in an electrolytic cell

C. Can occur in acidic medium only

D. Can occur in basic medium only

Answer: B

201. For the electrochemical cell,
$$M[M^+]X^- \mid X, E^\circ \ (M + /M) = 0.44V$$
 and $E^\circ_{X/X^-} = 0.33V.$

From this data, one can duduce that :

A. $M + X
ightarrow M^+ + X^- \,$ is the spontaneous reaction

B. $M^{\,+}\,+\,X^{\,-\,
ightarrow}M+X$ is the spontaneous reaction

$$\mathsf{C}.\,E_cell=0.77V$$

D.
$$E_{cell} = -0.77V$$

Answer: B

202. Electrolytic reduction of alumina to aluminium by Hall-Heroult process is carried out

A. In the presence of NaCI

B. In the presence of fluoride

C. In the presence of cryolite which forms a melt with lower melting

tempeature

D. In the presence of cryolite which forms a melt with higher melting

temperature

Answer: C

> Watch Video Solution

203. When 9.65 coulomb of electricity is passed through a solution of $AgNO_3$ (at.wt. 108.0) the amount of silver deposited is :

A. 10.8 mg

B. 5.4 mg

C. 16.2 mg

D. 21.2 mg

Answer: A

Watch Video Solution

204. E° values for $Fe^{3+} + 3e \rightarrow Fe$ and $Fe^{2+} + 2e \rightarrow Fe$ are - 0.036V and -0.44V respectively. Calculate the E^0 and ΔG^0 for the cell reaction $Fe + 2Fe^{3+} \rightarrow 3Fe^{2+}$.

 ${\sf A.}-0.476V$

 $\mathrm{B.}-0.404V$

 ${\rm C.}+0.404V$

 $\mathsf{D.}+0.772V$

Answer: D

205. I mole of AI is deposited by X coulomb of electricity passing through aluminium nitrate solution. The number of mole of silver deposited by X coulomb of electricity from silver nitrate solution is :

A. 3 B. 4 C. 2 D. 1

Answer: A

206. Copper from copper sulphate solution can be displaced byThe standared reduction potentials of some electrodes are given below:

$$egin{aligned} &E^{\,\circ}\left(Fe^{2\,+},\,Fe
ight)=\ &-0.44V\ &E^{\,\circ}\left(Zn^{2\,+},\,Zn
ight)=\ &-0.76V\ &E^{\,\circ}\left(Cu^{2\,+},\,Cu
ight)=\ &+0.34V\ &E^{\,\circ}\left(Cr^{3\,+},\,Cr
ight)=\ &-0.74V\ &E^{\,\circ}\left(H^{\,+},\,rac{1}{2}H_2
ight)=\ &-0.00V \end{aligned}$$

A.
$$H_2$$

B. Zn

C. Cr

D. All

Answer: D

207. The oxidation potential of a hydrogen electrode at pH =10 and P_{H_2} =

1 atm

A. 0.51V

 $\mathrm{B.}\,0.00V$

C. + 0.59V

 $\mathsf{D}.\,0.059V$

Answer: C

Watch Video Solution

208. The number of Faraday required to gneerate 1g of Mg from $MgCl_2$

is:

A. 1

B. 2

C. 3

Answer: B

209. emf of cell $Ni, Ni^{2+}(1.0M) \mid |Au^{3+}(1.0M), Au$ isIf $E^{\circ}f$ or $Ni^{2+} \mid Ni$ is 0.25V, $E^{\circ}f$ or $Au^{3+} \mid Au$ is 1.50 V.

 $\mathsf{A.}+1.25V$

 $\mathsf{B}.\,1.75V$

 ${\rm C.}+1.75V$

 $\mathrm{D.}+4.0V$

Answer: C

210. E° for the half cell reactions are as, $Zn \to Zn^{2+} + 2e, E^{\circ} = +0.76V$ $Fe \rightarrow Fe^{2+} + 2e, E^{\circ} = +0.41V$ The E° for the cell reaction. $Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$: A. -035VB. + 0.35VC. + 1.17VD. - 0.17V

Answer: B

211. A certaom cirrent liberates 0.504 g of hydrogen in 2 hr. How many gram of copper can be liberated by the same current flowing for the same time in $CuSO_4$ solution:

A. 12.7

B. 16

C.31.8

 $D.\,63.5$

Answer: B

Watch Video Solution

212. The standard reduction electrode potentials of your metals A,B, C and D are -3.65, -1.68, -0.80 and +0.86. The highest chemical activity will be exhibited by :

A. A

B.B

C. C

D. D

Answer: A

Watch Video Solution

213. An apparatus used for the measurement of quantity of electricity is

known as a :

A. Calorimeter

B. Cathetometer

C. Coulometer

D. Colorimeter

Answer: C

Watch Video Solution

214. The amount of an ion descharged during electrolyses is not

dependent of :

- A. Resistance of solution
- B. Time
- C. Current strength
- D. Electrochemical equivalent of the element

Answer: A

Watch Video Solution

215. If an iron rod is depped in $CuSO_4$ solution:

A. Blue colour of the solution turns red

B. Brown layer is deposited on irod rod

- C. No change occous in the colour of the solution
- D. None

Answer: B

216. Which aqueous solution will conduct an electric current quite well :

A. Glycerol

B. Sugar

C. Hydrochloric acid

D. Pure water

Answer: C

Watch Video Solution

217. What is lead storage battery?

A. SO_2 is evolved

B. Lead is formed

C. Lead sulphate is consumed

D. Suophuric acid is consumed

Answer: D

218. The unit of electrochemical equivalent is :

A. gram

B. gram/ampere

C. gram/coulomb

D. coulomb gram

Answer: C

219. During the electrolysis of fused`NaCI, the reaction that occurs at the

anode is :

- A. Chloride ions are reduced
- B. Chloride ions are oxidized
- C. Sodium ions are oxidized
- D. Sodium ions are reduced

Answer: A

Watch Video Solution

220. Each of the three metals X, Y and Z were put in turn into aqueous solution of the other two , X + Salt of Y (or Z)=Y (or Z) + Salt of X . Which observation is probably incorrect :

A. Y + Salt of X =No action observed

B. Y + Salt of Z =Z+ Salt of Y

C. Z + Salt of X=X+Salt of Z

D. Z + Salt of Y = No action observed

Answer: C

Watch Video Solution

221. Molten `NaCl conducts electricity due to the presence of :

A. Free electrons

B. Free molecules

C. Free ions

D. Atoms of Na and Cl

Answer: C

222. Red hot carbon will remove oxygen from the oxides XO and YO but not form ZO . Y will remove oxygen from XO . Use this evidence to reduce the order of activity of the three metals X,Y and Z putting the most reactive first :

A. X,Y,Z

B. Z,Y,X

C. Y,X,Z

D. Z,X,Y

Answer: B

Watch Video Solution

223. The standard reduction potentials at 25° of $[Li^+/Li]$, $[Ba^{2+}/Ba]$, $[Na^+/Na]$ and $[Mg^{2+}/Mg]$ are -3.05, -2.76, -2.71 and -2.37V respectively. Which is strogest reducing agent.

224. Normal aluminum coupled with normal hydrogen electrode gives an emf of 1.66 V. The standard electrode potential of aluminium is :

A. -1.66V

 $\mathrm{B.}+1.66V$

 ${\rm C.}-0.83V$

 $\mathsf{D.} + 0.83V$

Answer: B

Watch Video Solution

225. How many faraday are needed to reduce one mole of MnO_4^- to Mn^{2+} :

A. 4

B. 5

C. 3

D. 2

Answer: B

Watch Video Solution

226. Standard E° of the half cell Fe/ Fe^{2+} is +0.44V and standard E° of

half cell Cu $/Cu^{2+}$ is -0.32V then:

A. Cu oxidises Fe^{2+} ion

B. Cu^{2+} oxidises Fe

C. Cu reduces $Fe^{2+}ion$

D. Cu^{2+} reduces Fe

Answer: B

227. The standard reduction potentials of metal electrodes A,B,C and D are +0.14V,+0.34V,-0.74 V and -0.4V respectively, Which is the best reducing agent :

A. A B. B C. C

D. D

Answer: C

228. The standard reduction potentials at $25^{\circ} of Li^{+} [Li, Ba^{2+} [Ba, Na^{+}]Na \text{ and } Mg^{2+}]Mgare - 3.05, -2.76, -$ respectively . Which is strogest reducing agent.

B. Ba

C. Na

D. Mg

Answer: A

Watch Video Solution

229. The standard reduction potentials of the metals A,B and C are 0.68, -2.50 and -0.50V respectively. The order of their reducing power is :

A. A > B > C

 $\mathsf{B}.\, A > C > B$

 $\mathsf{C}.\, C > B > A$

 $\mathsf{D}.\,B>C>A$

Answer: D

230. The standard reduction potential for $Fe^{2+} | Fe$ and $Sn^{2+} | Sn$ electrodes are -0.44V and -0.14V respectively. For the cell reaction, $Fe^{2+} + Sn \rightarrow Fe + Sn^{2+}$, the standard emf is :

 $\mathsf{A.}+0.30V$

 ${\rm B.}\,0.58V$

 ${\rm C.}+0.58V$

 $\mathrm{D.}-0.30V$

Answer: D

Watch Video Solution

231. 3 Faraday of electricity are passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and molten Nacl taken in three different electrolytic

cells. The amount of Al, cu and Na deposited at the cathodes will be in the ratio of :

A. 1 mole : 2 mole : 3 mole

B. 3 mole : 2 mole: 1 mole

C. 1 mole: 1.5 mole: 3 mole

D. 1.5 mole :2 mole : 3 mole

Answer: C

Watch Video Solution

232. An electroytic cell contains a solution of Ag_2SO_4 and platinum electrodes. A current is passeduntil 1.6 g of O_2 has been liberated at anode. The amount of Ag deposited at cathode would be :

A. 1.6g

 $\mathsf{B.}\,0.8g$

 $\mathsf{C.}\,21.6g$

 $D.\,107.88g$

Answer: C

233. The electrode potential measure the :

A. Tendency of the electrode to gain or lose electrons

B. Tendency of the all cell reaction to accur

C. Difference in the ionisation potential of electrode and metalion

D. Current carried by an electrode

Answer: A

234. Which is the correct representation for Nernst equation :

$$\begin{array}{l} \mathsf{A}.\, E_{RP} = E_{RP}^{\circ} +_{n}^{0.059} \, \frac{\log[\,\otimes\, idant]}{reduc \tan t} \\ \mathsf{B}.\, E_{OP} = E_{OP}^{\circ} +_{n}^{0.059} \, \frac{\log[\,\otimes\, idant]}{reduc \tan t} \\ \mathsf{C}.\, E_{OP} = E_{OP}^{\circ} +_{n}^{0.59} \, \frac{\log[Reduc \tan t]}{\otimes\, idant} \end{array}$$

D. All of these

Answer: D

235. The factor temperature coefficient for emf is :

- A. $(\delta E/\delta T)_P$
- B. $(\delta E/\delta P)_T$
- C. $(\delta E/\delta V)_T$
- D. None

Answer: A

236. The emf of a voltaic cell is negative. So oxidation and reduction process respecttively can be written at the :

A. LHE,RHE

B. RHE,LHE

C. Both (a) and (b)

D. None

Answer: B

Watch Video Solution

237. Silver from silver nitrate is deposited by copper, because :

A.
$$E^{\circ} \left(Cu^{2+} \, / \, Cu
ight) < E^{\circ} \left(Ag^{+} \, / \, Ag
ight)$$

B. $E^{\circ} \left(Cu^{2+} \, / \, Cu
ight) > E^{\circ} \left(Ag^{+} \, / \, Ag
ight)$
C. $E^{\circ} \left(Cu^{2+} \, / \, Cu
ight) = E^{\circ} \left(Ag^{+} \, / \, Ag
ight)$

D. None

Answer: A

238.	Standard	reduction		potential		for,
Li^+Li, Zn^2	$^{+}Zn,H^{+}H_{2} { m and} $	Ag^+Ag	is	-3.05,-0.762,0.00	and	+80V.
Which has highest reducing capacity?						
A. Ag						
B. H_2						
C. Zn						
D. Li						
Answer: D						

239. Which one is correct :

A. Ni desplaces zinc from its solution

B. Zn desplaces iron from is solution

C. Ag displaces copper from its solution

D. Cu displaces nickel from its solution

Answer: B

Watch Video Solution

240. An unit of charge is :

A. Volt

B. Ampere

C. Coulomb

D. None

Answer: C

241. The standard reduction potential of some electrodes are , $E^{\,\circ}\left(K^{\,+}\,/\,K
ight)=\,-\,2.9V,\,E^{\,\circ}\left(Zn^{2\,+}\,/\,Zn
ight)=\,-\,0.76V,\,E^{\,\circ}\left(H^{\,+}\,/\,H_2
ight)=\,-$

A. Copper

B. Zinc

C. Hydrogen

D. Cu^{2+}

Answer: D

View Text Solution

242. In galvanic cell

A. Complete the circuit

B. To reduce lizuid junction potential in the ccell

C. Separate cathode solution from anode solution

D. Carry salts for chemical reactions to occur in cell

Answer: B

Watch Video Solution

243. A current of 2 ampere was passed through solution of $CuSO_4$ and $AgNO_3$ in series.`0.635 g of copper was deposited .Then the weight of silver deposited will be:

A. 0.59g

B. 3.24g

C. 1.08g

D. 2.16g

Answer: D

244. The emf of the cell involving following changes $Zn(s) + Ni^{2+}(1M) \rightarrow Zn^{2+}(1M) + Ni(s)$ is 0.5105V. The standard emf of the cell is :

A. 0.540V

B. 0.4810V

C. 0.5696V

D. 0.5105V

Answer: D

245. A current of 2.6 ampere was passed through $CuSO_4$ solution for 380

sec. The amount of Cu deposited is (at .wt. of Cu (63.5):

A. 0.3250g

B. 0.635g

C. 6.35g

D. 3.175g

Answer: A

Watch Video Solution

246. $E^{\,\circ}$ values of $Mg^{2\,+}\,/Mg$ is -2.37V, of $Zn^{2\,+}\,/Zn$ is -0.76V and $Fe^{2\,+}\,/Fe$ is -0.44V.

Which of the following statement is correct ?

A. Mg oxidises Fe

 $\mathbf{B.}\,Zn\otimes idisesFe$

C. $ZnreducesMg^{2+}$

D. $ZnreducesFe^{2+}$

Answer: D

Watch Video Solution

247. On passing electricity through dilute H_2SO4 solution the amount of

substance libeated at the cathode and anode are in the ratio:

A. 1:8

B.8:1

C. 16:1

D. 1: 16

Answer: A

248. Passage of 96500 coulmb of electricity liberates...... Litre of O_2 at NTP

during electrolysis :

A. 5.6

 $\mathsf{B.}\,6.5$

C.22.2

 $\mathsf{D}.\,11.2$

Answer: A

Watch Video Solution

249. During electrolysis of an aqueous solution of Cu^{2+} sulphate , 0.635 g of copper was deposited at cathode. The amount electricity consumed in coulomb is :

A. 1930

B. 3860

C. 96500

D. 4825

Answer: A

Watch Video Solution

250. The number of electrons involved in redox reactions when a faraday

of electricity is passed through an electrolyte in solution is :

A. $6 imes 10^{23}$

 ${\sf B.8 imes10^{19}}$

C. 96500

D. $6 imes 10^{-23}$

Answer: A

251.

 $Mg^{2+}+2e o Mg(s), E=-2.37V, Cu^{2+}+2e o Cu(s), E=+0.34V$ then the emf of the cell $Mg|Mg^{+2}||Cu^{2+}||Cu$ is :

A. 2.71V

 $\mathsf{B}.\,2.30V$

 $\mathsf{C.}\,2.80V$

 $\mathsf{D}.\,1.46V$

Answer: A

Watch Video Solution

252. A certain quantity of electricity is passed through aqueous solution of $AgNO_3$ and $CuSO_4$ connected in series, If Ag (at. Wt. 108) deposited at the cathode is 1.08 g then Cu deposited at the cathode is (at. wt. of Cu is 63.53):

A. 6.354

B.0.317

 $\mathsf{C}.\,0.6354$

 $D.\,3.177$

Answer: B

Watch Video Solution

253. Which is correct representation for a cell at equilibrium:

A.
$$\Delta G^\circ = -2.303 RT \log K_{eq}$$

B. $E^\circ = rac{2.303 RT}{nF} \log K_{eq}$
C. $-\Delta G^\circ = RT 1 n K_{eq}$.

D. All

Answer: D

254. Out of Cu, Ag, Fe and Zn the metal which can displace all other

from their salt solutions is :

A. Ag B. Cu C. Zn

D. Fe

Answer: C

Watch Video Solution

255. The thermodynamic efficiency of cell is given by :

A. $\Delta H/\Delta G$

B. $nFE/\Delta G$

C. $nFE/\Delta H$

D. $nFE^{\,\circ}$

Answer: C

Watch Video Solution

256. In which of the following will the corrosion of iron be most rapid :

A. In pure water

B. In pure oxygen

C. In air and moisture

D. In air and saline water

Answer: D

257. In a concentration cell:

A. Two electrodes are of different elements

B. Two electrolytic solutions of the same electrolyte but having

different concentrations are used

C. Electrolyte of one strength but electrodes of two different elements

are used

D. Both (b) and (c)

Answer: D

:

Watch Video Solution

258. The electrolytic bath used in gold plating of copper articles contains

A. Molten gold

 $\mathsf{B.}\,CuSO_4$

 $\mathsf{C}. AuCl_3$

D. $AuCl_3 + NaCN$

Answer: D

C. $E_{red}^{\,\circ} is + ve$

D. $\Delta Gis - ve$

Answer: D

Watch Video Solution

260. The cell reaction , $Zn+Cu^{2\,+}
ightarrow Zn^{2\,+}+Cu$ is best represented

by:

A.
$$Cu/Cu^{2+}$$
 | $|Zn^{2+}/Zn$
B. Zn/Zn^{2+} | $|Cu^{2+}/Cu$
C. Cu^{2+}/Cu | $|Zn/Zn^{2+}$
D. PI/Zn^{2+} | $|PI/Cu^{2+}$

Answer: B

261. Mobility of H^+ (in aq medium) is high because:

A. Of the small size of $H^{\,+}$

B. Of the high hydration energy of $H^{\,+}$

C. It exhibits a Grotthus type of conduction

D. Hydrogen is the lightest element

Answer: C

262. A cell with two electrodes, one of grey tin and the other white tin, both dipping in solution of $(NH_4)_2 SNCI_6$ showed zero emf at `18^@C. What conclusion may be draw from this "

- A. The emf developed at the electrode -solution phase boundary cancels the normal emf
- B. Grey tin being non-medallic ceases ti orivude a reversible electrode reaction
- C. Electrode surface develops a ortective layer and the cell develops a

very large internal resistance

D. The free energy chango of the cell becomes zero

Answer: D

263. An ion is reduced to element when it absorbs $6 imes 10^{20}$ electrons. The number of equivalent of ion is :

A.0.10

 $\mathsf{B.}\,0.01$

 $C.\,0.001$

D. 0.0001

Answer: C

Watch Video Solution

264. How many electrons are there in one coulomb:

A. $6.02 imes10^{21}$

 $\texttt{B.}\,6.25\times10^{18}$

 $\text{C.}\,6.25\times10^{15}$

D. $6.024 imes 10^{16}$

Answer: B

265. The number of electrons passing per second through a cross-section

of Cu wire carrying 10 ampere is:

A. $6 imes 10^{19}$ B. $8 imes 10^{19}$

- ${\rm C.1}\times10^{19}$
- D. $1.6 imes10^{19}$

Watch Video Solution

Answer: A

A. - 2.41

 ${\sf B.}+2.41$

C. - 4.82

D. None

Answer: A

Watch Video Solution

267. For reducing 1 mole of Fe^{2+} ions to Fe , the number of Faradays of electricity required are:

A. 2

B. 1

C. 2.5

D. 4.0

Answer: A

268. A silver cup is plated with silver by passing 965 coulomb of electricity

. The amount of Ag deposited is :

A. 1.08g

B. 1.0002g

C. 9.89g

D. 107.89

Answer: A

Watch Video Solution

269. The same amount of electricity was passed through two cells containing molten Al_2O_3 and molten NaCl. If 1.8g of Al were liberated in one cell, the amonut of Na liberated in the other cell is :

A. 4.6g

B. 2.3g

C. 6.4g

D. 3.2g

Answer: A

Watch Video Solution

270. What is the charge in Coulombs on ${\it Cu}^{2+}$ ion?

A. $3.2 imes 10^{-19}$

B. $2.3 imes10^{-12}$

 $\text{C.}\,0.23\times10^{-19}$

 $\text{D.}\,0.32\times10^{-19}$

Answer: A
271. The number of electrons required to deposit 1 g atom of Al(at. Wt. = 27) from a solution of $AlCI_3$ are :

A. 1N

B. 2N

C. 3N

D. 4N

Answer: C

Watch Video Solution

272. The number of coulombs required for the deposition of 107.87g of

silver is :

A. 96500

 $B.\,48205$

C. 19300

 $D.\ 10000$

Answer: A

Watch Video Solution

273. Reaction taking place at anode in dry cell is :

A. $Zn^{2+}+2e
ightarrow Zn(s)$ B. $Zn(s)
ightarrow Zn^{2+}+2e$ C. $Mn^{2+}+2e
ightarrow Mn(s)$ D. $Mn(s)
ightarrow Mn^{2+}+2e$

Answer: B

274. Hydrogen cannot reduce :

A. Heated cupric oxide

B. Heated ferric oxide

C. Heated stannic oxide

D. Heated aluminium oxide

Answer: D

Watch Video Solution

275. Which metal does not give the following reaction : M + water or

steam ightarrow metal oxide $+H_2$ \uparrow

A. Iron

B. Sodium

C. Mercury

D. Magnesium

Answer: C Watch Video Solution 276. Which metal is most readily corroded in moist air: A. Copper B. Iron C. Silver D. Nickel Answer: B Watch Video Solution

277. Which one will liberate Br_2 from KBr.

 $\mathsf{B}.\,I_2$

 $\mathsf{C}.\,CI_2$

D. SO_2

Answer: C

Watch Video Solution

278. Which is not true for a standard hydrogen electrode :

A. The hydrogne ion cncentratin is 1 M

B. Temperature is $25^{\,\circ}C$

C. Pressure of hydrogen is atmosphere

D. It contains a metalli conductor which does not adsorn hydrgen

Answer: D

279. The value of equilibrium constant fro a feasible cell reaction is :

A. < 1

B. Zero

C. = 1

D. > 1

Answer: D

Watch Video Solution

280. A galvanic cell is composed of two hydrogen electodes, one of which is a standard one . In which of the following solutins the other electrode be immersed to get maximum emf:

A. 0.1 MHCI

 $\mathsf{B.}\, 0.1 MCH_3 COOH$

 $C.0.1MH_3PO_4$

 $D. 0.1 MH_2 SO_4$

Answer: D

281. Chlorine cannot displace :

A. Fluorine from NaF

B. lodine from Nal

C. Bromine from NaBr

D. None

Answer: A

282. The one that is a good conductor of electricity in the folowing list of

solids is :

A. Sodium chloride

B. Graphite

C. Diamond

D. Sodium carbonate

Answer: B

Watch Video Solution

283. In the electrolysis of $CuCI_2$ solution using Cu electrodes the mass of

cathode increases by 3.18 g. What happened at the other electrode:

A. 0.05 mble of $Cu^{\,+\,2}$ ions passed into solution

B. 0.112litre of CI_2 was liberated

C. 0.56 litre O_2 was liberated

D. $0.1\,{\rm mole}$ of $Cu^{2\,+}\,$ ions passed into the solution

Answer: A

284. Number of Faraday required to liberate 8g of H_2 is :

A. 8

B. 16

C. 4

D. 2

Answer: A

285. The weight ratio of Al and Ag deposited using the same quantity of

curren is :

A. 9:108

B. 2:12

C. 108:9

D.3:8

Answer: A

Watch Video Solution

286. 20g of chlorine are evolved in 6 hour from sodium chloride solution

by the current of :

A. 5 ampere

B. 10 ampere

C. 2.5 ampere

D. 50 ampere

Answer: C

287. What weight of copper will be depositeted by passing 2 faraday of electricity through a solution of Cu (II) salt:

A. 35.6g

 $\mathsf{B.}\,63.5g$

 $\mathsf{C.}\,6.35g$

 $\mathsf{D}.\,3.56g$

Answer: B

288. The weight ratio of Mg and AI deposited during the passage of same current through their molten salts:

A. 12:9 B. 9:12

C.6:2

 $\mathsf{D}.\,2\!:\!3$

Answer: A

Watch Video Solution

289. The number of electrons passing per second through a cross-section

of copper wire carrying 10^6 ampere:

A. $6.2 imes10^{23}$

 $\texttt{B.}\,6.2\times10^{12}$

 ${\sf C.6.2 imes10^{10}}$

D. None

Answer: B

Watch Video Solution

290. 13.5 g of Al get deposited when electricity is passed through the solution of AICI3. The number of Faradays used are :

A. 0.50

 $B.\,1.00$

 $C.\,1.50$

 $\mathsf{D}.\,2.00$

Answer: C

291. If 1 faraday of electricity is passed through a solution of $CuSO_4$ the amount of copper deposited will be equal to its :

A. I mole of Cu

B.1g atom of Cu

C.1 molecule of Cu

D. 1 g equivalent of Cu

Answer: D

Watch Video Solution

292. The ratio of weight of hydrogen and magnesium deposited by the same amonut of electrcity from H_2SO_4 and $MgSO_4$ in aqueous solution are :

A. 1:8

B. 1:12

C. 1: 16

D. None

Answer: D

Watch Video Solution

293. Chlorine gas is passed into a solution containing KF, KL and KBr and KBr and $CHCI_3$ is added. The initial colour in $CHCI_3$ layer is :

A. Violet due to frommation of I_2

B. Orange due to formation of Br_2

C. Colorless due to formation of F_2

D. No colour change due to no reaction

Answer: A

294. Metals can be prevented from rusting by :

A. Connecting iror to more electropositive metal cathodic protection

B. Connecting iron to more electropositive metal anodic protection

C. Connecting iron to less electropositive metal anodic protection

D. Connecting iron to less electropositive metal cathodic protection

Answer: A

Watch Video Solution

295. For a given redox change, $E_{RP_2}^{\circ} + E_{OP_1}^{\circ}$ is equal to where 1 is oxidised and 2 is reduced :

A. Coulomb

B. Faraday

C. Ampere

D. Cell potential

Answer: D

Watch Video Solution

296. In an electrolytic cell the anode and cathode are respectively represented as :

A. Positive electrode , negative electrode

B. Negative electrode ,positive electrode

C. Positive and negative electrode both

D. None

Answer: A

Watch Video Solution

297. Stronger the oxidising agent , greater is the :

A. Reduction potential

B. Oxidation potential

C. Ionic behaviour

D. None

Answer: A

Watch Video Solution

298. Which does not oxidised by bromine water:

A.
$$Fe^{2+}$$
 to Fe^{3+}

B. Cu^+ to Cu^{2+}

C. $Mn^{2\,+}$ to $MnO_4^{\,-}$

D. Sn^{2+} to Sn^{4+}

Answer: C

299. The standard H electrode is written as :

A. $Pt, H_2, H^+(a=1)$

B.
$$Pt(H_2) \, / \, H^{\, +} \, (a = 1)$$

C.
$$PtH_2(g)(1atm) \,/\, H^+(a+1)$$

D. None

Answer: C

Watch Video Solution

300. The reduction potentials of four metals P, Q, R and S are -2.90,+.34,+1.20 and -0.76` respectively. Reactivity dereases in the order.

A.
$$P>Q>R>S$$

 $\operatorname{B}.Q>P>R>S$

 $\mathsf{C}.\,R>Q>S>P$

$$\mathsf{D}.\, P > S > Q > R$$

Answer: D

301. When lead accumulator is charged it is :

A. An electrolytic cell

B. A galvanic cell

C. A Daniell cell

D. None of the above

Answer: A

 $(1/2)Hg(g) + AgCl(s) = H^+(aq) + Cl^{-\,(\,aq)} + Ag(s)$ occurs in the gal vanic cell:

A.
$$AgIAgCI(s)IKCI(so \ln.)AgNO_3(so \ln.)IAg$$

B. $PtIH_2(g)|HCI(slon.)|AgNO_3(slon.)Iag$
C. $PtH_2(g)|HCI(slon.)|AgCI(s)|Ag$
D. $Pt|H_2(g)|KCI(slon.)|AgCI(s)|Ag$

Answer: C

Watch Video Solution

303. Number of Faraday needed to deposit 0.1 mole of copper from Cu(II) sulphate solution are :

A. 0.1

 $\mathsf{B.}\,0.2$

 $\mathsf{C}.\,0.05$

 $\mathsf{D}.\,0.5$

Answer: B

Watch Video Solution

304. The amount of sodium deposited by 5 ampere current for 10 minute

from fused NaCI is :

A. 0.715 g

 $\mathsf{B.}\,71.5g$

 $\mathsf{C.}\,5.17g$

 $\mathsf{D}.\,0.517g$

Answer: B

305. On electrolysis , 1 mole of aluminium will be deposited from its molten salt by :

A.1 mole of electrons

B. 2 mole of electrons

C. 3 mole of electrons

D. 4 mole of electrons

Answer: A

Watch Video Solution

306. 10^{-2} g atom of Ag can be oxidised to Ag^+ during the electrolsis of $AgNO_3$ solution using silver electrode by:

A. 965 coulomb

B. 96500 coulomb

C. 9650 coulomb

D. 96.500 coulomb

Answer: A

307. Number of faraday required to reduce a mole of Fe^{3+} to Fe^{2+} are:

A. 1

B. 2

C. 3

D. 4

Answer: A

308. The amount of silver deposited on passing 2 faraday of charge though an aqueous solution of $AgNO_3$ is :

A. 54 g

B. 108 g

C. 216 g

D. 324 g

Answer: C

309. How many coulomb of electricity are consumed when 100 mA current is passed throught a solution of $AgNO_3$ for 30 minute during an electrolysis experiment:

A. 108

B. 18000

C. 180

D. 3000

Answer: C

Watch Video Solution

310. The amount of copper deposited by the passage of 96500 coulomb

of electricity through copper sulphate solution is :

A. 2.0mole

 $\mathsf{B}.\,1.5\,\mathsf{mole}$

 $C.\,0.5\,mole$

 $\mathsf{D}.\,1.0~\mathsf{mole}$

Answer: C

311. When 1 Faraday of electricity is passed through $CuSO_4$ solution, number of atoms formed is :

A. $6.02 imes 10^{23}$

B. $3.01 imes 10^{23}$

C. 2

D. $6.02 imes 10^{23}$

Answer: B

Watch Video Solution

312. Total charge on 1 mole of a monovalent metal ion is equal to :

A. $6.28 imes 10^{18}$ coulomb

- B. $1.6 \times 10^{-19} \text{ coulomb}$
- ${\rm C.}\,9.65\times10^4~{\rm coulomb}$

D. None

Answer: C

0	Watch	Video	Solution

313. Faraday.s law of electrolysis fails when:

A. Temperature is increased

B. Inert electrodes are used

C. A mixture of electrolytes is used

D. In none of these cases

Answer: D

314. A depolariser used in dry cell batteries is :

A. A mmonium chloride

B. Managanese dioxide

C. Potassium hydroxide

D. Sodium phosphate

Answer: B

Watch Video Solution

315. In electrolysis of a fused salt, the weight deposited on an electrode

will not depend on:

A. Temperature of the bath

B. Current intensity

C. Electrochemical equivalent of ions

D. Time for electrolysis

Answer: A

316. An electric current is passed through following aqueous solutions. Which one shall decompose:

A. Urea

B. Glucose

C. Silver nitrate

D. Ethyl alcohol

Answer: C

Watch Video Solution

317. The position of some metals in the electrochemical series in decreasing electropositive character is given as Mg > Al > Zn > Cu > Ag. What will happen if a copper spoon is used to stir a solution of aluminium nitrate:

A. The spoon will get coated with aluminium

B. An alloy of copper and aluminium is formed

C. The solution becomes blue

D. There is no reaction

Answer: D

Watch Video Solution

318. On electrolysing a solution of dilute H_2SO_4 between platinum electrodes, the gas evolved at the anode and cathode are respectively is :

A. SO_2 and O_2

 $B.SO_3$ and H_2

 $\mathsf{C}.O_2$ and H_2

 $\mathsf{D}.\,H_2$ and O_2

Answer: C

319. Among Na,Hg ,S,Pt and graphite which can be used as electrodes in electrolytic cells having aqueous solutions:

A. Na and S

B. Hg and Pt

C. Na, Hg and S

D. `Hg,Pt and graphite

Answer: D

Watch Video Solution

320. An aqueous solution of an electrolyte:

A. Anions move towards anode, cations towards cathode

B. Anoins and cations both move towards anode

C. Anions move towards cathode, cations towards anode

D. No movement of ions takes place

Answer: A

Watch Video Solution

321. When same quantity of current is passed through two different electrolytes connected in series, the amount of products liberated at the electrodes are in the ratio of their.

A. At.no.

B. At.wt.

C. Sp.gravity

D. Eq.wt.

Answer: D

322. The electrolysis of a solution resulted in the formation of H_2 at the

cathode and Cl_2 at the anode. The liquid is :

323. In electrolysis, oxidation takes place at:

A. Anode

B. Cathode

C. Both at the anode as well as cathode

D. The surface of electrolyte solution

Answer: A

Watch Video Solution

324. Which loses charge at catode:

A. lons

B. Cations

C. Anions

D. Both anoions and cations

Answer: B

Watch Video Solution

325. In the electrolyses of $CuSO_4$ the reaction $Cu^{2\,+} + 2^{\circ\,-}
ightarrow Cu$,

Takes place at :

A. Anode

B. Cathode

C. In solution

D. None

Answer: B

326. A standard hydrogen electrode has zero electrode potential because

A. Hydrogen is easiest to oxidise

B. This electrode potential is assumed to be zero

C. Hydrogen atom has only one electron

D. Hydrogen is the lightest element

Answer: B

:

Watch Video Solution

327. In an electrolytic cell current flows :

A. From cathode to anode in outer circuit

B. From anode to cathode outside the cell
C. From cathode to anode inside the cell

D. None

Answer: A

Watch Video Solution

328. In Dow.s method, sodium is prepared by the electrolysis of molten NaCI. The reaction at cathode is :

A. $2CI^{ightarrow}CI_2(g)+2e$ B. $Na^++e
ightarrow Na(s)$ C. $Na^+(aq)+e
ightarrow Na^++e$ D. $Na^+(aq)+e
ightarrow Na(s)$

Answer: B

329. The ions discharged at anode by the electrolysis of very dilute H_2SO_4 solution are:

A. H_3O^+

 $\mathsf{B.}\,OH^{\,-}$

 $\mathsf{C}.HSO_4^-$

 $\mathrm{D.}\, SO_4^{2\,-}$

Answer: B

Watch Video Solution

330. The reaction at cathode during the electrolysis of aqueous solution

of NaCI in Nelson cell is :

A. $2CI^{\,ightarrow}CI_2+2e$

B. $2H^+ + 2e
ightarrow H_2$

C. $2OH^{\,-\,
ightarrow}H_2+O_2+2e$

D.
$$Na^+ + e
ightarrow Na$$

Answer: B

331. In electrochemical corrosion of metals, the metal undergoing corrosion:

A. Acts as anode

B. Acts as cathode

C. Is reduced

D. Either of these

Answer: A

332. The value of electronic charge is equal to :

A.
$$\frac{Faraday}{Av. Number}$$

B. $Faraday \times Av. \nu mber$
C. $\frac{Av. \nu mber}{Faraday}$
D. None

Answer: A

Watch Video Solution

333. The number of electrons involved in redox reactions when a faraday

of electricity is passed through an electrolyte in solution is :

A. $12 imes 10^{46}$

B.96500

 ${\rm C.8\times10^{16}}$

D. `6.02xx10^(23)

Answer: D

Watch Video Solution

334. An electrolytec cell contains a solution of $AgNO_3$ and have platinum electrodes. A current is passed untill 1.6g of O_2 has been liberated at anode. The amount of silver peposited at cathode would be :

A. 107.88g

 $\mathsf{B}.\,1.6\mathsf{g}$

C. 0.8g

D. 21.60g

Answer: D

335. The standard oxidation potentials, $E^{\,\circ}$ for the half reactions are :

$$Zn
ightarrow Zn^{2+} + 2e, E^{\circ} = +0.76V$$

 $Ag
ightarrow Ag^+ + e, E^{\circ} = -0.77V$
The standard emf of the cell,
 $Ag^+ + Zn
ightarrow Zn^{2+} + Ag$ is :
A. +1.53
B. -1.53
C. +0.01

 $\mathsf{D.}+0.01$

Answer: A

336. The solution of $CuSO_4$ in which copper rod is immersed is diluted to

10 times, the reduction electrode protential :

A. Increases by 0.30 V

B. Decreases by 0.030V

C. Increases by 0.059V

D. Decreases by 0.059V

Answer: B

Watch Video Solution

337. Deduce from the following E° values of half cells, what combination of two halt would resutlt in a cell with the largenst potential : (i) $A + e \rightarrow A, E^{\circ} = -0.24V$

(ii)
$$B^{-\,+}e
ightarrow B^{2\,-}, E^{\,\circ} = \,+\,1.25V$$

(iii)
$$C^{\,-\,+}2e o C^{3\,-}, E^{\,\circ} = \,-\,1.25V$$

(iv)
$$D+2e
ightarrow D^{2\,-}, E^{\,\circ}=\,+\,0.68V$$

A.(ii) and (iii)

B.(ii) and (iv)

C.(i) and (iii)

D.(i) and (iv)

Answer: A

Watch Video Solution

338. Deduce from the following E° values of half cells, what combination of two halt would resutlt in a cell with the largenst potential : (i) $A
ightarrow A^+ + e, E^\circ = +1.2V$ (ii) $B^{-\,
ightarrow}B+e,\,E^{\,
m \circ}=\,-\,2.1V$ (iii) $C
ightarrow C^{2\,+} + 2e, \, E^{\,\circ} = \, - \, 0.38 V$ (iv) $D^{2-}
ightarrow D^{-+}e,\,E^{\,\circ}=\,-\,0.59V$ A. (i) and (iv)B.(ii) and (iii)C.(iii) and (iv)

D.(i) and (ii)

Answer: D

339. Deduce from the following E° values of half cells , what combination of two half cells would result in a cell with largest potential : (i) $A^{3-}
ightarrow A^{2-} + e^-, E^\circ = 1.5V$ (ii) $B^{2\,+} + e^{-\,
ightarrow} B^+, \, E^{\,\circ} = \, -\, 2.1 V$ (iii) $C^{2\,+}+e^{-\,
ightarrow}C^{\,+},\,E^{\,\circ}=\,+\,0.5V$ (iv) $D
ightarrow D^2 + 2e^-, \, E^{\,\circ} = \, - \, 1.5 V$ A(i) and (iii)B.(i) and (iv)C.(ii) and (iv)D.(iii) and (iv)

Answer: C

340. E° for $F_2 + 2e \rightarrow 2F^-$ is $2.8V, E^{\circ}f$ or $1/2F_2 + e \rightarrow F^-$ is :

 ${\rm A.}\,2.8V$

 ${\rm B.}\,1.4V$

C. - 2.8V

 $\mathrm{D.}-1.4V$

Answer: A

Watch Video Solution

341. For the cell , $Tl |Tl^+(0.001M)| | Cu, E_{cell}at25^\circ Cis0.83V. E_{cell}$ can be increased :

- A. By increasing $\left[C u^{2+} \right]$
- B. By increasing $\left[Ti^+
 ight]$
- C. By decrasing $\left[C u^{2+} \right]$

D. None of the above

Answer: A

342. How much will the reduction potential of a hydrogen electrode change when its solution initially at pH = 0 is neutralised to Ph = 7:

A. Increaase by 0.059V

B. Decrease by 0.059V

C. Increase by 0.41V

D. Decreases by 0.41V

Answer: D

343. The charge for the reduction of 1 mole of $Cr_2O_7^{2-}$ ions to Cr^{3+} is :

A. 96500C

 $\mathrm{B.}\,2\times96500C$

 $\text{C.}~3\times96500C$

D. 6 imes 96500C

Answer: D

Watch Video Solution

344. 10800 C of electricity on passing through the electrolyte solution deposited 2.977g of metal with atomic mass $106.4 gmol^{-1}$ the charge on the metal cation is :

- $\mathsf{A.}+4$
- $\mathsf{B.}+3$

C.+2

 $\mathsf{D.}+1$

Answer: A

Watch Video Solution

345. I coulomb of charge passes through solution of $AgNO_3$ and $CuSO_4$ connected in series and the concentration of two solution being in the ratio 1:2. The ratio of amount of Ag and Cu deposited on Pt. electrode is

A. 107.9:63.54

B. 54: 31.77

:

C. 107.9: 31.77

D. 54:63.54

Answer: C

346. During electrolysis of H_2O , the molar ratio of H_2 and O_2 formed is:

A. 2:1

 $\mathsf{B.1:2}$

C. 1:3

D.1:1

Answer: A

Watch Video Solution

347. On passing 3 faraday of electricity through the three electrolytic cells connected in series containing Ag^+ , Ca^{2+} and AI^{3+} ions respectively. The molar ratio in which the three metal ions are liberated at the electrodes is :

A. 1:2:3

B. 3:2:1

C. 6: 3: 2

D. 3: 4: 2

Answer: C

Watch Video Solution

348. The weight of silver (eq. wt, = 108) displaced by that quanitiy of current which displaced 5600 mL of oxygen at STP is:

A. 54g

 $\mathsf{B.}\,108g$

 $\mathsf{C.}\,5.4g$

D. None of these

Answer: A

349. The volume of oxygen at NTP Liberated by 5 ampere current flowing

for 193 second though acidulated water is :

A. 56

B. 112

C. 224

 $\mathsf{D}.\,5.6$

Answer: A

350. Salts of A (atomic weight 7), B (atomic weight 27) and C (atomic weight 48) were electrolysed under identical condition using the same quantity of electricity. It was found that when 2.1 g of A was deposited, the eight of B and C deposited were 2.7 and 7.2 g. The valencies of A,B and C are respectively :

 $\mathsf{A.}\,3,\,1$ and 2

B.1, 3 and 2

C.3,1 and 3

D.2, 3 and 2

Answer: B

Watch Video Solution

351. To produce 160 g of oxygen, the number of mole of water required to

be electrolysed is :

A. 2.5

B. 5

C. 10

D. 20

Answer: C

352. The weight of nickel (at. wt. = 58.7) liberated by a current of 5 ampere flowing for 193 second through $NiSO_4$ solution is :

A. 0.587g

 $\mathsf{B.}\,5.87g$

 $\mathsf{C.}\,0.2935g$

D. 2.935g

Answer: C

Watch Video Solution

353. Electrolytes when dissolved in water dissociate into ions, because :

A. They are unstable

B. The water dissolves them

C. The forces of repulsion increases

D. The forces of electrostatic attraction are broken down by water

Answer: C

Watch Video Solution

354. The metal that cannot be produced on reduction of is oxide by aluminium is :

A. K

B. Mn

C. Cr

D. Fe

Answer: A

355. The best conductor of electricity is 1 M solution of :

A. CH_3COOH

 $\mathsf{B.}\,H_2SO_4$

 $\mathsf{C}. H_3 PO_4$

D. Boric acid

Answer: B

Watch Video Solution

356. If mercury is used as cathode in the electrolysis of aqueous $\it NaCl$

solution, the ions dischaged at cathode are:

A. $H^{\,+}$

 $\mathsf{B.}\,Na^{\,+}$

 $\mathsf{C}.\,OH^{\,-}$

D. CI^{-}

Answer: B

357. When sodium chloride solution is electrolysed, the gas that is liberated at the cathode is

A. Oxygen

B. Hydrogne

C. Chlorine

D. Air

Answer: B

358. When electric current is passed through a cell having an electrolyte,

the positive ions move towards the cathode and the negative ions

towards the anode, if the cathode is pulled out of the solution:

- A. The postive and the negative ions both will move towards the anode
- B. The positive ions will start moving towards the anode, the negative

ions will stop moving

C. The negative ions will conuinue to move towards the anode, the

positive ions will stop moving

D. The positive ions and the negative ions will start moving randonly

Answer: D

Watch Video Solution

359. When a copper wire is immersed in a solution of $AgNO_3$ the colour of the, solution becomes blue because copper:

A. Forms a soluble complex with $AgNO_3$

B. Is oxidized to Cu^{2+}

C. Is reduced to Cu^{2-}

D. Splits up into atomic form and dessolves

Answer: B

Watch Video Solution

360. When an electric current is passed through an aqueous solution of sodium chloride :

- A. H_2 is evolved at the anode
- B. Oxygen is evolved at the cathode
- C. Its pH progressively decreases
- D. Its pH progressively inreases

Answer: D

361. Four colourless salt solutions are placed in separate test tubes and a strip of copper is placed in each. Which solution finally turns blue:

A. $Pb(NO_3)_2$ B. $Zn(NO_3)_2$ C. $AgNO_3$

D. $Cd(NO_3)_2$

Answer: C

Watch Video Solution

362. If a strip of copper metal is placed in a solution of ferrous sulphate:

A. Copper will precipitate out

B. Iron will precipitate out

C. Both copper and iron will be dissolved

D. No reaction will take place

Answer: D

363. The electric charge for electrode deposition of the gram equivalent

of a substance is

A. 1 ampere per second

B. 96,500 coulomb per second

C.1 ampere for 1 hour

D. Charge on 1 mole of electrons

Answer: D

364. Which metal can deposit copper from copper sulphate solution:

A. Mercury

B. Iron

C. Gold

D. Paltinum

Answer: B

Watch Video Solution

365. A student made the following observations in the laboratroy:

- (i) clean copper metla didn not react with 1 molar $Pb(NO_3)_2$ solution
- (ii) Clean lead metal dissolved in a 1 molar $AgNO_3$ solution and crystals of
- Ag metal appeared
- (iii)Clean silver metal did not react with 1 molar $Cu(NO_3)_2$ soution

The order of decreasing reducing character of th three metals is :

A. Cu, Pb, Ag

B. Cu, Ag, Pb

C. Pb, Cu, Ag

D. Pb, Ag, Cu

Answer: C

366. Two platinum electrodes were immersed in a solution of cupric and electric current passed through the solution. After some tiem it was found that the colour of copper sulphate disappeared with evolution of gas at the electrode. The colurless solution corttains :

A. Platinum sulphate

B. Copper hydroxide

C. Copper sulphate

D. Sulphuric acid

Answer: D

367. Faraday's law of electrolysis are related to

A. Atomic number of the cation

B. Atomic number of the anion

C. Equivalent weight of the electroyte

D. Speed of the cation

Answer: C

Watch Video Solution

368. Electrolysis of aqueous HCI solution produces

A. H_2 gas at the anode

B. H_2 gas at the cathode

C. Cl_2 gas at the cathode

D. Cl_2 and O_2 gases both at the anode

Answer: B

Watch Video Solution

369. A solution of sodium sulphate in water is electrolysed using inert electrodes. The products at the cathode and anode are respectively:

A. H_2, O_2

 $\mathsf{B.}\,O_2H_2$

 $\mathsf{C}.O_2,Na$

 $D.O_2, SO_2$

Answer: A

370. Identification of anode and cathode in an electrochemical cell is made by the use of :

A. Galvanometer

B. Salt bridge

C. Voltmeter

D. None

Answer: A

Watch Video Solution

371. During electrolysis of a NaCI a part of the reaction is $Na^+ + e^{ightarrow}Na$

This cannot be termed as :

A. Oxidation

B. Reduction

C. Deposition

D. Cathode reaction

Answer: A

Watch Video Solution

372. The cathodic reaction in electrolysis of dilute sulphuric acid with platinum electrode is :

A. Oxidation

B. Reduction

C. Both oxidation and reduction

D. Neutralization

Answer: B

373. 2.5 Faraday of electricity are passed through a solution of a solution of $CuSO_4$. The Number of gram equivalents of copper deposited on the cathode are :

A. 1

B. 2

C. 2.5

D. 1.25

Answer: C

Watch Video Solution

374. The standard cell potential for the cell is $Zn|Zn^{2+}(1M)||Cu^{2+}(1M)|Cu|$ $[E^{\circ}f \text{ or } Zn^{2+}/Zn = -0.76V, E^{\circ}f \text{ or } Cu^{2+}/Cu = +0.34V]$

,

A. -0.76 + 0.34 = -0.42V

$$\mathsf{B}.-0.34-(\,-0.76)=\,+\,0.42V$$

$$\mathsf{C.0.34} - (-0.76) = +1.10V$$

$$\mathsf{D.}-0.76-(\,+\,.34)=\,-\,1.10V$$

Answer: C

375. Silver is removed electrolytically from 200mLofa0.1Nsolution of AgNO_3`by a current of 0.1 ampere. Hoe long will it take to remove half of the silver from the solution:

A. 10 sec

B. 16 sec

C. 100 sec

D. 9650 sec

Answer: D

376. The atomic weight of Al is 27. When a current of 5 Faraday is passed through a solution of Al^{3+} ions, the wt. of Al depostited is :

A. 27g

- B. 36 g
- C. 45 g

D. 9 g

Answer: C

377. Maximum number of mole of oxygen gas that can be obtained by the

electrolytic decomposition of 90 g of water will be

/

B. 2.5

C. 5

D. 9

Answer: B

Watch Video Solution

378. For the reaction at 298K,

 $Ag^{+}(aq) + e^{-e}Ag(s), E^{\circ} = +0.80V$

 $Sn^{2\,+}(aq)+2e^{\,-\,=}Sn(s), E^{\,\circ}=\,-\,0.14V$

what is the emf of the cell represented as $Sn|Sn^{2+}| | Ag^+|Ag$, if each ion having unit concentration:

A. 0.66V

B. 0.80V

C. 0.94V

D. 1.08V

Answer: C

Watch Video Solution

379. What is the potential of the cell containing two hydrogen electrodes as represented below?

$$PT, \, rac{1}{2}H_2(g)ig|H^+ig(10^{-8}Mig)ig|H^+ig(0.001M)ig|rac{1}{2}H_2(g)$$
Pt:

 $\mathsf{A.}-0.295V$

 $\mathrm{B.}-0.0591V$

 ${\rm C.}\,0.295V$

 $\mathrm{D.}\, 0.0591 V$

Answer: C
380. When an electric current is passed through acidified water, 112ml of H_2 gas collected at NTP at cathode in 965sec. the current strength is

A. 1.0

 $\mathsf{B}.\,0.5$

 $\mathsf{C}.0.1$

D.2.0

Answer: A

Watch Video Solution

381. Chromium plating can involve the electrolysis of an electrolyte of an acidified mixuture of chromic acid and chromium sulphate . If during electrolysis the article being plated increases in mass by 2.6 g and 0.6 dm3 of oxygen are evolved at an inert anode, the oxidation state of chromium ions being discharged must be:

(assuming `Cr=52) and I mole of gas at room temperature and pressure occupies a volume of 24 dm^3)

 $\mathsf{A.}-1$

B. Zero

C. +1

D.+2

Answer: D

382. A current of I ampere was passed for t second through three cell P,Q and R connected in series. These contains respectively silver nitrate. mercuric nitrate and mercurous nitrate. At the cathode of the cell P, 0.216 g of Ag was deposited. The weights of mercury deposited in the cathode of Q and R respectively are :

A. 0.4012 and 0.8024g

B. 0.4012 and 0.2006g

C. 0.2006 and 0.4012g

D.0.1003 and 0.2006g

Answer: C

383. An electric current of c ampere was passed through a solution of an electrolyte for t second depositing P g of the metal M on the cathode. The equivalent weight E of the metal will be :

A.
$$E = rac{c imes t}{P imes 96500}$$

B. $E = rac{c imes P}{t imes 96500}$
C. $E = rac{96500 imes P}{c imes t}$
D. $E = rac{c imes t imes 96500}{P}$

Answer: C

384. The electrochemical equivalent of silver is 0.0011180g . When an electric current of 0.5 ampere is passed through an aqueous silver nitrate solution for 200 sec, the amount of silver deposited is :

A. 1.1180g

 $B.\,0.11180g$

 $\mathsf{C}.\,5.590g$

 $\mathsf{D}.\,0.5590g$

Answer: B

385. Two electrolytic cells, one containing acidified ferrous chloride and another acidified ferric chloride are connected in series. The ratio of iron deposited at cathodes in the two cells when electricity is passed through the cell will be:

A. 3:1

B.2:1

C. 1 : 1

D. 3:2

Answer: D

Watch Video Solution

386. 1.8 g of metal were deposited by a current of 3 ampere for 50 minute.

The equivlent wt. of metal is :

A.20.5

 $\mathsf{B}.\,25.8$

C. 19.3

 $\mathsf{D}.\,30.7$

Answer: C

387. A current of 9.65 ampere folwing for 10 minute depostits 3.0 g of a metal. The equivalent weight of the metal is :

A. 10

B. 30

C. 50

D.96.5

Answer: C

Watch Video Solution

388. Consider the reaction,

 $M^{n+}(aq) + \neq \rightarrow M^{\circ}(s)$ Thes $\tan dard reduction potential value of them$ M_1,M_2 and M_3*are*-0.34 V,-3.05 V and -1.66V respectively. The order of their reducing power will be : A. $M_1 > M_2 > M_3$

- B. $M_3 > M_2 > M_1$
- C. $M_1 > M_3 > M_2$
- D. $M_2 > M_3 > M_1$

Answer: D

View Text Solution

389. The electrode potential of normal hydrogen electrode is

A. 0.177V

 $\mathrm{B.}-0.177V$

 $\mathsf{C.}\,0.087V$

 $\mathsf{D}.\,0.059V$

Answer: B

390. The same amount of electricity was passed through two separate electrolyic cells containing solutions of nickel nitrate and chromium nitrate respectively. If 0.3 g of nickel was deposited in the first cell, the amount of chormium deposited is :

(at. wt. Ni=59, Cr=52)

A. 0.1g

 $B.\,0.17g$

C. 0.3g

D. 0.6g

Answer: B

391. The standard emf for the cell reaction, $Zn + Cu^{2+} = Cu + Zn^{2+}$ is

1.10 volt at $25\,^\circ C.$ The emf for the cell reaction, when

 $0.1 M C u^{2+} ~~{
m and}~~ 0.1 M Z n^{2+}$ solutions are used , at $25^{\,\circ}C$ is:

 ${\rm A.}\,1.10V$

 $\mathsf{B}.\,1.110V$

 $\mathsf{C}.-1.10V$

 $\mathrm{D.}-0.110V$

Answer: A

Watch Video Solution

392. Given electrode potentials are:

 $Fe^{3\,+} + e
ightarrow Fe^{2\,+}, E^{\,\circ} = 0.771 V$

 $I_2 + 2e o 2I^{\,-}, E^{\,\circ} \,= 0.536 V$

 $E^{\,\circ}\,$ cell for the cell reaction,

 $2Fe^{3\,+}+2I^{\,-\,
ightarrow}2Fe(2\,+\,)+I_2$ is:

A. (2 imes 0.7710.536) = 1.006V

B. $(0.771 - 0.5 \times 0.536) = 0.503V$

C.0.771 - 0.536 = 0.235V

 $\mathsf{D}.\,0.536 - 0.771 = \ - \ 0.236 V$

Answer: A

Watch Video Solution

393. The equation, E^@ =(RT)/(nF)In K_c` is called :

A. Gibb.s equatin

B. Gibb.s-Helmholtz equation

C. Nernest equation

D. van der Waals. equation

Answer: C

394. On the basis of position in the electrochemial series, the metal does not displace hydrogen from water and acids is :

A. Hg

B. Al

C. Pb

D. Ba

Answer: A

Watch Video Solution

395. During the charging of lead storage battery, the reaction at anode is represented by:

A.
$$Pb^{2+} + SO_4^{2-} o PbSO_4$$

B. $PbSO_4 + 2H_2O o PbO_2 + SO_4^{2-} + 4H^+ + 2e$
C. $Pb o Pb^{2+} + 2e$

D.
$$Pb^{2\,+} + 2e o Pb$$

Answer: B

396. If a salt bridge is removed from the two half cell, the voltage:

A. Drops to zero

B. Does not change

C. Increases gradually

D. Increases rapidly

Answer: A

397. The calomel electrode is a:

A. Standard hydrogen electrode

- B. Reference electrode
- C. Platinum electrode
- D. Mercury electrode.

Answer: B

Watch Video Solution

398. A gas X at 1 atm is bubbled through a solution containg a mixture of 1 M Y^- and 1M Z^- at $25^{\circ}C$. If the reduction potential of Z > Y > X, then :

A. Y will oxidise X and not Z

B. Y will oxidise Z and not X

C. Y will oxidise both X and Z

D. Y will reduce both X and Z

Answer: A

- B. Cu^{2+}
- C. Zn^{2+}
- D. Ag^+

Answer: C

400. If 1 faraday of electricity is passed through a solution of $CuSO_4$ the amount of copper deposited will be equal to its :

- A. Gram equivalent weight
- B. Gram molecular weight
- C. Atomic weight
- D. Electrochemical equivalent

Answer: A

Watch Video Solution

401. I faraday of electricity will liberate 1 g atom of the metal from the solution of :

A. NaCI

 $\mathsf{B.}\,BaCI_2$

 $C.CuSO_4$

D. $AICI_3$

Answer: A

A. In solid there are no ions

B. Solid NaCI is covalent

C. In solid NaCI, there is no velocity of ions

D. None

Answer: C

Watch Video Solution

403. A fuel cell is :

A. The voltic cells in which continuous supply of fuels are send at

anode to give oxidation

B. The voltaic cell in which fuels such as, CH_4 , H_2 , CO are used up at

anode

C. It involves the reaction of $H_2 - O_2$ fuel cell such as :

Anode : $2H_2 + 4OH^{ightarrow} 4H_2O(l) + 4e$

Cathode: $O_2 + 2H_2O(l) + 4e \rightarrow 4OH^-$

D. All

Answer: D

Watch Video Solution

404. The standard reduction potential values of three metallic cations X, Y and Z are 0.52, -3.03 and -1.18V respectively. The order of reducing power of the corresponding metals is :

A. Y>Z>X

 $\operatorname{B}.X>Y>Z$

 $\mathsf{C}.\, Z>Y>X$

 $\mathsf{D}.\, Z > X > Y$

Answer: A

405. Which represents a concentration cell:

A. $PtH_2|HCI||HCI|PtH_2$

B. (b) $PtH_2|HCl||Cl_2Pt$

C. (c)
$$Zn | Zn^{2+} || Cu^{2+} | Cu^{2+} || Cu^{2+} |$$

D.
$$Feig|Fe^{2+}ig|Cu^{2+}ig|Cu$$

Answer: A

Watch Video Solution

406. Aqueous solution of HCI conducts electricity because :

A. It undergoes ionisation

B. It associates

C. Forms hydrogen bonds

D. None

Answer: A

Watch Video Solution

407. When an electrolyte solution conducts electricity, current is carried

out by:

A. Electrons

B. Cations and anions

C. Neutral atoms

D. None

Answer: B

408. The reaction taking place at anode when an aqueous solution of $CuSO_4$ is electrolysed using inert Pt electrode:

A.
$$2SO_4^{2-}
ightarrow S_2O_3^{2-} + 2e$$

 ${\sf B}.\,{Cu}^{2\,+}\,+\,2e\,\rightarrow\,Cu$

C.
$$2H_2O
ightarrow O_2 + 4H^+ + 4e$$

D.
$$2H^+ + 2e
ightarrow H_2$$

Answer: C

Watch Video Solution

409. In the electrolysis of which solution, OH^- ions are discharged in

preference to CI^{-} ions:`

A. Dilute NaCl

B. Very dilute NaCI

C. Fused NaCl

D. Solid NaCl

Answer: B

Watch Video Solution

410. Which reaction occurs at cathode during electrolysis of fused lead bromide :

A.
$$Pb
ightarrow Pb^{2\,+} + 2e$$

- B. $Br+e
 ightarrow Br^-$
- C. $Br^{-}
 ightarrow Br + e$
- D. $Pb^{2+} + 2e
 ightarrow Pb$

Answer: D

411. The process in which chemical change accompanies the passage of current is called :

A. Conduction

B. Metallic conduction

C. Electrolytic conduction

D. Non- electrolytic condution

Answer: C

Watch Video Solution

412. Which is correct about fuel cells :

A. Cells continuously run as long as fuels are supplied

B. These are more efficient and free from pollution

C. These are used to provide power and drinking water to astronauts

in space programme

D. All

Answer: D

Watch Video Solution

413. Calculate the volume of hydrogen at NTP obtained by passing a

current of 0.4 ampere through acidified water for 30 minute:

A. 0.0836 litre

B. 0.1672 litre

 $\mathsf{C.}\,0.0432\,\mathsf{litre}$

D. 0.836 litre

Answer: A

414. During electrolysis of us

A. Anide

 $Na^+ + e
ightarrow Na$ Cathode

$$CI^{\,-
ightarrow}rac{1}{2}CI+e$$

$$Na
ightarrow Na^+ + e$$
 Cathode

$$rac{1}{2}CI_2 + e
ightarrow CI^{\,-}$$

C. Anide

$$CI^{\,-
ightarrow}rac{1}{2}CI_2+eNa^+e$$
 Cathode

$$Na^+e
ightarrow Na$$

D. Anide

$$rac{1}{2}CI_2+e
ightarrow CI$$
 Cathode $Na
ightarrow Na^++e$

415. At $25^{\circ}C$, the standard emf of cell having reactions involving two electron change is found to be 0.295V. The equilibrium constant of the reaction is :

A. $29.5 imes10^{-2}$

B. 10

 $C. 10^{10}$

D. $29.5 imes10^{10}$

Answer: C

Watch Video Solution

416. The standard reduction potentials of Cu^{2+} /Cu and Cu^{2+} /Cu⁺ are 0.337 and 0.153 V respectively. The standard electrode potential of Cu^+ / Cu half cell is : A. 0.184V

 $\mathsf{B}.\,0.827V$

 ${\rm C.}\,0.521V$

 $\mathsf{D}.\,0.490V$

Answer: C

Watch Video Solution

417. The emf of the cell,

 $Zn|Zn^{2+}(1M)||Cu^{2+}|Cu(1M)$ is 1.1 volt, if the standard reduction potential of $Zn^{2+}|Zn$ is -0.78volt,what is the oxidation potential of $Cu | Cu^{2+}$?

 $\mathsf{A.}+1.86V$

 ${\rm B.}\,0.32V$

 ${\rm C.}-0.32V$

 $\mathrm{D.}-1.86V$

Answer: C

418. For I_2 +2e $\rightarrow 2I^-$, standard reduction potential = +0.54 volt. For $Br^- \rightarrow Br_2 + 2e^-$, standard oxidation potential = -1.09 volt. For $Fe \rightarrow Fe^{2+} + 2e^-$, standard oxidation potential = +0.44 volt. Which of the following reactions is non-spontaneous :

A.
$$Br_2+2I^-
ightarrow 2Br^-+I_2$$

B. $Fe+Br_2
ightarrow Fe^{2+}+2Br^-$
C. $Fe+I_2
ightarrow Fe^{2+}+2I^-$
D. $I_2+2Br^-
ightarrow 2I^-+Br_2$

Answer: D

419. For the cell prepared from electrode A and B: Electrode $A: Cr_2O_7^{2-} | Cr^{3+}, E_{red}^{\circ} = +1.33V$ and Electrode $B: Fe^{3+}/Fe^{2+}, E_{red}^{\circ} = 0.77V$. Which of the following statements are correct :

A. The electrons will flow from B to A when connection are made

B. The emf of the cell will be 0.56V

C. A will be positive electrode.

Watch Video Solution

D. All of these

Answer: D

A. $E^{\,\circ}_{C^IC_2}>E^{\,\circ}_{B^{\,-\,I}B_2}>E^{\,\circ}_{A^{\,-\,I}A_2}>E^{\,\circ}_{D^{\,-\,I}D_2}$

$$\begin{split} & \mathsf{B}. \ E_{C^{I}C_{2}}^{\,\circ} < E_{B^{-I}B_{2}}^{\,\circ} < E_{A^{-I}A_{2}}^{\,\circ} < E_{D^{-I}D_{2}}^{\,\circ} \\ & \mathsf{C}. \ E_{C^{I}C_{2}}^{\,\circ} < E_{B^{-I}B_{2}}^{\,\circ} > E_{A^{-I}A_{2}}^{\,\circ} > E_{D^{-I}D_{2}}^{\,\circ} \\ & \mathsf{D}. \ E_{C^{I}C_{2}}^{\,\circ} > E_{B^{-I}B_{2}}^{\,\circ} < E_{A^{-I}A_{2}}^{\,\circ} < E_{D^{-I}D_{2}}^{\,\circ} \end{split}$$

Answer: B

Watch Video Solution

421. Given that $E_{Fe^3+|Fe}$ and $E_{Fe^2|Fe}^\circ$ are -0.36V and -0.439V, respectively. The value of $E_{Fe^{3+}fe^{2+}}^\circ$ would be:

A.
$$(-36 - 0.439)V$$

- B. [3(-0.36)+2(-0.439)]V
- ${\sf C.}\,(\,-0.36+0.439)V$

D.
$$[3(\,-\,0.36)-2(\,-\,0.439)]V$$

Answer: D

422. The standard oxidation potentials of the electrodes $Ag|Ag^+, Sn|Sn^{2+}, Ca|Ca^{2+}, Pb|Pb^{2+}$ are -0.8, 0.136, 2.866 and 0.126V respectively. The most powerful oxidising agent among these metal ions is :

A. $Pb^{2\,+}$

B. Ca^{2+}

C. Sn^{2+}

D. Ag^+

Answer: D

423. A current is passed through two valtameters connected in series. The first voltameter contains $XSO_4(aq)$ while the second voltameter contains

 $Y_2SO_4(aq)$. The relative masses of X and Y are in the ratio of 2:1. The ratio of the mass of X liberated to the mass of Y liberated is :

A.1:1

B. 1:2

C.2:1

D. None of these

Answer: A

Watch Video Solution

424. The time required to coat a metal surface of $80cm^2$ with 5×10^{-3} cm thick layer of silver (density $10.5gcm^{-3}$ with th passage of 3A current through a silver nitrate solution is :

A. 115 sec

B. 125 sec

C. 135 sec

D. 145 sec

Answer: B

Watch Video Solution

425. A hydrogen electrode placed in a buffer solution of CH_3COONa and acetic acid in the ratio.sx : y and y : x has electrode potential values E_1 volt and E_2 volt respetively at $25^{\circ}C$ the pKa values of acetic acid is (E 1 and 2 are oxidation potential):

A.
$$\left(E_{1}+E_{2}
ight) /\left(0.118
ight)$$

B.
$$\frac{E_2 + E_1}{0.118} 0$$

$$\mathsf{C.} - \left(E_1 + E_2
ight) / \left(0.118
ight)$$

D.
$$\left(E_{1}+E_{2}
ight) /\left(0.118
ight) 0$$

Answer: A

426. The amount of energy expanded during the passage of one ampere current for 100 second under a potential of 115 V is:

A. 20kJ

 $\mathsf{B}.\,11.5kJ$

 $\mathsf{C}.\,115kJ$

 $\mathsf{D}.\,0.115kJ$

Answer: B

Watch Video Solution

427. The cell reaction for the given cell is : $Pt(H_2)|pH = 2||pH = 3|Pt(H_2)$ $Pt(H_2)|pH = 2||pH = 3|Pt(H_2)$ $P_1 = 1 \text{ atm}$ $P_2 = 1 \text{ atm}$

A. Spontaneous

B. Non-spontaneous

C. In equilibrium

D. Either of these

Answer: B

Watch Video Solution

428. The cell reaction for the given cell is spontaneous if : $Pt(H_2)|H^{-}(1M)||H^{+}(1M)|Pt(H_2)$

$Pt(H_2)|H^+(1M)|H^+(1M)|Pt(H_2)|$

P₁ • P₂

A. $P_1 > P_2$

B. $P_1 < P_2$

C. $P_1 = P_2$

 $\mathsf{D}.\,P_1=1atm$

Answer: A

429. The cell reaction for the given cell is spontaneous if : $Pt|Cl_2|CI^-(1M)||CI^-(1M)|Cl_2|Pt$ **PtCl_2|CI^-(1M)||CI^-(1M)|PtCl_2 P_1 P_2**

- A. $P_1 > P_2$
- $\mathsf{B.}\,P_1 < P_2$
- C. $P_1 = P_2$
- D. $P_2=1$ atm

Answer: B

430. Passage of three faraday of charge through aqueous solution of $AgNO_3$, $CuSO_4$, $Al(NO_3)_3$ and NaCl will deposit metals at the cathode in the molar ratio of :

A. 1: 2: 3: 1 B. 6: 3: 2: 6 C. 6: 3: 0: 0

D. 3: 2: 1: 0

Answer: C

Watch Video Solution

431. The approximate emf of a dry cell is :

A. 2.0V

 ${\rm B.}\,1.2V$

C. 6V
$D.\,1.5V$

Answer: D

432. Which gains electrons more easily :

A. Hydrogen

 $\mathsf{B}.\,Na$

 $\mathsf{C}.\,K$

 $\mathsf{D}.\,Mg$

Answer: A

433. Which will increase the voltage of the cell

$$Sn(s)+2Ag^+(aq)
ightarrow Sn^{2+}(aq)+2Ag(s)$$
:

A. Increase in size of the silver rod

B. Increase in the concentration of ${Sn}^{2+}$ ions

C. Increase in the concentration of Ag^+ ions

D. None

Answer: C

Watch Video Solution

434. During electrolysis of fused CaH_2 , H_2 is liberated at :

A. Anode

B. Cathode

C. Either electrode

D. Not at all

Answer: A

435. Which defines the standard reduction electrode potential of Zn^{2+} ions :

A.
$$Zn^{2+}(aq) + 2e \rightarrow Zn(s), [Zn^{2+}] = 1M$$

B. $Zn(g) \rightarrow Zn^{2+} + 2e, [Zn^{2+}] = 1M$
C. $Zn6(2+)(aq) \rightarrow Zn(s) + 2e, [Zn^{2+}] = 1M$
D. $Zn^{2+}(g) \rightarrow Zn(s) - 2e, [ZN^{2+}] = 1M$

Answer: A

Watch Video Solution

436. In which cell, electrical energy is converted into chemical energy:

A. Water voltameter

B. Silver voltameter

C. Coulmeter

D. Either of these

Answer: D

Watch Video Solution

437. E° for $Fe^{2+} + 2e
ightarrow Fe$ is -0.44 volt and E° for $Zn^{2+} + 2e
ightarrow Zn$

is -0.76 volt thus:

A. Zn is more electropositive than Fe

B. Fe is more electropositive than Zn

C. Zn is more electronegative

D. None

Answer: A

438. In a galvanic cell, which is wrong :

A. Anode has negative polarity

B. Cathode has positive polarity

C. Reduction takes place at anode

D. Reduction takes place at cathode

Answer: C

Watch Video Solution

439. Using same quantity of current , which among `Na, Mg and AI is deposited more during electrolysis of their molten salt :

A. Na

B. Mg

C. Al

D. All in same amount

Answer: A

Watch Video Solution

440. A metal having negative reduciton potential when dipped in the solution of its ow ions, has a tendency:

A. To pass into the solution

B. To be deposited from the solution

C. To become electrically positive

D. To remain neutral

Answer: A

Watch Video Solution

441. In electrochemical corrosion of metals, the metal undergoing corrosion:

A. Acts as anode

B. Acts as cathode

C. Undergoes reduction

D. None

Answer: A

Watch Video Solution

442. The metal which cannot liberate H_2 from hydrochloric acid is :

A. Zn

B. Cu

C. Mg

D. Al

Answer: B

443. KCl(aq) cannot be used as a salt bridge for the cell $Cu(s)|CuSO_4(aq)||AgNO_3(aq)|Ag(s)$ because :

A. $CuCl_2$ is precipitated

B. Cl_2 gas is given out

C. AgCl is precipitated

D. All

Answer: C

Watch Video Solution

444. The calomel electrode is reversible with respect to:

A. $Hg_2^{2\,+}$

 $\mathsf{B.}\,H^{\,+}$

C. Hg^{2+}

D. $CI^{\,-}$

Answer: A

Watch Video Solution

445. Standard reduction potential of an element is equal to:

A. $+1 \times$ its reduction potential

B. -1XX its standard oxidation potential

 $\mathsf{C}.\,0.00V$

 ${\rm D.}+1 \times ~{\rm its}$ standard oxidation potential

Answer: B

Watch Video Solution

446. Beryllium is placed above magnesium in the II group. Beryllium dust, therefore, therefore, when added to $MqCI_2$ solution will:

A. Have no effect

B. Precipitate Mg metal

C. Precipitate MgO

D. Lead to dissolution of Be metal

Answer: A

Watch Video Solution

447. For the cell $Zn|Zn^{2+}||Cu^{2+}|Cu$ if the concentration of Zn^{2+} and Cu^{2+} ions is doubled, the emf of the cell:

A. Doubles

B. Reduces of half

C. Remains same

D. Becomes zero

Answer: C

Watch Video Solution

448. Copper can be deposited from acidified copper sulphate and alkaline cuprous cyanide. If the same current is passed for a definite time:

A. The amount of copper deposited from acidic copper sulphate will

be higher

B. The amount of copper deposited from alkaline cuprous cyanide will

be higher

C. The same amount of copper will be deposited

D. None

Answer: B

449. A cell necessarily does not contain:

A. An anode

B. A cathode

C. An electolyte or a fuel

D. A porous diaphagm

Answer: D

Watch Video Solution

450. Lithium is generally used as an electrode in high energy density batteries. This is because:

A. Lithium is the lightest element

B. Lithium has quite highnegative reduction potential

C. Lithium is quite reactive

D. Lithium does not corrode easily

Answer: B

Watch Video Solution

451. Cu (II) sulphate solution is treated separately with KCl and KI In which

case, Cu^{2+} be reduced to Cu^+ :

A. With KCI

B. With KI

C. With both (a) and (b)

D. None

Answer: B

Watch Video Solution

452. Which process occurs in the electrolysis of aqueous solution of nickel chloride at nickel anode:

A. $Ni^{2+}+2e
ightarrow Ni$ B. $2H^++2e
ightarrow H_2$ C. $2Cl^ightarrow Cl_2+2e$ D. $Ni
ightarrow Ni^{2+}+2e$

Answer: D

Watch Video Solution

453. In aqueous solution, weak electrolytes dissociates:

A. Completely

B. To a slight extent

C. Almost completely

D. To more the 80~%

Answer: B

454. Which reaction does not takes place at cathode ?

A. $Cl^-
ightarrow Cl + e$ B. $Ag^+ + e
ightarrow Ag$ C. $Cu^{+2} + 2e
ightarrow Cu$ D. $H^+ + e
ightarrow H$

Answer: A

Watch Video Solution

455. The electroplating with chromium is undertaken because :

A. Electrolysis of chromium is easier

- B. Chromium can from alloys with other metals
- C. Chromium gives a protective and decorative coating to the base

metal

D. Of high reactivity of chromium metal

Answer: C

Watch Video Solution

456. For a given cell reaction,

 $Cr+3H_2O+OCI^{ightarrow}Cr^{3\,+}+3CI^{-6}OH^{-}$, the species undergoing

reduction is :

A. Cr

B. Cr^{6+}

 $C. OCI^{-}$

D. $CI^{\,-}$

Answer: C

Watch Video Solution

457. Molten NaOH conducts electricity , because NaOH is :

A. A non-electrolyte

B. A strong electrolyte

C. A weak electrolyte

D. A non-polar compound

Answer: B

Watch Video Solution

458. The standard reduction potentials of the metals A,B and C are 0.68, -2.50 and -0.50V respectively. The order of their reducing

power is :

A. A > B > C

 $\mathsf{B}.\, A > C > B$

 $\mathsf{C}.\,C>B>A$

 $\mathsf{D}.\,B > C > A$

Answer: D

Watch Video Solution

459. If the half cell reaction $A+e
ightarrow A^-\,$ has a large negative reduction

potential, it follows that :

A. A is readily reduced

B. A is readily oxidised

C. A^- is readily reduced

D. A^- is readily oxidised

Answer: D

460. Pure water does not conduct electricity because it is :

A. Neutral liquid

B. Low boiling b. pt. liquid

C. Almost non-ionised

D. None

Answer: C

Watch Video Solution

461. An aqueous solution of an electrolyte:

A. Conducts electricity without any chemical change

B. Conducts electricity with chemical decomposition

C. Is an ensulator

D. All are correct

Answer: B

462. Which process involves corrosion?

A. Brown deposits on iron articles

B. Green deposits on battery terminals

C. Black deposits on silver coin

D. All of these

Answer: D

463. The metal that cannot be obtained by electrolysis of the aqueous of

its salts are:

A. Ag

 $\mathsf{B.}\,Cr$

C. Cu

D. Al

Answer: D

Watch Video Solution

464. Water is a non-electrolyte but conducts electricity on dissolving a small amount of :

A. O_2

B. Sugar

C. Acetone

D. NaCl

Answer: D

465. Rust is a mixture of :

- A. FeO and $Fe(OH)_2$
- B. FeO and $Fe(OH)_3$
- C. Fe_2O_3 and $Fe(OH)_3$
- D. Fe_3O_4 and $Fe(OH)_3$

Answer: C

466. In a salt bridge,KCI is used because:

A. It is an electrolyte

B. It is good conductor of electricity

C. The transport number of K^+ and CI^- ions are nearly same or

both have same ionic mobility

 $\mathsf{D}.\,Cu,\,Hg,\,Ag$

Answer: C

Watch Video Solution

467. A solution containing one mole per litre each of $Cu(NO_3)_2$, $AgNO_3$, $Hg_2(NO_3)_2$ and $Mg(NO_3)_2$ is being electrolysed by using inert electrodes. The values of standard electrode potentials in volt (reduction potentials) are,

$$Ag ig| Ag^+ = 0.80.2 Hg ig| Hg_2^{2+} = 0.79, Cu \mid Cu^{2+} = + 0.34$$
 and $Mg^{2+} = -2.37$

With increasign voltage, the sequence of deposition of metals on the cathode will be :

A. Ag, Hg , Cu,Mg

B. Mg, Cu, Hg, Ag

C. Ag, Hg, Cu

D.

Answer: C

Watch Video Solution

468. In a galvanic cell energy changes occurs as:

A. Chemical energy \rightarrow Electrical energy

B. Electrical energy \rightarrow Electrical energy

C. Chemical energy \rightarrow Internal energy

D. Internal energy $ightarrow \,$ Electric energy

Answer: A

469. AtpH=2, $E_{
m Quinhydrone}^{\,\circ}=1.30V,$ $E_{
m Quinhydrone}$ will be:

A. 1.36V

B. 1.30V

C. 1.42V

D. 1.20V

Answer: C

Watch Video Solution

470. The passage of electricity in the Daniell cell when Zn and Cu electrodes are connected :

A. From Cu toZn inside the cell

B. From Cu to Zn outside the cell

C. From Zn to Cu outside the cell

D. None

Answer: B

Watch Video Solution

471. A correct electrochemical series can be obtained from K,Ca,Na,Al,Mg,Zn,Fe,Pb,H,Cu,Hg,Ag,Au by interchanging:

A. Al and Mg

B. Zn and Fe

C. Zn and Pb

D. Pb and H

Answer: A

472. Indicator electrode is :

A. SHE

B. Calomel electrode

C. Ag/Ag CI electrode

D. Quinhydrone electrode

Answer: D

473. When iron or zinc is added to $CuSO_4$ solution, copper is precipitated. It is due to,

A. Standard reduction potential of zinc is more than copper

B. Standard reduction potential of zinc is less than copper

C. Atomic number of zinc is largest than copper

D. Atomic number of zinc is lower than copper

Answer: B

Watch Video Solution

474. The standard oxidation potentials of Zn and Ag in water at $25\,^\circ C$

are.

$$Zn(s)
ightarrow Zn^{2\,+} = 2e, E^{\,\circ} = 0.76V$$

 $Ag(s) o Ag^+ + e, E^\circ = -0.80V$

Which reaction actually takes place:

A.
$$Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{2+} + 2Ag(s)$$

B. $Zn^{2+} + 2A^{+}(s) \rightarrow 2Ag^{+}(aq) + Zn(s)$
C. $Zn(s) + 2Ag(s) \rightarrow Zn^{2+}(aq) + Ag^{+}(aq)$
D. $Zn^{2+}(aq) + Ag^{+}(aq) \rightarrow Zn(s) + Ag(s)$

Answer: A

View Text Solution

475. The standard reduction potentials of the elemtnts A, B.Care +2.37V,-1.85V and 1.36V respectively. The order of the their reducing power is :

A. B > C > AB. A > B > CC. C > B > A

D.B > A > C

Answer: A

476. Is the reaction, $2Al + 3Fe^{2+}
ightarrow 2Al^{3+} + 3Fe$ possible?

A. No , because standard oxidation potential of AI < Fe

B. Yes, because standard oxidation potential of AI>Fe

C. Nither (a) nor(b)

D. Data are unpredictable

Answer: B

Watch Video Solution

477. Whether tin can displace lead from aqueous lead bromide solution:

B. Yes , because standard redution potential of Sn < Pb

C. Yes, because standard reduction potential of Sn>Pb

D. None

Answer: B

Watch Video Solution

478. Faraday is equal to :

A. 96.5 coulombequivalent $^{-1}$

B. $96.5 imes 10^3$ coulomb equivalent $^{-1}$

C. $96.5 imes 10^{10}$ coulomb equivalent $^{-1}$

D. $96.5 imes 10^{23}$ coulomb mol^{-1}

Answer: B

Watch Video Solution

479. The most electropositive element is :

- A. Postive reduction potential
- B. Tendency to gain electrons
- C. Negative reduction potential
- D. Negative oxidation potential

Answer: C

Watch Video Solution

480. Based on the data given below , the correct order of reducing power

is :

$$Fe^{3+}(aq)+e
ightarrow Fe^{2+}(aq), E^{\circ}= \ + \ 0.77V$$
 $AI^{3+}(aq)+3e
ightarrow AI(s), E^{\circ}= \ - \ 1.66V$

 $Br_2(aq)+2e
ightarrow 2Br^{\,-\,(\,aq\,)}\,, E^{\,\circ}$ =+1.08V`

A.
$$Br^{\,-\,<}Fe^{2\,+}\,< AI$$

B.
$$Fe^{2\,+} < AI < Br^{\,-}$$

C.
$$Al < Br^{-\,<}Fe^{2\,+}$$

D.
$$AI < Fe^{2+} < Br^{-}$$

Answer: A

Watch Video Solution

481. Galvanised iron sheets have coating of :

A. Cu

B. Sn

C. Zn

D. Carbon

Answer: C

Watch Video Solution

482. The electrochemical that is easiest to be reduced is :

A. Fe

B. Cu

C. Ag

D. Sn

Answer: C

Watch Video Solution

483. An electrochemical cell consists of :

A. Cadmium cell

B. Lead accumulator

C. Two half cells

D. None

Answer: C

484. The correct order of chemical reactivity with water according to electrochemical series is :

- A. K > Mg > Zn > Cu
- $\mathsf{B.}\, Mg > Zn > Cu > K$
- $\mathsf{C}.\,K>Zn>Mg>Cu$
- D. Cu > Zn > Mg > fK

Answer: A

485. Which graph correctly correlates E_{cell} as a function of concentrations for the cell (for deifferent values of M and M):

Answer: B
486. Faraday.s laws hold good at:

A. All pressures

B. Only at 298 K

C. In different solvents

D. All of these

Answer: A

Watch Video Solution

487. What is the function of a salt bridge?

A. To allow ions to go from one cell to another

B. To provide link between two half cells

C. To keep the emf of the cell positive

D. To maintain electrical neutrality of the solution in two half cells

Answer: D

Answer: B

489. A dilute aqueous solution of Li_2SO_4 is electrolysed . The products

formed at the anode and cathode, respectively are:

A. S and Li

B. O_2 and Li

C. SO_2 and O_2

D. O_2 and H_2

Answer: D

490. Blocks of magnesium metal are often strapped to the steel hulls of

ocean going ships in order to :

A. Provide cathodic protection

B. Protect oxidation of steel

C. Both (a) and (b) correct

D. Neither (a) nor (b) is correct

Answer: C

491. Which statement is true about spontaneous cell reaction in galvanic cell:

$$egin{aligned} & ext{A.} \ E_{cell}^{\,\circ} &> 0, \Delta G^{\,\circ} \,< 0, Q < K_c \ & ext{B.} \ E_{cell}^{\,\circ} &> 0, \Delta G^{\,\circ} \,> 0, Q < K_c \ & ext{C.} \ E_{cell}^{\,\circ} &> 0, \Delta G^{\,\circ} \,> 0, Q > K_c \ & ext{D.} \ E_{cell}^{\,\circ} &> 0, \Delta G^{\,\circ} \,> 0, Q < K_c \end{aligned}$$

Answer: A

Watch Video Solution

492. It is impossible to measure the actual voltage of any half cell by itselft because :

A. Both half cell reactions takes place simultaneously

B. Of resistance of wire

C. A reaction does not take place on its own

D. None

Answer: A

Watch Video Solution

493. Which metal will dissolve if the cell works $Cuig|Cu^{2\,+}ig|\mid Ag^{\,+}ig|Ag$:

A. Cu

B. Ag

C. Both (a) and (b)

D. None

Answer: A

494. In which cell, electrical energy is converted into chemical energy:

A. Oxidation of fuel

B. Heat energy

C. Chemical reaction

D. Transfer of a substance from one concentration to other

Answer: D

Watch Video Solution

495. The Zn acts as sacrificial or cathodic porection to prevent rusting of

iron because :

- A. $E_{OP}^{\,\circ}of_{Zn} < E_{OP}^{\,\circ}ofFe$
- B. $E_{OP}^{\,\circ}of_{Zn}>E_{OP}^{\,\circ}ofFe$
- C. $E_{OP}^{\,\circ}of_{Zn}=E_{OP}^{\,\circ}ofFe$

D. Zn is cheaper than iron

Answer: B

496. The number of faraday required to liberate 1 mole of any element indicates :

A. Weight element

B. Conductance of electrolyte

C. Charge on the ion of that element

D. None

Answer: C

Watch Video Solution

497. Quantity of electricity is measured in :

A. ampere sec

B. ampere

C. $ampere^{-1}$

D. $ampere^{-1}$ sec

Answer: A

Watch Video Solution

498. Which are used as secondary reference electrodes :

A. Calomel electrode

B. Ag/AgCI electrode

C.
$$Hrac{g}{H}g, CI, \ -KCI$$
electrode

D. All of these

Answer: D

499. The corrosion of iron object is favoured by:

A. Presence of H^+ ion

B. Presence of moisture in air

C. Presence of imputities in iron object

D. All of these

Answer: D

Watch Video Solution

500. For a redox reaction to proceed spontaneously in a given direction,

the emf should:

A. be zero

B. have $+ve \operatorname{sign}$

C. have $-ve \operatorname{sign}$

D. have either +ve or -ve sign

Answer: B

501. In a cell containing zinc electrode and standard hydrogen electrode(SHE), the zinc electrode acts as :

A. Anode

B. Cathode

C. Neither cathode nor anode

D. Both anode and cathode

Answer: A

502. A cell in which electric current is produced by net oxidation and reduction process is called:

A. Voltaic cell

B. Electrolytic cell

C. Concentration cell

D. None

Answer: A

Watch Video Solution

503. Faraday's first law of electrolysis can be expressed as :

A. $W \propto Q$

B. $W \propto 1/Q$

 ${\rm C.}\,W\propto Q^2$

 ${\rm D.}\,W\propto Q^3$

Answer: A

504. I faraday of electricity will liberate 1 g atom of the metal from the solution of :

A. $AuCl_3$

 $\mathsf{B.}\,AgNO_3$

 $C. CaCl_2$

D. $CuSO_4$

Answer: B

Watch Video Solution

505. In the electro-deposition of Ag, the silver ions are :

A. Reduced at anode

B. Reduced at cathode

C. Oxidised at anode

D. Oxidised at cathode

Answer: B

Watch Video Solution

506. For the cell reaction,

 $Cu^{2+}(aq)(C_2)+Zn(s)
ightarrow Zn^{2+}(aq)(C_1)+Cu(s)$, the change in free

energy(ΔG) at a given temperature is a function of :

A. $\ln C_1$

B. $\ln(C_2/C_1)$

 $\mathsf{C}.\ln(C_1+C_2)$

D. $\ln C_2$

Answer: B

Watch Video Solution

507. In an electrochemical cell ,the electrons flow:

A. From cathode to anode

B. From anode to cathode

C. From anode to solution

D. From solution to cathode

Answer: B

Watch Video Solution

508. The art of electroplating was given by:

A. Faraday

B. Edison

C. Graham

D. Brugan

Answer: A

Watch Video Solution

509. Which of the following is correct?

A. Zinc acts as cathode in Daniell cell

B. In a Li-Zn couple, zinc acts as anode

C. Copper will displace iron in solution

D. Zinc displaces tin from its solution

Answer: D

510. In an electrolytic cell of $Ag|AgNO_3|AgNO_3|$ Ag, when current is

passed the concetration of $AgNO_3$

A. Increases

B. Decreases

C. Remains same

D. None

Answer: C

Watch Video Solution

511. Give examples of weak electrolytes.

D Watch Video Solution

512. How electrochemiacl equivalent is related to chemical equivalent ?

517. What is electrochemical series ?

530. Write the Nernst equation for a half cell reaction.

539. What is the potential of a standard hydrogen electrode ?

Watch Video Solution
540. Between zinc and copper which metal will react dilute sulphuric acid ?
Vatch Video Solution
541. What is the charge in Coulombs on CO_3^{2-} ion?
Watch Video Solution
542. How does equivalent conductance of a weak electrolyte vary with dilution?

543. How many moles of H_2 will be liberated when 2 faradays of electricity

is passed through 0.1M `H_2SO_4 solution?

547. What happens to conductance of an electrolyte on dilution ?

Watch Video Solution
548. Give an example of an inert electrode .
Watch Video Solution
549. State Faradey.s 1st law.
Watch Video Solution
550. State Faradey.s 2nd law.
Vatch Video Solution

555. Define molar conductance.

Vatch Video Solution
556. What is the unit of cell constant ? Watch Video Solution
557. How cell constant is related with observed conductance and specific conductance ?
Watch Video Solution
558. Give two applications of Kohlrausch Law. Watch Video Solution

559. How degree of dissociation is related with eqconductacne of week

electro-lytes ?

?

567. The unit of cell constant is
Watch Video Solution
568. Molar conductance for weak electrolyte on dilition
Vatch Video Solution
569. Charge on one mole of electron is
Vatch Video Solution
570. Copper sulphate solution stored in an iron vessel.
Vatch Video Solution
571. I mole of electronscoulomb.

Watch Video Solution
572. Reduction takes place at during electrolysis.
Watch Video Solution
573. Oxidation takes place at druing electrolyses.
Watch Video Solution
574. Equivalent conductance for strong electrolyte on dilution
Watch Video Solution
575. Units of specific conductivity are
Watch Video Solution

Watch Video Solution
581 What is the unit of molar conductance ?
Watch Video Solution
582. Relation between standard e.m.f. of a cell and equilibrium constant is
Watch Video Solution
583. In an electrochemical cell, reduction taken place at
Watch Video Solution

584. In the electrochemical cell, oxidation takes place at							
Watch Video Solution							
585. Electroplated silver spoon acts asin a cell.							
Watch Video Solution							
586. The process of splitting up of electrolytes into the $+ve$ and $-ve$							
ions are called							
Watch Video Solution							
587. For strong electtolytes degree of ionisation is							
Watch Video Solution							

588. I coulonmb=x 1 second.							
Watch Video Solution							
589. Units of specific conductivity are							
Watch Video Solution							
590. Electrochemical cell is also known as							
Vatch Video Solution							
591. In an electrochemical cell, reduction taken place at							
Vatch Video Solution							

592.	In	an	electrochemical	cell,	reduction	taken	place	at
Watch Video Solution								
593. N	Molte	en soc	lium chloride conc	lucts e	lectricity due	e to the	presence	e of
0	Wat	ch Vie	deo Solution					
594. I equiv	=ill ir alent	the of a	blanks : The elect substance is	ric cha	arge for the	depositi	on of 1	gm
Vatch Video Solution								
595. 96500 Coulomb will deposite of metal.								
0	Wat	ch Vi	deo Solution					
596. Unit of electrochemical equivalent is								
--								
Vatch Video Solution								
597. pH value of aqueous solution of Nacl after electrolysis is								
Watch Video Solution								
598. The unit of specific conductance is								
Watch Video Solution								
599. Specific conductance for strong electrolyte on dilution								
Watch Video Solution								

600. Specific conductance for strong electrolyte on dilution
Watch Video Solution
601. Equivalent conductance for strong electrolyte on dilution
Watch Video Solution
602. Equivalent conductance for weak electrolyte on dilution
O Watch Video Solution
603. Molar conductance for weak electrolyte on dilition
Watch Video Solution
604 The best electronic conductor is

Watch Video Solution
605. Electrolysis of molten sodium hydride liberates gas
at the
Solution
606. Oxidation takes place at druing electrolyses.
Watch Video Solution
607. Reduction takes place at during electrolysis.
Watch Video Solution
609 Change convied by 1 male of electrons is
Watch Video Solution

613. Equivalent conductance for strong electrolyte on dilution decreases

rapidly. Is it true or false?

0	Wat	ch Vic	leo Solution					
614 .	In	an	electrochemical	cell,	reduction	taken	place	at
0	Wat	ch Vic	leo Solution					
615.	In	the	electrochemical	cell,	oxidation	takes	place	at
0	Wat	ch Vic	leo Solution					

616. Molten sodium chloride conducts electricity due to the presence of

electrons. Is it true or false?

620. In an electrolytic cell 10 gm of chlorine is liberated from NaCl solution in 30 minutes. Find the amount of current passed.

621. How many coulombs of electricity are required for reduction of 1 mol

of $Cu^{2\,+}$ to Cu ?

Watch Video Solution

622. How many moles of electrons are given by 289500 coulombs ?

Watch Video Solution

623. Calculate the value of equilibrium constant for the reaction at 298 k.

$$Cu(s)+2Ag^+(aq)
ightarrow Cu^{2\,+}(aq)+2Ag(s)$$

and $E^{\,\circ}(extsf{Cu2+/Cu})=0.34V$

Watch Video Solution

624. What are fuel cells ? Write the electrode reaction of a fuel cell which

uses the reaction of hydrogen with oxygen.

625. Calculate the value of equilibrium constant for the reaction at 298 k.

$$Cu(s)+2Ag^+(aq)
ightarrow Cu^{2+}(aq)+2Ag(s)$$

 $E^{\,\circ}$ (Ag2+/Ag) = 0.80V

and $E^{\,\circ}(extsf{Cu2+/Cu})=0.34V$

626. How much copper is deposited on the cathode if a current of 5 A is

passed throgh a solution of $CuSO_4$ for 45 minutes ?

Watch Video Solution

627. Explain why electrolysis of aqueous solution of NaCl gives H_2 at cathode and Cl_2 at anode.

Watch Video Solution

628. State and explain Kohlrausch's law. How can this law be used to find

equivalent conductance of acetic acid at infinite dilution?

629. Define molar conductance . Write its unit.

630. The specific conductance of a solution is 0.356 $ohm^{-1} cm^{-1}$. The conductance of this solution in a cell was 0.0268 ohm^{-1} . Calculate the cell constant.

Watch Video Solution				
631. What is the potential of a standard hydrogen electrode ?				
632. A $0.1N$ solution of NaCl has specific conductance $0.0011ohm^{-1}cm^{-1}$. Find its equivalent conductance.				
Watch Video Solution				

633. What do you mean by strong and weak electrolytes ?

634. In a cell $Zn[Zn^{2+}(aq)(1.0M)][Cu^{2+}(aq)(1.0M]Cu$, the standard

reduction potentials are :

 $Cu^{2\,+}\,+\,2e^{\,-\,
ightarrow}Cu,\,E^{\,\circ}\,=\,0.350V$ and

 $Zn^{2\,+} + 2e^{-\,
ightarrow} Zn, E^{\,\circ} = -\,0.763V.$

What is the e.m.f.of the cell ?

Watch Video Solution

635. What is the basis on which anode or cathode identified in a chemical

cell ?

636. Give the relationship between chemical equivalent and electrochemical equivalent of an element?

637. What product is obtained at the anode during electroluysis of fused

sodium hydride ?

electrolytic cells. Calculate the molar ratio of Al, Cu and Na deposit at the cathodes .

647. Define specific conductance.

648. What is galvanic cell? Give an example.

650. What is an electrochemical cell?

Watch Video Solution

651. How many grams of aluminium can be produced by electrolysis of

molten alumina with a current of 3 amperes for 10 minutes ?

652. How many grams of chlorine can be produced by the electrolysis of molten NaCl with 10 amperes of current flowing for 10 minutes (mol wt of $Cl_2=71$)

653. Calculate the quantity of electricity required to deposit 0.108gm. of

silver from $AgNO_3$ soln.

(At. Mass of Ag=108).

654. What happens when $CuSO_4$ soln. Is stored in a Zinc container ?

655. The specific conductance of a solution is 0.356 $ohm^{-1} cm^{-1}$. The conductance of this solution in a cell was 0.0268 ohm^{-1} . Calculate the

cell constant.

656. The equivalent conductance of 0.001N KCl solutin is 147 $ohm^{-1}cm^2gmeq^{-1}$ at $25^{\circ}C$. Find the specific conductance.

657. How many moles of copper will be deposited at the cathode by passing 1.5 faraday of electricity through a sol^n of $CuSO_4$? (At. Mass of Cu =63.5).

Watch Video Solution

658. A current strength of 3 amperes is passed for 20 minutes in $AgNO_3$

solution., 4gm. Ag metal is deposited, what is the ECE OF Ag?

659. For silver plating name the mterials that are to be taken as cathode,

anode and electrolyte.

663. On electrolysis $CuSO_4$ solution in presence of non attackable Pt, electrodes, the soln. becomes colourless. Explain.

> Watch Video Solution

664. What volume of hydrogen gas measured at 273K at 0.5 atmospheric pressure will be obtained when 0.1 faraday of electricity is passed through acidulated water ?

Watch Video Solution

665. Why Ag will not react with dilute H_2SO_4 whereas Zn reacts rapidly ?

666. Colour of KI slon. containing starch turns blue when Cl_2 water is

added. Why?

667. The metals given below are in the increasing order of their reduction

potential.

Mg,Zn,Co,H,Cu,Ag

Which of these metals displaces hydrognen from dilute acid ?

Watch Video Solution

668. State whether the following representation of the cell is correct or

not .

$$Pbig[Pb^{+\,+}\,(IM)ig]ig[Mg^{+\,+}\,(1M)ig]Mg$$

669. Write each half cell reaction and also the net cell reaction for a cell.

(i)
$$Cu\Big[Cu^{++(aq)}\Big]\Big[Ag^{+(aq)}\Big]Ag$$

(ii) $Cd[Cd^{+2}][Ni^{+2}]Ni$

Watch Video Solution

670. what happens when Zn metal is immersed in $CuSO_4$ solution ?

Watch Video Solution

671. Define electrochemical equivalent and chemical equivalent. How are they related with each other ? A current of 5 amperes is passed through an electrolyte for 15 minutes when 3 gms of the metal was deposited. Calculate the electrochemical equivalent of the metal.

Watch Video Solution

672. Explain Faraday's second law of electrolysis.

676. Calculate the normality of KCI solution having resistance 2000 ohm. The cell constant is $5.53cm^{-1}$ and the equivalent conductance is $138.25ohm^{-1}cm^2eq^{-1}$.

677. Calculate the value of equilibrium constant for the reaction at 298 k.

$$Cu(s)+2Ag^+(aq)
ightarrow Cu^{2+}(aq)+2Ag(s)$$

 $E^{\,\circ}({\rm Ag2+/Ag})=0.80V$

and $E^{\,\circ}(extsf{Cu2+/Cu})=0.34V$

Watch Video Solution

678. How does molar conductivity vary with concentration for weak and

strong electrolyte ?

Watch Video Solution

680. How would you determine the standard electrode potential of the

system $Mg^{2\,+}\,/\,Mg$?

Watch Video Solution

681. State and explain Kohlrausch's law. How can this law be used to find

equivalent conductance of acetic acid at infinite dilution?

682. Define electrochemical equivalent and chemical equivalent. Show

that

chemical equivalent = 96500 x electrochemical equivalent

683. The resistance of a soln. is 3 ohms. The electrodes in the cell are 1.5 cm. apart and have an area of $4.5cm^2$. What is specific conductance ?

Watch Video Solution

684. A current of 0.15 amperes strength is passed for 150 minutes through a soln. of a metal, 0.785 gm of metal was deposited. Find the valency of the metal. (At.wt.of the metal : 112)

Watch Video Solution

685. A current of 0.5 ampere is passed through acidulated water for 30 minutes. Calculate the wt. of H_2 and oxygen evolved ?

686. When an electric current is passed simultaneously through acidulated water and copper sulphate soln.wt. of hydrogen and copper deposited are 0.0131 and 0.4164gm respectively. Calculate eq. mass of copper.

Watch Video Solution

687. State and explain Faraday's laws of electrolysis.

Watch Video Solution

688. When a current of 0.15 ampere is passsed through a solution of a salt

of a metal for 150 minutes, 0.783 gm of the metal is deposited . Find the

valency of the metal.(At. Wt. of metal = 112)

Watch Video Solution

689. State and explain Faraday's laws of electrolysis.

690. How many grams of aluminium can be produced by electrolysis of

molten alumina with a current of 3 amperes for 10 minutes ?

Watch Video Solution

691. Define and explain electrochemical equivalent. How is it related with

chemical equivalent of the substance ?

Watch Video Solution

692. A current of 5 amperers is passed through an electrolyte for 15 minutes when 3 gm of the metal is deposited . Calculate the equivalent weight of the metal.

693. Define equivalent and molar conductance. Give their relationship with specific conductance. How does equivalent conductance vary with increase in temperature?

How many atoms of calcium will be deposited from fused $CaCl_2$ by a current of 25 mA passes for 60 sec?

Watch Video Solution

694. How many atoms of calcium will be deposited from fused $CaCl_2$ by a

current of 25 milliamperes passed over 60 seconds ?

Watch Video Solution

695. Define specific and equivalent conductacne. How are the related ?

What is the effect of dilution on them ?

696. The specific conductivity of an N/20 solution of KCI at `25^@ C is 0.002765 mhos. If the resistance of the same solution placed in the cell is 2000 ohm, what is the cell constant ?

Watch Video Solution

697. Write short note on Nernst equation.

Watch Video Solution

698. What is standard electrode potential?

Watch Video Solution

699. Write notes on electron potentioal

700. Define electrochemical series ? Watch Video Solution 701. Write notes on Fuel Cell Watch Video Solution 702. Write notes on Corrosion Watch Video Solution

703. The algebrac sum of potential of two electrodes of a galvanic cell is

called :

A. Potential defference

B. Ionic difference

C. EMF

D. Electrode difference

Answer: C

Watch Video Solution

704. The standard emf of a galvanic cell can be calculated from :

A. The size of the solution

B. The pH of the solution

C. The amount of metal in the anode

D. The $E^{\,\circ}\,$ values of the two half cells

Answer: D

705. The electrode potential of a glass electrode depends upon:

A. Concentration of chloride ions

B. Concentration of hydrogen ions

C. Concentration of KCL solution.

D. None of these

Answer: B

Watch Video Solution

706. Which solution will show highest resistance during the passage of

current:

A. $1 \mathbb{N} a C I$

 $\mathsf{B}.\,0.1\mathbb{N}aCI$

 $\mathsf{C.}\,2\mathbb{N}aCI$

D. $0.05\mathbb{N}aCI$

Answer: C

707. The standard reduction potential at 290K for the following half reactions are,

Which it the strongest reducing agent :

A. Zn

B. Cr

 $\mathsf{C.}\,Fe^{2\,+}$

 $\mathsf{D}.\,H_2$

Answer: A

708. Which represents disproportionation :

A.
$$2Cu^+
ightarrow Cu^{2+} + Cu$$

 $\mathsf{B.}\, 3I_2 \rightarrow 5I + I^{5\,+}$

C. $H_2O + CI_2 \rightarrow CI^{-+}CIO^{-+}2H^{+}$

D. All of these

Answer: D

Watch Video Solution

709. Electrochemical equivalent of a substance is equal to its quantity

liberated at electrode on passing electricity equal to :

A.1 coulomb

B.1 ampere

C.1 volt

D. 96,500 coulomb

Answer: A

Watch Video Solution

710. Consider the standard potential of the following cells,

(i) $Mg^{2+} + 2e \rightarrow Mg, E^{\circ} = -2.37V$ (ii) $Zn^{2+} + 2e \rightarrow Zn, E^{\circ} = -0.76V$ (iii) $Ni^{2+} + 2e \rightarrow Ni, E^{\circ} = -0.25V$ (iv) $Fe^{3+} + 3e \rightarrow Fe, E_0 = -0.04V$ find the strongest reducing agent :

A. $Mg^{2\,+}$

B. Mg

 $\mathsf{C}.\,Fe^{3\,+}$

D. Fe

Answer: B

712. The product $(ampere imes sec \ ond)$ is equal to the number of :

A. Coulomb transferred
B. Electrons transferred

C. Faraday transferred

D. Volt

Answer: A

Watch Video Solution

713. The oxidation potential of Mg and Al are `+2.37 and +1.66 volt respectively. The Mg in chemical reactions :

A. Will be replaced by Al

B. Will replace Al

C. Will not be able to replace Al

D. None of these

Answer: B

714. When an aqueous solution of lithium chloride is electrolysesd using graphite electrodes :

A. pH of the resulting solution increases

B. ph of the resulting solution decreases

C. As the current flows, pH of the solution around the cathode

increases

D. None of these

Answer: A

> Watch Video Solution

715. A ditute aqueous solution of sodium fluoride is electrolysed, the products at the anode and cathode are:

A. O_2, H_2

 $B. F_2, Na$

 $C.O_2, Na$

D. F_2, H_2

Answer: A

Watch Video Solution

716. Of the following matals that cannot be obtained by electrolysis of the

aqueous solutions of their cathode are :

A. Ag and Mg

B. Ag and Al

C. Mg and Al

D. Cu and Cr

Answer: C

717. A certain metal fails to liberate H_2 gas from a moderately conc. HCI solution. However it desplaces Ag from $AgNO_3$ solution. Which among the following may it be :

A. Mg

B. Fe

C. Cu

D. Cd

Answer: C

Watch Video Solution

718. $Cu^{2+}+2e o Cu, \log ig[Cu^{2+}ig]$ vs E_{red} .graph is of the type as shown in figure where OA=0.34V then electrode otential of the half cell of

 $Cu^{2\,+}\,(0.1M)$ will be :

$$\mathsf{A.}-0.34+\frac{0.091}{2}V$$

 ${\rm B.}\, 0.34 + 0.0591 V$

 $\mathsf{C.}\,0.34V$

D. None

Answer: A

719. For which cell emf is independent of the concentration of electrolytes used :

A.
$$Fe[FeO(s)]KOH(aq)[NiO(s)[Ni_2O_3(s)]Ni$$

 $\mathsf{B}. Pt(H_2)[HCI](Cl_2)$

 $\mathsf{C.}\,Zn\big[Zn(NO_3)_2\big][CuSO_4]Cu$

 $\mathsf{D}.\,Hg,\,HgCl_2[KCI][AgNO_2]Ag$

Answer: A

Watch Video Solution

720. The reaction,

$$Cu^{2\,+}(aq)+2CI^{\,-}$$
 (aq) $ightarrow Cu(s)+CI_2(g)$ has $E_{cell}^{\,\circ}=1.03V.$ This

reaction :

A. Can bemade to produce electricity in voltiac cell

B. Can be made to occur in an electrolytic cell

C. Can occur in acidic medium only

D. Can occur in basic medium only

Answer: B

From this data, one can duduce that :

A. $M + X
ightarrow M^+ + X$ is the spontaneous reaction

B. $M^{\,+}X
ightarrow M + X$ is the spontaneous reaction

$$\mathsf{C}.\,E_cell=0.77V$$

D.
$$E_{cell} = -0.77V$$

Answer: B

722. Electrolytic reduction of alumina to aluminium by Hall-Heroult process is carried out

A. In the presence of NaCl

B. In the presence of fluoride

C. In the presence of cryolite which forms a melt with lower melting

tempeature

D. In the presence of cryolite which forms a melt with higher melting

temperature

Answer: C

Watch Video Solution

723. When 9.65 coulomb of electricity is passed through a solution of $AgNO_3$ (at.wt. 108.0) the amount of silver deposited is :

A. 10.8 mg

B. 5.4 mg

C. 16.2 mg

D. 21.2 mg

Answer: A

Watch Video Solution

724. Standard electrode potentials of $Fe^{2+} + 2e \rightarrow Fe$ and $Fe^{3+} + 3e \rightarrow Fe$ are -0.440V and -0.036V respectively. The standard electrode potential (E°) for $Fe^{3+} + e \rightarrow Fe^{2+}$ is :

 ${\sf A.}-0.476V$

 $\mathrm{B.}-0.404V$

 ${\rm C.}+0.404V$

 $\mathsf{D.}+0.772V$

Answer: D

725. I mole of AI is deposited by X coulomb of electricity passing through aluminium nitrate solution. The number of mole of silver deposited by X coulomb of electricity from silver nitrate solution is :

A. 3 B. 4 C. 2 D. 1

Answer: A

726. Copper from copper sulphate solution can be displaced byThe standared reduction potentials of some electrodes are given below:

$$egin{aligned} &E^{\,\circ}\left(Fe^{2\,+},\,Fe
ight)=\ &-0.44V\ &E^{\,\circ}\left(Zn^{2\,+},\,Zn
ight)=\ &-0.76V\ &E^{\,\circ}\left(Cu^{2\,+},\,Cu
ight)=\ &+0.34V\ &E^{\,\circ}\left(Cr^{3\,+},\,Cr
ight)=\ &-0.74V\ &E^{\,\circ}\left(H^{\,+},\,rac{1}{2}H_2
ight)=\ &-0.00V \end{aligned}$$

A.
$$H_2$$

B. Zn

C. Cr

D. All

Answer: D

727. The oxidation potential of a hydrogen electrode at pH =10 and P_{H_2} =

1 atm

A. 0.51V

 $\mathrm{B.}\,0.00V$

C. + 0.59V

 $\mathsf{D}.\,0.059V$

Answer: C

Watch Video Solution

728. The number of Faraday required to gneerate 1g of Mg from $MgCl_2$

is:

A. 1

B. 2

C. 3

Answer: B

729. emf of cell $Ni, Ni^{2+}(1.0M) \mid |Au^{3+}(1.0M), Au$ isIf $E^{\circ}f$ or $Ni^{2+} \mid Ni$ is 0.25V, $E^{\circ}f$ or $Au^{3+} \mid Au$ is 1.50 V.

 $\mathsf{A.}+1.25V$

 $\mathsf{B}.\,1.75V$

 ${\rm C.}+1.75V$

 $\mathsf{D.}+4.0V$

Answer: C

730. E° for the half cell reactions are as, $Zn \to Zn^{2+} + 2e, E^{\circ} = +0.76V$ $Fe
ightarrow Fe^{2\,+} + 2e, E^{\,\circ} = + 0.41V$ The E° for the cell reaction. $Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$: A. -035VB. + 0.35VC. + 1.17VD. - 0.17V

Answer: B

731. A certaom cirrent liberates 0.504 g of hydrogen in 2 hr. How many gram of copper can be liberated by the same current flowing for the same time in $CuSO_4$ solution:

A. 12.7

B. 16

C.31.8

 $D.\,63.5$

Answer: B

Watch Video Solution

732. The standard reduction electrode potentials of your metals A,B, C and D are -3.65, -1.68, -0.80 and +0.86. The highest chemical activity will be exhibited by :

A. A

B. B

C. C

D. D

Answer: A

Watch Video Solution

733. An apparatus used for the measurement of quantity of electricity is

known as a :

A. Calorimeter

B. Cathetometer

C. Coulometer

D. Colorimeter

Answer: C

Watch Video Solution

734. The amount of an ion descharged during electrolyses is not

dependent of :

- A. Resistance of solution
- B. Time
- C. Current strength
- D. Electrochemical equivalent of the element

Answer: A

Watch Video Solution

735. If an iron rod is deppedin $CuSO_4$ solution:

A. Blue colour of the solution turns red

B. Brown layer is deposited on irod rod

C. No change occous in the colour of the solution

D. None

Answer: B

736. Which aqueous solution will conduct an electric current quite well :

A. Glycerol

B. Sugar

C. Hydrochloric acid

D. Pure water

Answer: C

Watch Video Solution

737. When a lead storage battery is discharged:

A. SO_2 is evolved

B. Lead is formed

C. Lead sulphate is consumed

D. Suophuric acid is consumed

Answer: D

738. The unit of electrochemical equivalent is :

A. gram

B. gram/ampere

C. gram/coulomb

D. coulomb gram

Answer: C

739. During the electrolysis of fused`NaCI, the reaction that occurs at the

anode is :

- A. Chloride ions are oxidized
- B. Chloride ions are oxidized
- C. Sodium ions are oxidized
- D. Sodium ions are reduced

Answer: A

Watch Video Solution

740. Each of the three metals X, Y and Z were put in turn into aqueous solution of the other two , X + Salt of Y (or Z)=Y (or Z) + Salt of X . Which observation is probably incorrect :

A. Y + Salt of X =No action observed

B. Y + Salt of Z =Z+ Salt of Y

C. Z + Salt of X=X+Salt of Z

D. Z + Salt of Y = No action observed

Answer: C

Watch Video Solution

741. Molten NaCl conducts electricity due to the presence of:

A. Free electrons

B. Free molecules

C. Free ions

D. Atoms of Na and Cl

Answer: C

742. Red hot carbon will remove oxygen from the oxides XO and YO but not form ZO . Y will remove oxygen from XO . Use this evidence to reduce the order of activity of the three metals X,Y and Z putting the most reactive first :

A. X,Y,Z

B. Z,Y,X

C. Y,X,Z

D. Z,X,Y

Answer: B

Watch Video Solution

743. The standard reduction potentials at $25^{\circ} of Li^{+} [Li, Ba^{2+} [Ba, Na^{+}]Na \text{ and } Mg^{2+}]Mgare - 3.05, -2.76, -$ respectively. Which is strogest reducing agent.

- A. $ZnCl_2$ is formed
- B. Zinc dissolves in the solution
- C. No reaction takes place
- D. Mg is precipitated

Watch Video Solution

744. Normal aluminum coupled with normal hydrogen electrode gives an emf of 1.66 V. The standard electrode potential of aluminium is :

 ${\rm A.}-1.66V$

 ${\rm B.}+1.66V$

 $\mathsf{C.}-0.83V$

 $\mathsf{D.}+0.83V$

Answer: B

745. How many faraday are needed to reduce one mole of MnO_4^- to Mn^{2+} :

- B. 5 C. 3
- D. 2

A. 4

Answer: B

Watch Video Solution

746. Standard E° of the half cell Fe/ Fe^{2+} is +0.44V and standard E° of half cell Cu / Cu^{2+} is -0.32V then:

A. Cu oxidises Fe^{2+} ion

B. Cu^{2+} oxidises Fe

C. Cu reduces $Fe^{2+}ion$

D. `Cu^(2+) reduces Fe

Answer: B

Watch Video Solution

747. The standard reduction potentials of metal electrodes A,B,C and D are +0.14V,+0.34V,-0.74 V and -0.4V respectively, Which is the best reducing agent :

A. A

В. В

C. C

D. D

Answer: C

748. The standard reduction potentials at $25^{\circ} of Li^{+} [Li, Ba^{2+} [Ba, Na^{+}]Na \text{ and } Mg^{2+}]Mgare - 3.05, -2.76,$ respectively. Which is strogest reducing agent.

A. Li

B. Ba

C. Na

D. Mg

Answer: A

Watch Video Solution

749. The standard reduction potentials of the metals A,B and C are 0.68, -2.50 and -0.50V respectively. The order of their reducing power is :

A. A > B > C

 $\mathsf{B}.\, A > C > B$

 $\mathsf{C}.\,C>B>A$

D.B > C > A

Answer: D

Watch Video Solution

750. The standard reduction potential for $Fe^{2+} | Fe$ and $Sn^{2+} | Sn$ electrodes are -0.44V and -0.14V respectively. For the cell reaction, $Fe^{2+} + Sn \rightarrow Fe + Sn^{2+}$, the standard emf is :

 $\mathsf{A.}+0.30V$

 $\mathrm{B.}\,0.58V$

 ${\rm C.}+0.58V$

 $\mathsf{D.}-0.30V$

Answer: D

751. 3 Faraday of electricity are passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and molten Nacl taken in three different electrolytic cells. The amount of Al, cu and Na deposited at the cathodes will be in the ratio of :

A. 1 mole : 2 mole : 3 mole

B. 3 mole : 2 mole: 1 mole

C. 1 mole: 1.5 mole: 3 mole

D. 1.5 mole :2 mole : 3 mole

Answer: C

752. An electroytic cell contains a solution of Ag_2SO_4 and platinum electrodes. A current is passeduntil 1.6 g of O_2 has been liberated at

anode. The amount of Ag deposited at cathode would be :

A. 1.6g

 $\mathsf{B.}\,0.8g$

 $\mathsf{C.}\,21.6g$

 $D.\,107.88g$

Answer: C

Watch Video Solution

753. The electrode potential measure the :

A. Tendency of the electrode to gain or lose electrons

B. Tendency of the all cell reaction to accur

C. Defference in the ionisation potential of electrode and metalion

D. Current carried by an electrode

Answer: A

754. Which is the correct representation for Nernst equation :

A.
$$E_{RP} = E_{RP}^{\circ} + n^{0.059} \log[\otimes idant] / [reduc \tan t]$$

B. $E_{OP} = E_{OP}^{\circ} + n^{0.059} \frac{\log[\otimes idant]}{reduc \tan t}$
C. $E_{OP} = -E_{OP}^{\circ} + n^{0.59} \frac{\log[Reduc \tan t]}{reduc \tan t}$

D. All of these

Answer: D

Watch Video Solution

755. The factor temperature coefficient for emf is :

A. $(\delta E/\delta T)_P$

B. $(\delta E / \delta P)_T$

 $\mathsf{C}.\,(\delta E\,/\,\delta V)_T$

D. None

Answer: A

756. The emf of a voltaic cell is negative. So oxidation and reduction process respecttively can be written at the :

A. LHE,RHE

B. RHE,LHE

C. Both (a) and (b)

D. None

Answer: B

757. Silver from silver nitrate is deposited by copper, because :

$$\begin{array}{l} \mathsf{A}.\, E^{\,\circ}\left(Cu^{2\,+}\,/\,Cu\right)\,<\, E^{\,\circ}\left(Ag^{\,+}\,/\,Ag\right)\\ \\ \mathsf{B}.\, E^{\,\circ}\left(Cu^{2\,+}\,/\,Cu\right)\,<\, E^{\,\circ}\left(Ag^{\,+}\,/\,Ag\right)\\ \\ \mathsf{C}.\, E^{\,\circ}\left(Cu^{2\,+}\,/\,Cu\right)\,-\, E^{\,\circ}\left(Ag^{\,+}\,/\,Ag\right)\end{array}$$

D. None

Answer: A

Watch Video Solution

758. Standard reduction potential for, $Li^+Li, Zn^{2+}Zn, H^+H_2$ and Ag^+Ag is -3.05,-0.762,0.00 and +80V.

Which has highest reducing capacity?

A. Ag

 $\mathsf{B}.\,H_2$

C. Zn

Answer: D

759. Which one is correct :

A. Ni desplaces zinc from its solution

B. Zn desplaces iron from is solution

C. Ag displaces copper from its solution

D. Cu displaces nickel from its solution

Answer: B

760. An unit of charge is :

A. Volt

B. Ampere

C. Coulomb

D. None

Answer: C

Watch Video Solution

761. A cell is set up between 'Zn' and 'Cu' electrode. If the two half cells work under standard condition, calculate the cell potential. Given $E^{\circ}\left(Zn^{2+}/Zn
ight)=-0.76V$ and $E^{\circ}\left(Cu^{2+}/Cu
ight)=+0.34V.$

A. Copper

B. Zinc

C. Hydrogen

D. Cu^{2+}

Answer: D

Watch Video Solution

762. In galvanic cell, the salt bridge is used to :

- A. Complete the circuit
- B. To reduce lizuid junction potential in the ccell
- C. Separate cathode solution from anode solution
- D. Carry salts for chemical reactions to occur in cell

Answer: B

763. A current of 2 ampere was passed through solution of $CuSO_4$ and $AgNO_3$ in series.`0.635 g of copper was deposited .Then the weight of silver deposited will be:

A. 0.59g

B. 3.24g

C. 1.08g

D. 2.16g

Answer: D

Watch Video Solution

764. The emf of the cell involving following changes $Zn(s) + Ni^{2+}(1M) \rightarrow Zn^{2+}(1M) + Ni(s)is0.5105V$. The standard emf of the cell is :

A. 0.540V

B. 0.4810V

C. 0.5696V

D. 0.5105V
Answer: D Watch Video Solution 765. A current of 2.6 ampere was passed through $CuSO_4$ solution for 380 sec. The amount of Cu deposited is (at .wt. of Cu (63.5):

A. 0.3250g

B. 0.635g

C. 6.35g

D. 3.175g

Answer: A

766. E° values of Mg^{2+}/Mg is -2.37V, of Zn^{2+}/Zn is -0.76V and Fe^{2+}/Fe is -0.44V.

Which of the following statement is correct ?

A. $Mg \otimes idisesFe$

 $\textbf{B.} Zn \otimes idisesFe$

C. $ZnreducesMg^{2+}$

D. $ZnreducesFe^{2+}$

Answer: D

Watch Video Solution

767. On passing electricity through dilute H_2SO4 solution the amount of

substance libeated at the cathode and anode are in the ratio:

A. 1:8

B.8:1

C.16:1

D. 1:16

Answer: A Watch Video Solution

768. Passage of 96500 coulmb of electricity liberates...... Litre of O_2 at NTP

during electrolysis :

A. 5.6

 $\mathsf{B.}\,6.5$

C.22.2

D. 11.2

Answer: A

769. During electrolysis of an aqueous solution of Cu^{2+} sulphate , 0.635

g of copper was deposited at cathode. The amount electricity consumed

in coulomb is :

A. 1930

B. 3860

C. 96500

D. 4825

Answer: A

Watch Video Solution

770. The number of electrons involved in redox reactions when a faraday of electricity is passed through an electrolyte in solution is :

A. $6 imes 10^{23}$ B. $8 imes 10^{19}$ C. 96500

D. 6×10^{-23}

Answer: A

771.

If

 $Mg^{2+} + 2e o Mg(s), E = -2.37V, Cu^{2+} + 2e o Cu(s), E = +0.34V$ then the emf of the cell $Mg ig| Mg^{+2} ig| Cu^{2+} \mid Cu$ is :

 ${\rm A.}\,2.71V$

 ${\rm B.}\,2.30V$

 $\mathsf{C.}\,2.80V$

 ${\rm D.}\,1.46V$

Answer: A

772. A certain quantity of electricity is passed through aqueous solution of $AgNO_3$ and $CuSO_4$ connected in series, If Ag (at. Wt. 108) deposited at the cathode is 1.08 g then Cu deposited at the cathode is (at. wt. of Cu is 63.53):

A. 6.354

 $\mathsf{B}.\,0.317$

 $C.\,0.6354$

D. 3.177

Answer: B

Watch Video Solution

773. Which is correct representation for a cell at equilibrium:

A.
$$\Delta G^{\,\circ} ~=~ - 2.303 RT {
m log}\, K_{eq}$$

B.
$$E^{\,\circ}\,=\,rac{2.3.3RT}{nF}\!\log K_{eq}$$

$$\mathsf{C}.-\Delta G^\circ = RT1nK_eq.$$

D. All

Answer: D

Watch Video Solution

774. Out of Cu, Ag, Fe and Zn the metal which can displace all other from their salt solutions is :

A. Ag

B. Cu

C. Zn

D. Fe

Answer: C

775. The thermodynamic efficiency of cell is given by :

A. $\Delta H/\Delta G$

B. $nFE/\Delta G$

C. $nFE/\Delta H$

D. $nFE^{\,\circ}$

Answer: C

Watch Video Solution

776. In which of the following will the corrosion of iron be most rapid :

A. In pure water

B. In pure oxygen

C. In air and moisture

D. In air and saline water

Answer: D

777. In a concentration cell:

- A. Two electrodes are of different are of different elements
- B. Two electrolytic solutions of the same electrolyte but having

different concentrations are used

C. Electrolyte of one strength but electrodes of two different

concentration are used

D. Both (b) and (c)

Answer: D

Watch Video Solution

778. The electrolytic bath used in gold plating of copper articles contains :

A. Molten gold

B. $CuSO_4$

 $C. AuCl_3$

D. $AuCI_3 + NaCN$

Answer: D

Watch Video Solution

779. If the cell reactin is spontaneous then :

A. $\Delta G^{\,\circ}\,is+ve$

B. $E_{red}^{\,\circ} is - ve$

C. $E_{red}^{\,\circ}is+ve$

D. $\Delta Gis - ve$

Answer: D

780. The cell reaction , $Zn+Cu^{2+}
ightarrow Zn^{2+}+Cu$ is best represented by

A.
$$Cu/Cu^{2+} \mid \ \mid Zn^{2+}/Zn$$

B. $Zn/Zn^{2+} \mid \ \mid Cu^{2+}/Cu$

C. $Cu^{2+} / Cu \mid |Zn / Zn^{2+}$

D. $PI/Zn^{2+} \mid |PI/Cu^{2+}$

Answer: B

:

Watch Video Solution

781. Mobility of H^+ (in aq medium) is high because:

A. Of the small size of $H^{\,+}$

B. Of the high hydration energy of $H^{\,+}$

C. It exhibits a Grotthus type of conduction

D. Hydrogen is the lightest elecment

Answer: C

Watch Video Solution

782. A cell with two electrodes, one of grey tin and the other white tin, both dipping in solution of $(NH_4)_2 SNCI_6$ showed zero emf at `18^@C. What conclusion may be draw from this "

A. The emf developed at the electrode -solution phase boundary

cancels the normal emf

B. Grey tin being non-medallic ceases ti orivude a reversible electrode

reaction

C. Electrode surface develops a ortective layer and the cell develops a

very large internal resistance

D. The free energy chango of the cell becomes zero

Answer: D Watch Video Solution 783. An ion is reduced to element when it absorbs 6×10^{20} electrons. The number of equivalent of ion is :

A.0.10

 $B.\,0.01$

 $C.\,0.001$

 $D.\,0.0001$

Answer: C

Watch Video Solution

784. How many electrons are there in one coulomb:

A. `6.02xx10^(21)

 $\texttt{B.}\,6.24\times10^{18}$

 $\text{C.}\,6.24\times10^{15}$

D. $6.024 imes 10^{16}$

Answer: B

Watch Video Solution

785. The number of electrons passing per second through a cross-section

of Cu wire carrying 10 ampere is:

A. $6 imes 10^{19}$

 $\text{B.8}\times10^{19}$

 ${\rm C.1}\times10^{19}$

D. $1.6 imes 10^{19}$

Answer: A

Watch Video Solution				
786. The reduction $0.1 M solution of M^+ ions(E^o(r))$	electrode $(pp)=\ -\ 2.36V$	potential 7)is :	E	of
A. -2.41 B. $+2.41$				
C. — 4.82 D. None				
Answer: A Watch Video Solution				

787. For reducing 1 mole of Fe^{2+} ions to Fe , the number of Faradays of electricity required are:

B. 1

C. 2.5

D. 4.0

Answer: A

Watch Video Solution

788. A silver cup is plated with silver by passing 965 coulomb of electricity

. The amount of Ag deposited is :

A. 1.08g

 $B.\,1.0002g$

 $\mathsf{C}.\,9.89g$

D. 107.89

Answer: A

789. The same amount of electricity was passed through two cells containing molten Al_2O_3 and molten NaCI. If 1.8g of Al were liberated in one cell, the amonut of Na liberated in the other cell is :

A. 4.6g

 $\mathsf{B}.\,2.3g$

C.6.4g

D. 3.2g

Answer: A

Watch Video Solution

790. What is the charge in Coulombs on Cu^{2+} ion?

A. $3.2 imes 10^{-19}$

 $\texttt{B.}~2.3\times10^{-12}$

 $\text{C.}\,0.23\times10^{-19}$

D. $0.32 imes 10^{-19}$

Answer: A

Watch Video Solution

791. The number of electrons required to deposit 1 g atom of Al(at. Wt. = 27) from a solution of $AlCI_3$ are :

A. 1N

B. 2N

C. 3N

D. 4N

Answer: C

792. The number of coulombs required for the deposition of 107.87g of

silver is :

A. 96500

 $B.\,48205$

C. 19300

D. 10000

Answer: A

Watch Video Solution

793. Reaction taking place at anode in dry cell is :

A.
$$Zn^{2+} + 2e
ightarrow Zn(s)$$

B.
$$Zn(s)
ightarrow Zn^{2+} + 2e$$

C.
$$Mn^{2\,+} + 2e
ightarrow Mn(s)$$

D. $Mn(s)
ightarrow Mn^{2\,+} + 2e$

Answer: B

Watch Video Solution

794. In an aqueous solution, hydrogen (H_2) will not reduce:

A. Heated cupric oxide

B. Heated ferric oxide

C. Heated stannic oxide

D. Heated aluminium oxide

Answer: D

> Watch Video Solution

795. Which metal does not give the following reaction : M + water or

steam ightarrow metal oxide $+H_2$ \uparrow

A. Iron

B. Sodium

C. Mercury

D. Magmesium

Answer: C

Watch Video Solution

796. Which metal is most readily corroded in moist air:

A. Copper

B. Iron

C. Silver

D. Nickel

Answer: B

797. Which one will liberate Br_2 from KBr.

A. HI

 $\mathsf{B}.\,I_2$

 $\mathsf{C}. CI_2$

D. SO_2

Answer: C

Watch Video Solution

798. Which is not true for a standard hydrogen electrode :

A. The hydrogne ion cncentratin is 1 M

B. Temperature is $25^{\,\circ}C$

C. Pressure of hydrogen is atmosphere

D. It contains a metalli conductor which does not adsorn hydrgen

Answer: D

799. The value of equilibrium constant fro a feasible cell reaction is :

- A. < 1
- B. Zero
- C. = 1
- $\mathsf{D.}\ >1$

Answer: D

800. A galvanic cell is composed of two hydrogen electodes, one of which is a standard one . In which of the following solutins the other electrode be immersed to get maximum emf:

A. 0.1*MHCI*

 $\mathsf{B.}\, 0.1 MCH_3 COOH$

 $\mathsf{C.}\,0.1 MH_3 PO_4$

 $\mathsf{D.}\,0.1MH_2SO_4$

Answer: D

Watch Video Solution

801. Chlorine cannot displace :

A. Fluorine from NaF

B. lodine from Nal

C. Bromine from NaBr

D. None

Answer: A

802. The one that is a good conductor of electricity in the folowing list of

solids is :

A. Sodium shloride

B. Graphite

C. Diamond

D. Sodium carbonate

Answer: B

803. In the electrolysis of $CuCI_2$ solution using Cu electrodes the mass of cathode increases by 3.18 g. What happened at the other electrode:

A. 0.05 mble of Cu^{+2} ions passed into solution

B. 0.112litre of CI_2 was liberated

C. 0.56 litre O_2 was liberated

D. 0.1 mole of Cu^{2+} ions passed into the solution

Answer: A

Watch Video Solution

804. Number of Faraday required to liberate 8g of H_2 is :

A. 8

B. 16

C. 4

D. 2

Answer: A

Watch Video Solution

805. The weight ratio of Al and Ag deposited using the same quantity of

curren is :

A. 9:108

B.2:12

C.108:9

D.3:8

Answer: A

Watch Video Solution

806. 20g of chlorine are evolved in 6 hour from sodium chloride solution

by the current of :

A. 5 ampere

B. 10 ampere

C. 2.5 ampere

D. 50 ampere

Answer: C

Watch Video Solution

807. What weight of copper will be depositeted by passing 2 faraday of electricity through a solution of Cu (II) salt:

A. 35.6g

 $\mathsf{B.}\,63.5g$

 $\mathsf{C.}\,6.35g$

D. 3.56g

Answer: B

808. The weight ratio of Mg and AI deposited during the passage of same current through their molten salts:

A. 12:9

B.9:12

C.6:2

D. 2:3

Answer: A

Watch Video Solution

809. The number of electrons passing per second through a cross-section

of copper wire carrying `10^(-6) ampere:

A. $6.2 imes 10^{23}$

 $\mathrm{B.\,6.2\times10^{12}}$

 $\text{C.}\,6.2\times10^{10}$

D. None

Answer: B

Watch Video Solution

810.

 $13.5 gofAl \geq tdeposited whene \leq ctricity is pass through the solution of$

AICI_3`. The number of Faradays used are :

A.0.50

 $B.\,1.00$

 $C.\,1.50$

 $\mathsf{D}.\,2.00$

Answer: C

811. If 1 faraday of electricity is passed through a solution of $CuSO_4$ the amount of copper deposited will be equal to its :

A. I mole of Cu

B.1g atom of Cu

C.1 molecule of Cu

D.1g equivalent of Cu

Answer: D

Watch Video Solution

812. The ratio of weight of hydrogen and magnesium deposited by the same amonut of electrcity from H_2SO_4 and $MgSO_4$ in aqueous solution are :

A.1:8

B.1:12

C.1:16

D. None

Answer: D

Watch Video Solution

813. Chlorine gas is passed into a solution containing KF, KL and KBr and KBr and $CHCI_3$ is added. The initial colour in $CHCI_3$ layer is :

A. Violet due to frommation of I_2

B. Orange due to formation of Br_2

C. Colorless due to formation of F_2

D. No colour change due tono reaction

Answer: A

814. Metals can be prevented from rusting by :

- A. Connecting iror to more electropositive metal cathodic protection
- B. Connecting iron to more electropositive metal anodic protection
- C. Connecting iron to less electropositive metal anodic protection
- D. Connecting iron to less electropositive metal cathodic protection

Answer: A

Watch Video Solution

815. For a given redox change, $E_{RP_2}^{\circ} + E_{OP_1}^{\circ}$ is equal to where 1 is oxidised and 2 is reduced :

A. Coulomb

B. Faraday

C. Ampere

D. Cell potential

Answer: D

Watch Video Solution

816. In an electrolytic cell the anode and cathode are respectively represented as :

A. Positive electrode , negative electrode

B. Negative electrode ,positive electrode

C. Positive and negative electrode both

D. None

Answer: A

817. Stronger the oxidising agent , greater is the :

A. Reduction potential

B. Oxidation potential

C. Ionic behaviour

D. None

Answer: A

Watch Video Solution

818. Which does not oxidised by bromine water:

A.
$$Fe^{2+}$$
 to Fe^{3+}

- B. Cu^+ to Cu^{2+}
- C. Mn^{2+} to MnO_4^-
- D. Sn^{2+} to Sn^{4+}

Answer: C

819. The standard H electrode is written as :

A. $Pt, H_2, H^+(a=1)$

B. $Pt(H_2) / H^+(a = 1)$

C.
$$PtH_2(g)(1atm)/H^+(a+1)$$

D. None

Answer: C

820. The reduction potentials of four metals P, Q, R and S are -2.90,+.34,+1.20 and -0.76` respectively. Reactivity dereases in the order.
A.
$$P > Q > R > S$$

B. $Q > P > R > S$
C. $R > Q > S > P$
D. $P > S > Q > R$

Answer: D

821. When lead accumulator is charged it is :

A. An electrolytic cell

B. A galvanic cell

C. A Daniell cell

D. None of the above

Answer: A

The

reaction,

 $(1/2)Hg(g) + AgCl(s) = H^+(aq) + Cl^{-\,(aq)} + Ag(s)$ occurs in the gal vanic cell:

A.
$$AgIAgCI(s)IKCI(so \ln.)AgNO_3(so \ln.)IAg$$

B. $PtIH_2(g)|HCI(slon.)|AgNO_3(slon.)Iag$
C. $PtH_2(g)|HCI(slon.)|AgCI(s) | Ag$
D. $Pt|H_2(g)|KCI(slon.)|AgCI(s)|Ag$

Answer: C

Watch Video Solution

823. Number of Faraday needed to deposit 0.1 mole of copper from Cu(II) sulphate solution are :

 $\mathsf{B}.\,0.2$

 $\mathsf{C}.\,0.05$

D.0.5

Answer: B

Watch Video Solution

824. The amount of sodium deposited by 5 ampere current for 10 minute

from fused NaCI is :

A. $0.715~\mathrm{g}$

 $\mathsf{B.}\,71.5g$

 $\mathsf{C.}\,5.17g$

 $\mathsf{D}.\,0.517g$

Answer: B

825. On electrolysis , 1 mole of aluminium will be deposited from its molten salt by :

A.1 mole of electrons

B. 2 mole of electrons

C. 3 mole of electrons

D. 4 mole of electrons

Answer: A

Watch Video Solution

826. 10^{-2} g atom of Ag can be oxidised to Ag^+ during the electrolsis of

 $AgNO_3$ solution using silver electrode by:

A. 965 coulomb

B. 96500 coulomb

C. 9650 coulomb

D. 96.500 coulomb

Answer: A

Watch Video Solution

A. 1

B. 2

C. 3

D. 4

Answer: A

828. The amount of silver deposited on passing 2 faraday of charge though an aqueous solution of $AgNO_3$ is :

A. 54 g

B. 108 g

C. 216 g

D. 324 g

Answer: C

829. How many coulomb of electricity are consumed when 100 mA current is passed throught a solution of $AgNO_3$ for 30 minute during an electrolysis experiment:

A. 108

B. 18000

C. 180

D. 3000

Answer: C

Watch Video Solution

830. The amount of copper deposited by the passage of 96500 coulomb

of electricity through copper sulphate solution is :

A. 2.0mole

 ${\rm B.}\,1.5\,{\rm mole}$

 $C.\,0.5\,mole$

 $D.\,1.0$ mole

Answer: C

831. When 1 Faraday of electricity is passed through $CuSO_4$ solution, number of atoms formed is :

A. $6.02 imes 10^{23}$

B. $3.01 imes 10^{23}$

C. 2

D. $6.02 imes 10^{23}$

Answer: B

Watch Video Solution

832. Total charge on 1 mole of a monovalent metal ion is equal to :

A. $6.28 imes 10^{18}$ coulomb

- B. $1.6 \times 10^{-19} \text{ coulomb}$
- ${\rm C.}\,9.65\times10^4~{\rm coulomb}$

D. None

Answer: C

Watch	Video	Solution
Watch	video	Joiution

833. Faraday.s law of electrolysis fails when:

A. Temperature is increased

B. Inert electrodes are used

C. A mixture of electrolytes is used

D. In none of these cases

Answer: D

834. A depolariser used in dry cell batteries is :

A. A mmonium chloride

B. Managanese dioxide

C. Potassium hydroxide

D. Sodium phosphate

Answer: B

Watch Video Solution

835. In electrolysis of a fused salt, the weight deposited on an electrode

will not depend on:

A. Temperature of the bath

B. Current intensity

C. Electrochemical equivalent of ions

D. Time for electrolysis

Answer: A

836. An electric current is passed through following aqueous solutions. Which one shall decompose:

A. Urea

B. Glucose

C. Silver nitrate

D. Ethyl alcohol

Answer: C

Watch Video Solution

837. The position of some metals in the electrochemical series in decreasing electropositive character is given as Mg > Al > Zn > Cu > Ag. What will happen if a copper spoon is used to stir a solution of aluminium nitrate: A. The spoon will get coated with aluminium

B. An alloy of copper and aluminium is formed

C. The solution becomes blue

D. There is no reaction

Answer: D

Watch Video Solution

838. On electrolysing a solution of dilute H_2SO_4 between platinum electrodes, the gas evolved at the anode and cathode are respectively is :

A. SO_2 and O_2

 $B.SO_3$ and H_2

 $\mathsf{C}.O_2$ and H_2

 $\mathsf{D}.\,H_2$ and O_2

Answer: C

839. Among Na,Hg ,S,Pt and graphite which can be used as electrodes in electrolytic cells having aqueous solutions:

A. Na and S

B. Hg and Pt

C. Na, Hg and S

D. `Hg,Pt and graphite

Answer: D

Watch Video Solution

840. If the current is passed into the solution of an electrolyte :

A. Anions move towards anode, cations towards cathode

B. Anoins and cations both move towards anode

C. Anions move towards cathode, ctions towards anode

D. No movement of ions takes place

Answer: A

Watch Video Solution

841. When same quantity of current is passed through two different electrolytes connected in series, the amount of products liberated at the electrodes are in the ratio of their.

A. At.no.

B. At.wt.

C. Sp.gravity

D. Eq.wt.

Answer: D

842. The electrolysis of a solution resulted in the formation of H_2 at the

cathode and Cl_2 at the anode. The liquid is :

843. In electrolysis, oxidation takes place at:

A. Anode

B. Cathode

C. Both at the anode as well as cathode

D. The surface of electrolyte solution

Answer: A

Watch Video Solution

844. Which loses charge at catode:

A. lons

B. Cations

C. Anions

D. Both anoions and cations

Answer: B

Watch Video Solution

845. In the electrolyses of $CuSO_4$ the reaction $Cu^{2\,+} + 2^{\circ\,-}
ightarrow Cu$,

Takes place at :

A. Anode

B. Cathode

C. In solution

D. None

Answer: B

846. A standard hydrogen electrode has zero electrode potential because

- A. Hydrogen is easiest to oxidise
- B. This electrode potential is assumed to be zero
- C. Hydrogne atom has only one electron
- D. Hydrogen is the lightest element

Answer: B

:

Watch Video Solution

847. In an electrolytic cell current flows :

A. From cathode to anode in outer circuit

B. From anode to cathode outside the cell

C. From cathode to anode inside the cell

D. None

Answer: A

Watch Video Solution

848. In Dow.s method, sodium is prepared by the electrolysis of molten NaCI. The reaction at cathode is :

A. $2CI^{ightarrow}CI_2(g)+2e$ B. $Na^++e
ightarrow Na(s)$ C. $Na^+(aq)+e
ightarrow Na^++e$ D. $Na^+(aq)+e
ightarrow Na(s)$

Answer: B

849. The ions discharged at anode by the electrolysis of very dilute H_2SO_4 solution are:

A. H_3O^+

 $\mathsf{B.}\,OH^{\,-}$

 $\mathsf{C}.HSO_4^-$

 $\mathrm{D.}\, SO_4^{2\,-}$

Answer: B

Watch Video Solution

850. The reaction at cathode during the electrolysis of aqueous solution

of NaCI in Nelson cell is :

A. $2CI^{\,ightarrow}CI_2+2e$

B. $2H^+ + 2e
ightarrow H_2$

C. $2OH^{\,ightarrow}H_2+O_2+2e$

D.
$$Na^+ + e
ightarrow Na$$

Answer: B

851. In electrochemical corrosion of metals, the metal undergoing corrosion:

A. Acts as anode

B. Acts as cathode

C. Is reduced

D. Either of these

Answer: A

852. The value of electronic charge is equal to :

A.
$$\frac{Faraday}{Av. Number}$$

B. $Faraday \times Av. \nu mber$
C. $\frac{Av. \nu mber}{Faraday}$
D. None

Answer: A

Watch Video Solution

853. The number of electrons involved in redox reactions when a faraday

of electricity is passed through an electrolyte in solution is :

A. $12 imes 10^{46}$

B.96500

 ${\rm C.8\times10^{16}}$

D. `6.02xx10^(23)

Answer: D

Watch Video Solution

854. An electrolytec cell contains a solution of $AgNO_3$ and have platinum electrodes. A current is passed untill 1.6g of O_2 has been liberated at anode. The amount of silver peposited at cathode would be :

A. 107.88g

 $\mathsf{B}.\,1.6\mathsf{g}$

C. 0.8g

D. 21.60g

Answer: D

855. The standard oxidation potentials, $E^{\,\circ}$ for the half reactions are :

$$Zn
ightarrow Zn^{2+} + 2e, E^{\circ} = +0.76V$$

 $Ag
ightarrow Ag^+ + e, E^{\circ} = -0.77V$
The standard emf of the cell,
 $Ag^+ + Zn
ightarrow Zn^{2+} + Ag$ is :
A. +1.53
B. -1.53
C. +0.01
D. +0.01

Answer: A

856. The solution of $CuSO_4$ in which copper rod is immersed is diluted to

10 times, the reduction electrode protential :

A. Increases by 0.30 V

B. Decreases by 0.0.30V

C. Increases by 0.059V

D. Decreases by 0.059V

Answer: B

Watch Video Solution

857. Deduce from the following E° values of half cells, what combination of two halt would resutlt in a cell with the largenst potential : (i) $A + e \rightarrow A$, $E^{\circ} = -0.24V$

- (ii) $B^{-\,+}e
 ightarrow B^{2\,-}, E^{\,\circ}=\,+\,1.25V$
- (iii) $C^{\,-\,+}2e
 ightarrow C^{3\,-}, E^{\,\circ}=\,-\,1.25V$
- (iv) $D+2e
 ightarrow D^{2\,-},$ $E^{\,\circ}=\,+\,0.68V$

A.(ii) and (iii)

B.(ii) and (iv)

C.(i) and (iii)

D.(i) and (iv)

Answer: A

Watch Video Solution

858. Deduce from the following E° values of half cells, what combination of two halt would resutlt in a cell with the largenst potential : (i) $A
ightarrow A^+ + e, E^\circ = +1.2V$ (ii) $B^{-
ightarrow} B + e, \, E^{\,\circ} = \, - \, 2.1 V$ (iii) $C
ightarrow C^{2\,+} + 2e, \, E^{\,\circ} = \, - \, 0.38 V$ (iv) $D^{2-}
ightarrow D^{-+}e,\,E^{\,\circ}=\,-\,0.59V$ A. (i) and (iv)B.(ii) and (iii)C.(iii) and (iv)

D.(i) and (ii)

Answer: D

859. Deduce from the following E° values of half cells , what combination of two half cells would result in a cell with largest potential : (i) $A^{3-}
ightarrow A^{2-} + e^-, E^\circ = 1.5V$ (ii) $B^{2\,+} + e^{-\,
ightarrow} B^+, \, E^{\,\circ} = \, -\, 2.1 V$ (iii) $C^{2\,+}+e^{-\,
ightarrow}C^{\,+},\,E^{\,\circ}=\,+\,0.5V$ (iv) $D
ightarrow D^2 + 2e^-, \, E^{\,\circ} = \, - \, 1.5 V$ A(i) and (iii)B.(i) and (iv)C.(ii) and (iv)D.(iii) and (iv)

Answer: C

860. E° for $F_2 + 2e \rightarrow 2F^-$ is 2.8V, $E^{\circ}f$ or $1/2F_2 + e \rightarrow F^-$ is :

 ${\rm A.}\,2.8V$

 ${\rm B.}\,1.4V$

C.-2.8V

 $\mathrm{D.}-1.4V$

Answer: A

Watch Video Solution

861. For the cell , $Tl|Tl^+(0.001M)| \mid Cu, E_{cell}at25^\circ Cis0.83V. E_{cell}$ can be increased :

- A. By increasing [Cu[^](2+)]`
- B. By increasing $\left [Ti^+ \right]$
- C. By decrasing $\left[C u^{2+} \right]$

D. None of the above

Answer: A

862. How much will the reduction potential of a hydrogen electrode change when its solution initially at pH = 0 is neutralised to Ph = 7:

A. Increaase by 0.059V

B. Decrease by 0.059V

C. Increase by 0.41V

D. Decreases by 0.41V

Answer: D

863. The charge for the reduction of 1 mole of $Cr_2O_7^{2-}$ ions to Cr^{3+} is :

A. 96500C

 $\mathrm{B.}\,2\times96500C$

 $\text{C.}~3\times96500C$

D. 6 imes96500C

Answer: D

Watch Video Solution

864. 10800 C of electricity on passing through the electrolyte solution deposited 2.977g of metal with atomic mass $106.4 gmol^{-1}$ the charge on the metal cation is :

- $\mathsf{A.}+4$
- $\mathsf{B.}+3$

C.+2

 $\mathsf{D.}+1$

Answer: A

Watch Video Solution

865. I coulomb of charge passes through solution of $AgNO_3$ and $CuSO_4$ connected in series and the concentration of two solution being in the ratio 1:2. The ratio of amount of Ag and Cu deposited on Pt. electrode is

A. 107.9:63.54

B. 54: 31.77

:

C. 107.9: 31.77

D. 54:63.54

Answer: C

866. During electrolysis of H_2O , the molar ratio of H_2 and O_2 formed is:

A. 2:1

 $\mathsf{B}.\,1\!:\!2$

C. 1: 3

D.1:1

Answer: A

Watch Video Solution

867. On passing 3 faraday of electricity through the three electrolytic cells connected in series containing Ag^+ , Ca^{2+} and AI^{3+} ions respectively. The molar ratio in which the three metal ions are liberated at the electrodes is :

A. 1:2:3

B. 3:2:1

C. 6: 3: 2

D. 3:4:2

Answer: C

Watch Video Solution

868. The weight of silver (eq. wt, = 108) displaced by that quanitiy of current which displaced 5600 mL of oxygen at STP is:

A. 54g

 $\mathsf{B.}\,108g$

 $\mathsf{C.}\,5.4g$

D. None of these

Answer: A

869. The volume of oxygen at NTP Liberated by 5 ampere current flowing

for 193 second though acidulated water is :

A. 56

B. 112

C. 224

 $\mathsf{D}.\,5.6$

Answer: A

870. Salts of A (atomic weight 7), B (atomic weight 27) and C (atomic weight 48) were electrolysed under identical condition using the same quantity of electricity. It was found that when 2.1 g of A was deposited, the eight of B and C deposited were 2.7 and 7.2 g. The valencies of A,B and C are respectively :

 $\mathsf{A.}\,3,\,1$ and 2

B.1, 3 and 2

C.3,1 and 3

D.2, 3 and 2

Answer: B

Watch Video Solution

871. To produce 160 g of oxygen, the number of mole of water required to

be electrolysed is :

A. 2.5

B. 5

C. 10

D. 20

Answer: C

872. The weight of nickel (at. wt. = 58.7) liberated by a current of 5 ampere flowing for 193 second through $NiSO_4$ solution is :

A. 0.587g

 $\mathsf{B.}\,5.87g$

 $\mathsf{C.}\,0.2935g$

D. 2.935g

Answer: C

Watch Video Solution

873. Electrolytes when dissolved in water dissociate into ions, because :

A. They are unstable

B. The water dissolves them

C. The forces of repulsion increases

D. The forces of electrostatic attraction are broken down by water

Answer: C

Watch Video Solution

874. The metal that cannot be produced on reduction of is oxide by aluminium is :

A. K

B. Mn

C. Cr

D. Fe

Answer: A
875. The best conductor of electricity is 1 M solution of :

A. CH_3COOH

 $\mathsf{B.}\,H_2SO_4$

 $\mathsf{C}. H_3 PO_4$

D. Boric acid

Answer: B

Watch Video Solution

876. If mercury is used as cathode in the electrolysis of aqueous $\it NaCl$

solution, the ions dischaged at cathode are:

A. $H^{\,+}$

 $\mathsf{B.}\,Na^{\,+}$

 $\mathsf{C}.\,OH^{\,-}$

D. CI^{-}

Answer: B

877. When sodium chloride solution is electrolysed, the gas that is liberated at the cathode is

A. Oxygen

B. Hydrogne

C. Chlorine

D. Air

Answer: B

878. When electric current is passed through a cell having an electrolyte,

the positive ions move towards the cathode and the negative ions

towards the anode, if the cathode is pulled out of the solution:

- A. The postive and the negative ions both will move towards the anode
- B. The positive ions will start moving towards the anode, the negative

ions will stop moving

C. The negative ions will conuinue to move towards the anode, the

positive ions will stop moving

D. The positive ions and the negative ions will start moving randonly

Answer: D

Watch Video Solution

879. When a copper wire is immersed in a solution of $AgNO_3$ the colour of the, solution becomes blue because copper:

A. Forms a soluble complex with $AgNO_3$

B. Is oxidized to Cu^{2+}

C. Is reduced to Cu^{2-}

D. Splits up into atomic form and dessolves

Answer: B

Watch Video Solution

880. When an electric current is passed through an aqueous solution of sodium chloride :

- A. H_2 is evolved at the anode
- B. Oxygen is evolved at the cathode
- C. Its pH progressively decreases
- D. Its pH progressively inreases

Answer: D

881. Four colourless salt solutions are placed in separate test tubes and a strip of copper is placed in each. Which solution finally turns blue:

A. $Pb(NO_3)_2$ B. $Zn(NO_3)_2$ C. $AgNO_3$

D. $Cd(NO_3)_2$

Answer: C

Watch Video Solution

882. If a strip of copper metal is placed in a solution of ferrous sulphate:

A. Copper will precipitate out

B. Iron will precipitate out

C. Both copper and iron will be dissolved

D. No reaction will take place

Answer: D

883. The electric charge for electrode deposition of the gram equivalent

of a substance is

A. 1 ampere per second

B. 96,500 coulomb per second

C.1 ampere for 1 hour

D. Charge on 1 mole of electrons

Answer: D

884. Which metal can deposit copper from copper sulphate solution:

A. Mercury

B. Iron

C. Gold

D. Paltinum

Answer: B

Watch Video Solution

885. A student made the following observations in the laboratroy:

- (i) clean copper metla didn not react with 1 molar $Pb(NO_3)_2$ solution
- (ii) Clean lead metal dissolved in a 1 molar $AgNO_3$ solution and crystals of
- Ag metal appeared
- (iii)Clean silver metal did not react with 1 molar $Cu(NO_3)_2$ soution

The order of decreasing reducing character of th three metals is :

A. Cu, Pb, Ag

B. Cu, Ag, Pb

C. Pb, Cu, Ag

D. Pb, Ag, Cu

Answer: C

886. Two platinum electrodes were immersed in a solution of cupric and electric current passed through the solution. After some tiem it was found that the colour of copper sulphate disappeared with evolution of gas at the electrode. The colurless solution corttains :

A. Platinum sulphate

B. Copper hydroxide

C. Copper sulphate

D. Sulphuric acid

Answer: D

887. Faraday's law of electrolysis are related to

A. Atomic number of the cation

B. Atomic number of the anion

C. Equivalent weight of the electroyte

D. Speed of the cation

Answer: C

Watch Video Solution

888. Electrolysis of aqueous HCI solution produces

A. H_2 gas at the anode

B. H_2 gas at the cathode

C. CI_2 gas at the cathode

D. CI_2 and O_2 gases both at the anode

Answer: B

Watch Video Solution

889. A solution of sodium sulphate in water is electrolysed using inert electrodes. The products at the cathode and anode are respectively:

A. H_2, O_2

 $\mathsf{B.}\,O_2H_2$

 $\mathsf{C}.O_2,Na$

 $D.O_2, SO_2$

Answer: A

890. Identification of anode and cathode in an electrochemical cell is made by the use of :

A. Galvanometer

B. Salt bridge

C. Valtameter

D. None

Answer: A

Watch Video Solution

891. During electrolysis of a NaCI a part of the reaction is $Na^+ + e^{ightarrow}Na$

This cannot be termed as :

A. Oxidation

B. Reduction

C. Deposition

D. Cathode reaction

Answer: A

Watch Video Solution

892. The cathodic reaction in electrolysis of dilute sulphuric acid with platinum electrode is :

A. Oxidation

B. Reduction

C. Both oxidation and reduction

D. Neutralization

Answer: B

893. 2.5 Faraday of electricity are passed through a solution of a solution of $CuSO_4$. The Number of gram equivalents of copper deposited on the cathode are :

A. 1

B. 2

C. 2.5

D. 1.25

Answer: C

Watch Video Solution

894. The standard cell potential for the cell is $Zn|Zn^{2+}(1M)||Cu^{2+}(1M)|Cu|$ $[E^{\circ}f ext{ or } Zn^{2+}/Zn = -0.76V, E^{\circ}f ext{ or } Cu^{2+}/Cu = +0.34V]$

,

A. -0.76 + 0.34 = -0.42V

$$\mathsf{B}.-0.34-(\,-0.76)=\,+\,0.42V$$

$$\mathsf{C.0.34} - (\,-0.76) = \,+\,1.10V$$

$$\mathsf{D.}-0.76-(\,+\,.34)=\,-\,1.10V$$

Answer: C

895. Silver is removed electrolytically from 200mLofa0.1Nsolution of AgNO_3`by a current of 0.1 ampere. Hoe long will it take to remove half of the silver from the solution:

A. 10 sec

B. 16 sec

C. 100 sec

D. 9650 sec

Answer: D

896. The atomic weight of Al is 27. When a current of 5 Faraday is passed through a solution of Al^{3+} ions, the wt. of Al depostited is :

A. 27g

- B. 36 g
- C. 45 g
- D. 9 g

Answer: C

897. Maximum number of mole of oxygen gas that can be obtained by the

electrolytic decomposition of 90 g of water will be

/

B. 2.5

C. 5

D. 9

Answer: B

Watch Video Solution

898. For the reaction at 298K,

$$Ag^{\,+}(aq) + e^{\,-\,=}Ag(s), E^{\,\circ} = \,+\,0.80V$$

 $Sn^{2\,+}(aq)+2e^{\,-\,=}Sn(s), E^{\,\circ}=\,-\,0.14V$

what is the emf of the cell represented as $Sn|Sn^{2+}| \mid Ag^+|Ag$, if each ion having unit concentration:

A. 0.66V

B. 0.80V

C. 0.94V

D. 1.08V

Answer: C

Watch Video Solution

899. What is the potential of the cell containing two hydrogen electrodes as represented below?

$$PT, \, rac{1}{2}H_2(g)ig|H^+ig(10^{-8}Mig)ig|H^+ig(0.001M)ig|rac{1}{2}H_2(g)$$
Pt:

A. -0.295V

 $\mathrm{B.}-0.0591V$

 ${\rm C.}\,0.295V$

 $\mathrm{D.}\, 0.0591 V$

Answer: C

900. When an electric current is passed through acidified water, 112ml of H_2 gas collected at NTP at cathode in 965sec. the current strength is

A. 1.0

 $\mathsf{B}.\,0.5$

 $\mathsf{C}.0.1$

D.2.0

Answer: A

Watch Video Solution

901. Chromium plating can involve the electrolysis of an electrolyte of an acidified mixuture of chromic acid and chromium sulphate . If during electrolysis the article being plated increases in mass by 2.6 g and 0.6 dm3 of oxygen are evolved at an inert anode, the oxidation state of chromium ions being discharged must be:

(assuming `Cr=52) and I mole of gas at room temperature and pressure occupies a volume of 24 dm^3)

 $\mathsf{A.}-1$

B. Zero

C. +1

D.+2

Answer: D

902. A current of I ampere was passed for t second through three cell P,Q and R connected in series. These contains respectively silver nitrate. mercuric nitrate and mercurous nitrate. At the cathode of the cell P, 0.216 g of Ag was deposited. The weights of mercury deposited in the cathode of Q and R respectively are :

A. 0.4012 and 0.8024g

B. 0.4012 and 0.2006g

C. 0.2006 and 0.4012g

D.0.1003 and 0.2006g

Answer: C

903. An electric current of c ampere was passed through a solution of an electrolyte for t second depositing P g of the metal M on the cathode. The equivalent weight E of the metal will be :

A.
$$E = rac{c imes t}{P imes 96500}$$

B. $E = rac{c imes P}{t imes 96500}$
C. $E = rac{96500 imes P}{c imes t}$
D. $E = rac{c imes t imes 96500}{P}$

Answer: C

904. The electrochemical equivalent of silver is 0.0011180g . When an electric current of 0.5 ampere is passed through an aqueous silver nitrate solution for 200 sec, the amount of silver deposited is :

A. 1.1180g

 $\mathsf{B.}\,0.11180g$

 $\mathsf{C}.\,5.590g$

 $\mathsf{D}.\,0.5590g$

Answer: B

905. Two electrolytic cells, one containing acidified ferrous chloride and another acidified ferric chloride are connected in series. The ratio of iron deposited at cathodes in the two cells when electricity is passed through the cell will be:

A. 3:1

B.2:1

C. 1 : 1

D. 3:2

Answer: D

Watch Video Solution

906. 1.8 g of metal were deposited by a current of 3 ampere for 50 minute.

The equivlent wt. of metal is :

A.20.5

 $\mathsf{B}.\,25.8$

C. 19.3

 $D.\,30.7$

Answer: C

907. A current of 9.65 ampere folwing for 10 minute depostits 3.0 g of a metal. The equivalent weight of the metal is :

A. 10

B. 30

C. 50

D.96.5

Answer: C

Watch Video Solution

908. Consider the reaction,

 $M^{n\,+}(aq) + {\sf ne} o M(s)$

The standard reduction potential value of the metals M_1 , M_2 and M_3 are -0.34 V,-3.05 V and -1.66V respectively. The order of their reducing power will be :

A. $M_1 > M_2 > M_3$

- B. $M_3 > M_2 > M_1$
- C. $M_1 > M_3 > M_2$
- D. $M_2 > M_3 > M_1$

Answer: D

909. The hydrogen electrode is dipped in solution of pH = 3 at $25^{\circ}C$. The reduction potential of the cell would be:

 $\mathsf{A.}\,0.177V$

 $\mathrm{B.}-0.177V$

 $\mathsf{C}.\,0.087V$

 $\mathsf{D}.\,0.059V$

Answer: B

910. The same amount of electricity was passed through two separate electrolyic cells containing solutions of nickel nitrate and chromium nitrate respectively. If 0.3 g of nickel was deposited in the first cell, the amount of chormium deposited is :

(at. wt. Ni=59, Cr=52)

A. 0.1g

 $\mathsf{B}.\,0.17g$

 $\mathsf{C.}\,0.3g$

D. 0.6g

Answer: B

911. The standard emf for the cell reaction, $Zn + Cu^{2+} = Cu + Zn^{2+}$ is 1.10 volt at $25^{\circ}C$. The emf for the cell reaction, when $0.1MCu^{2+}$ and $0.1MZn^{2+}$ solutions are used, at $25^{\circ}C$ is:

A. 1.10V

 $\mathsf{B}.\,1.110V$

 ${\rm C.}-1.10V$

 $\mathrm{D.}-0.110V$

Answer: A

Watch Video Solution

912. Given electrode potentials are:

$$Fe^{3\,+} + e o Fe^{2\,+}, E^{\,\circ} \,= 0.771 V$$

 $I_2 + 2e
ightarrow 2I^{\,-}, E^{\,\circ} \,= 0.536 V$

 $E^{\,\circ}\,$ cell for the cell reaction,

 $2Fe^{3+}+2I^{ightarrow}2Fe(2+)+I_2$ is:

A. (2 imes 0.7710.536) = 1.006V

B. (0.771 - 0.5 imes 0.536) = 0.503V

 ${\rm C.}\,0.771-0.536=0.235V$

 $\mathsf{D}.\,0.536 - 0.771 = \ - \ 0.236 V$

Answer: A

Watch Video Solution

913. The equation, $E^{0} = (RT)/(nF) \ln K_{c}$ is called :

A. Gibb's equatin

B. Gibb's-Helmholtz equation

C. Nernest equation

D. van der Waals' equation

Answer: C

914. On the basis of position in the electrochemial series, the metal does not displace hydrogen from water and acids is :

A. Hg B. Al C. Pb D. Ba

Answer: A

Watch Video Solution

915. During the charging of lead storage battery, the reaction at anode is represented by:

A.
$$Pb^{2\,+} + SO_4^{2\,-} o PbSO_4$$

B. $PbSO_4 + H_2O
ightarrow PbO_2 + SO_4^{2\,-} + 2H^{\,+}$

C. $Pb
ightarrow Pb^{2\,+} + 2e$

D. $Pb^{2+} + 2e
ightarrow Pb$

Answer: B

Watch Video Solution

916. If a salt bridge is removed from the two half cell, the voltage:

A. Drops to zero

B. Does not change

C. Increases gradually

D. Increases rapidly

Answer: A

917. The calomel electrode is a:

- A. Standard hydrogen electrode
- B. Reference electrode
- C. Platinum electrode
- D. Mercury electrode.

Answer: B

Watch Video Solution

918. A gas X at 1 atm is bubbled through a solution containg a mixture of

1 M $Y^{\,-}\,$ and 1M $Z^{\,-}\,$ at $25\,^{\circ}C.$ If the reduction potential of Z>Y>X,

then :

A. Y will oxidise X and not Z

B. Y will oxidise Z and not X

C. Y will oxidise both X and Z

D. Y will reduce both X and Z

Answer: A

919. In an aqueous solution, hydrogen (H_2) will not reduce:

A. (Fe^{3+})

- B. Cu^{2+}
- C. Zn^{2+}
- D. Ag^+

Answer: C

920. If 1 faraday of electricity is passed through a solution of $CuSO_4$ the amount of copper deposited will be equal to its :

A. Gram equivalent weight

B. Gram molecular weight

C. Atomic weight

D. Electrochemical equivalent

Answer: A

Watch Video Solution

921. I faraday of electricity will liberate 1 g atom of the metal from the

solution of :

A. NaCI

 $\mathsf{B.}\,BaCI_2$

 $C.CuSO_4$

D. $AICI_3$

Answer: A

922. Solid NaCl is bad conductor of electricity because :

A. In solid there are no ions

B. Solid NaCI is convalent

C. In solid NaCI, there is no velocity of ions

D. None

Answer: C

923. A fuel cell is :

A. The voltic cells in which continuous supply of fuels are send at

anode to give oxidation

B. The voltic cell in which fuels such as, CH_4H_2, CO are used up at

anode

C. It involves the reaction of $H_2 - O_2$ fuel cell such as :

Anode : $2H_2 + 4OH^{ightarrow} 4H_2O(l) + 4e$

Cathode: $O_2+2H_2O(l)+4e
ightarrow 4OH^{\,-}$

D. All

Answer: D

Watch Video Solution

924. The standard reduction potential values of three metallic cations X, Y and Z are 0.52, -3.03 and -1.18V respectively. The order of reducing power of the corresponding metals is :

A. Y>Z>X

 $\operatorname{B}.X>Y>Z$

 $\mathsf{C}.\, Z > Y > X$

 $\mathsf{D}.\, Z>X>Y$

Answer: A

Watch Video Solution

925. Which represents a concentration cell:

A. $PtH_2 |HCI| |HCI| PtH_2$ B. (b) PtH_1 |HCI||Cl_2Pt C. (c) Zn |Zn^{2+}||Cu^{2+}|Cu

D.
$$Fe \left| Fe^{2+} \right| \left| Cu^{2+} \left| Cu \right|^2 \right|$$

Answer: A

926. Aqueous solution of HCI conducts electricity because :

A. It undergoes ionisation

B. It associates

C. Forms hydrogen bonds

D. None

Answer: A

Watch Video Solution

927. When an electrolyte solution conducts electricity, current is carried

out by:

A. Electrons

B. Cations and anions

C. Neutral atoms

D. None
Answer: B

928. The reaction taking place at anode when an aqueous solution of $CuSO_4$ is electrolysed using inert Pt electrode:

A.
$$2SO_4^{2-}
ightarrow S_2O_3^{2-} + 2e$$

B. $Cu^{2+} + 2e
ightarrow Cu$
C. $2H_2O
ightarrow O_2 + 4H^+ + 4e$
D. $2H^+ + 2e
ightarrow H_2$

Answer: C

929. In the electrolysis of which solution, OH^{-} ions are discharged in

preference to CI^{-} ions:`

A. Dilute NaCl

B. Very dilute NaCI

C. Fused NaCl

D. Solid NaCl

Answer: B

Watch Video Solution

930. Which reaction occurs at cathode during electrolysis of fused lead bromide :

- A. $Pb
 ightarrow Pb^{2\,+} + 2e$
- B. $Br+e
 ightarrow Br^-$
- C. $Br^{\,-\,
 ightarrow}Br+e$
- D. $Pb^{2+} + 2e
 ightarrow Pb$

Answer: D

931. The process in which chemical change accompanies the passage of current is called :

A. Conduction

- B. Matallic conduction
- C. Electrolytic conduction
- D. Non- electrlytic condution

Answer: C

Watch Video Solution

932. Which is correct about fuel cells :

A. Cells continuously run as long as fuels are supplied

B. These are more efficient and free from pollution

C. These are used to provide power and drinking water to astronauts

in space programme

D. All

Answer: D

Watch Video Solution

933. Calculate the volume of hydrogen at NTP obtained by passing a

current of 0.4 ampere through acidified water for 30 minute:

A. 0.0836 litre

B. 0.1672 litre

 $\mathsf{C.}\,0.0432\,\mathsf{litre}$

D. 0.836 liter

Answer: A

934. During electrolysis of aqueous solution of NaCl at which electrode chlorine is liberated.

A. Anide

$$Na^+ + e o Na$$
 Cathode $CI^{- o} rac{1}{2} CI + e$

B. Anide

$$Na
ightarrow Na^+ + e$$
 Cathode

$$rac{1}{2}CI_2 + e
ightarrow CI^-$$

$$CI^{\,-
ightarrow}rac{1}{2}CI_2+eNa^+e$$
 Cathode

$$Na^+e
ightarrow Na$$

D. Anide

$$rac{1}{2}CI_2+e
ightarrow CI$$
 Cathode $Na
ightarrow Na^++e$

Answer: C

935. At $25^{\circ}C$, the standard emf of cell having reactions involving two electron change is found to be 0.295V. The equilibrium constant of the reaction is :

A. $29.5 imes10^{-2}$

B. 10

 $\mathsf{C}.\,10^{10}$

D. $29.5 imes 10^{10}$

Answer: C

936. The standard reduction potentials of Cu^{2+} /Cu and Cu^{2+} /Cu⁺ are 0.337 and 0.153 V respectively. The standard electrode potential of Cu^+ / Cu half cell is :

 $\mathsf{A.}\,0.184V$

 $\mathsf{B}.\,0.827V$

 $\mathsf{C.}\,0.521V$

 $\mathsf{D}.\,0.490V$

Answer: C

Watch Video Solution

937. The emf of the cell,

 $Zn|Zn^{2+}(1M)||Cu^{2+}|Cu(1M)$ is 1.1 volt, if the standard reduction potential of $Zn^{2+}|Zn$ is -0.78volt,what is the oxidation potential of $Cu | Cu^{2+}$? $\mathsf{A.}+1.86V$

 ${\rm B.}\,0.32V$

 ${\rm C.}-0.32V$

 $\mathrm{D.}-1.86V$

Answer: C

Watch Video Solution

938. For I_2 +2e $\rightarrow 2I^-$, standard reduction potential = +0.54 volt. For $Br^- \rightarrow Br_2 + 2e^-$, standard oxidation potential = -1.09 volt. For $Fe \rightarrow Fe^{2+} + 2e^-$, standard oxidation potential = +0.44 volt. Which of the following reactions is non-spontaneous :

A.
$$Br_2+2I^{\,-
ightarrow}2Br^{\,-
ightarrow}I_2$$

B.
$$Fe+Br_2
ightarrow Fe^{2+}+2Br^-$$

C.
$$Fe+I_2
ightarrow Fe^{2\,+} = 2I^{\,-}$$

D. $I_2+2Br^{-}
ightarrow 2I^{-} +Br_2$

Answer: D

939. For the cell prepared from electrode A and B: Electrode $A: Cr_2O_7^{2-} | Cr^{3+}, E_{red}^{\circ} = +1.33V$ and Electrode $B: Fe^{3+}/Fe^{2+}, E_{red}^{\circ} = 0.77V$. Which of the following statements are correct :

A. The electrons will flow from B to A when connection are made

B. The emf of the cell will be 0.56V

C. A will be positive electrode.

D. All of these

Answer: D

940. The following facts are available :

$$2A^{-+}B_2 \rightarrow 2B^{-+}A_2, 2C^{-+}B_2 \rightarrow \text{No}$$
 reaction ,
 $2D^{-+}A_2 \rightarrow 2A^{-+}D_2$.Which of the following statement is correct :
A. $E_{C^IC_2}^{\circ} > E_{B^{-I}B_2}^{\circ} > E_{A^{-I}A_2}^{\circ} > E_{D^{-I}D_2}^{\circ}$
B. $E_{C^IC_2}^{\circ} < E_{B^{-I}B_2}^{\circ} < E_{A^{-I}A_2}^{\circ} < E_{D^{-I}D_2}^{\circ}$
C. $E_{C^IC_2}^{\circ} < E_{B^{-I}B_2}^{\circ} > E_{A^{-I}A_2}^{\circ} > E_{D^{-I}D_2}^{\circ}$
D. $E_{C^IC_2}^{\circ} > E_{B^{-I}B_2}^{\circ} < E_{A^{-I}A_2}^{\circ} < E_{D^{-I}D_2}^{\circ}$

Answer: B

Watch Video Solution

941. Given that $E_{Fe^3+|Fe}$ and $E_{Fe^2|Fe}^\circ$ are -0.36V and -0.439V, respectively. The value of $E_{Fe^{3+}fe^{2+}}^\circ$ would be:

A. (-36 - 0.439)V

B. [3(-0.36)+2(-0.439)]V

 $\mathsf{C.} (-0.36 + 0.439) V$

D.
$$[3(-0.36) - 2(-0.439)]V$$

Answer: D

942. The standard oxidation potentials of the electrodes $Ag|Ag^+, Sn|Sn^{2+}, Ca|Ca^{2+}, Pb|Pb^{2+}$ are -0.8, 0.136, 2.866 and 0.126V respectively. The most powerful oxidising agent among these metal ions is :

A. Pb^{2+}

B. Ca^{2+}

C. Sn^{2+}

D. Ag^+

Answer: D

943. A current is passed through two valtameters connected in series. The first voltameter contains $XSO_4(aq)$ while the second voltameter contains $Y_2SO_4(aq)$. The relative masses of X and Y are in the ratio of 2:1. The ratio of the mass of X liberated to the mass of Y liberated is :

A. 1:1

 $\mathsf{B}.\,1\!:\!2$

C.2:1

D. None of these

Answer: A

Watch Video Solution

944. The time required to coat a metal surface of $80cm^2$ with 5×10^{-3} cm thick layer of silver (density $10.5qcm^{-3}$ with th passage of 3A current

through a silver nitrate solution is :

A. 115 sec

B. 125 sec

C. 135 sec

D. 145 sec

Answer: B

Watch Video Solution

945. A hydrogen electrode placed in a buffer solution of CH_3COONa and acetic acid in the ratio.sx : y and y : x has electrode potential values E_1 volt and E_2 volt respetively at $25^{\circ}C$ the pKa values of acetic acid is (E_1 and _2 are oxidation potential):

A.
$$\left(E_1+E_2
ight)/(0.118)$$

B. $rac{E_2+E_1}{0.118}0$
C. $-\left(E_1+E_2
ight)/(0.118)$

D. $\left(E_1 + E_2
ight) / (0.118) 0$

Answer: A

946. The amount of energy expanded during the passage of one ampere current for 100 second under a potential of 115 V is:

A. 20kJ

 $\mathsf{B}.\,11.5kJ$

 $\mathsf{C}.\,115kJ$

 $\mathsf{D}.\,0.115kJ$

Answer: B

947. The cell reaction for the given cell is : $Pt(H_2)|pH = 2||pH = 3|Pt(H_2)$ $Pt(H_2)|pH = 2||pH = 3|Pt(H_2)$ $P_1 = 1 \text{ atm}$ $P_1 = 1 \text{ atm}$

A. Spontaneous

B. Non-spontaneous

C. In equilibrium

D. Either of these

Answer: B

Watch Video Solution

948. The cell reaction for the given cell is spontaneous if : $Pt(H_2)|H^{\,=}(1M)||H^{\,+}(1M)|Pt(H_2)$

$Pt(H_{2})|H^{+}(1M)||H^{+}(1M)|Pt(H_{2})|$ P₁ P₁ P₂

- A. $P_1 > P_2$
- $\mathsf{B.}\,P_1 < P_2$
- C. $P_1 = P_2$
- $\mathsf{D.}\,P_1=1atm$

Answer: A

Watch Video Solution

949. The cell reaction for the given cell is spontaneous if : $Pt|Cl_2|CI^-(1M)||CI^-(1M)|Cl_2|Pt$

$\begin{array}{c} \operatorname{PtCl}_{2} | \operatorname{Cl}^{-}(1M) || \operatorname{Cl}^{-}(1M) | \operatorname{PtCl}_{2} \\ P_{1} \\ P_{2} \end{array}$

A. $P_1 > P_2$

 $\mathsf{B.}\,P_1 < P_2$

 $C. P_1 = P_2$

D. $P_2 = 1$ atm

Answer: B

Watch Video Solution

950. Passage of three faraday of charge through aqueous solution of $AgNO_3$, $CuSO_4$, $Al(NO_3)_3$ and NaCl will deposit metals at the cathode in the molar ratio of :

A.1:2:3:1

B. 6: 3: 2: 6

C.6:3:0:0

D. 3: 2: 1: 0

Answer: C

951. The approximate emf of a dry cell is :

 ${\rm A.}\ 2.0V$

 ${\rm B.}\,1.2V$

C. 6V

 $\mathsf{D}.\,1.5\mathsf{V}$

Answer: D

O Watch Video Solution

952. Which gains electrons more easily :

A. $H^{\,+}$

B. Na^+

 $\mathsf{C}.\,K^{\,+}$

D. Mg^{2+}

Answer: A

953. Which will increase the voltage of the cell

 $Sn(s)+2Ag^+(aq)
ightarrow Sn^{2+}(aq)+2Ag(s)$:

A. Increase in size of the silver rod

B. Increase in the concentration of ${Sn}^{2+}$ ions

C. Increase in the concentration of Ag^+ ions

D. None

Answer: C

954. During electrolysis of fused CaH_2 , H_2 is liberated at :

A. Anode

B. Cathode

C. Either electrode

D. Not at all

Answer: A

Watch Video Solution

955. Which defines the standard reduction electrode potential of Zn^{2+}

ions :

A.
$$Zn^{2+}(aq) + 2e \rightarrow Zn(s), [Zn^{2+}] = 1M$$

B. $Zn(g) \rightarrow Zn^{2+} + 2e, [Zn^{2+}] = 1M$
C. $Zn6(2+)(aq) \rightarrow Zn(s) + 2e, [Zn^{2+}] = 1M$
D. $Zn^{2+}(g) \rightarrow Zn(s) - 2e, [ZN^{2+}] = 1M$

Answer: A

956. In which cell, electrical energy is converted into chemical energy:

A. Water voltameter

B. Silver voltameter

C. Coulmeter

D. Either of these

Answer: D

Watch Video Solution

957. $E^{\,\circ}$ for $Fe^{2\,+}\,+\,2e\,
ightarrow\,Fe$ is -0.44 volt and $E^{\,\circ}\,$ for $Zn^{2\,+}\,+\,2e\,
ightarrow\,Zn$

is -0.76 volt thus:

- A. Zn is more electropositive than Fe
- B. Fe is more electropositive than Zn
- C. Zn is more electronegative
- D. None

Answer: A

958. In a galvanic cell, which is wrong :

- A. Anode has negative polarity
- B. Cathode has positive polarity
- C. Reduction takes place at anode
- D. Reduction takes place at cathode

Answer: C

959. Using same quantity of current , which among `Na, Mg and AI is deposited more during electrolysis of their molten salt :

A. Na

B. Mg

C. Al

D. All in same amount

Answer: A

Watch Video Solution

960. A metal having negative reduciton potential when dipped in the solution of its ow ions, has a tendency:

A. To pass into the solution

B. To be deposited from the solution

- C. To become electrically positive
- D. To remain neutral

Answer: A

Watch Video Solution

961. In electrochemical corrosion of metals, the metal undergoing corrosion:

A. Acts as anode

B. Acts as cathode

C. Undergoes reduction

D. None

Answer: A

962. The metal which cannot liberate H_2 from hydrochloric acid is :

A. Zn

B. Cu

C. Mg

D. Al

Answer: B

Watch Video Solution

963. KCl(aq) cannot be used as a salt bridge for the cell $Cu(s)|CuSO_4(aq)||AgNO_3(aq)|Ag(s)$ because :

A. $CuCI_2$ is precipitated

B. CI_2 gas is given out

C. AgCI is precipitated

D. All

Answer: C

 $\mathsf{B.}\,H^{\,+}$

 $\mathsf{C}.\,Hg^{2\,+}$

D. $CI^{\,-}$

Answer: A

Watch Video Solution

965. Standard reduction potential of an element is equal to:

A. $+1 \times \,$ its reduction potential

B. -1XX its standard oxidation potential

 ${\rm C.}\,0.00V$

 ${\sf D.}+1 imes\,$ its standard oxidation potential

Answer: B

Watch Video Solution

966. Beryllium is placed above magnesium in the II group. Beryllium dust,

therefore, therefore, when added to $MgCI_2$ solution will:

A. Have no effect

B. Precipitate Mg metal

C. Precipitate MgO

D. Lead to dissolution of Be metal

Answer: A

967. For the cell $Zn|Zn^{2+}||Cu^{2+}|Cu$ if the concentration of Zn^{2+} and Cu^{2+} ions is doubled, the emf of the cell:

A. Doubles

B. Reduces of half

C. Remains same

D. Becomes zero

Answer: C

Watch Video Solution

968. Copper can be deposited from acidified copper sulphate and alkaline cuprous cyanide. If the same current is passed for a definite time:

A. The amount of copper deposited from acidic copper sulphate will

be higher

B. The amount of copper deposited from alkaline cuprous cyanide will

be higher

C. The same amount of copper will be deposited

D. None

Answer: B

Watch Video Solution

969. A cell necessarily does not contain:

A. An anode

B. A cathode

C. An electolyte or a fuel

D. A porous diaphagm

Answer: D

970. Lithium is generally used as an electrode in high energy density batteries. This is because:

A. Lithium is the lightest element

B. Lithium has quite highnegative reduction potential

C. Lithium is quite reactive

D. Lithium does not corrode easily

Answer: B

Watch Video Solution

971. Cu (II) sulphate solution is treated separately with KCl and KI In which

```
case, Cu^{2+} be reduced to Cu^+:
```

A. With KCI

B. With KI

C. With both (a) and (b)

D. None

Answer: B

Watch Video Solution

972. Which process occurs in the electrolysis of aqueous solution of nickel chloride at nickel anode:

A.
$$Ni^{2+}+2e
ightarrow Ni$$

B. $2H^++2e
ightarrow H_2$
C. $2CI^
ightarrow CI_2+2e$

D. $Ni
ightarrow Ni^{2\,+} + 2e$

Answer: D

973. In aqueous solution, weak electrolytes dissociates:

A. Completely

B. To a slight extent

C. Almost completely

D. To more the 80~%

Answer: B

Watch Video Solution

974. Which reaction does not takes place at cathode ?

A.
$$CI^{\,-\,
ightarrow}\,CI+e$$

- B. $Ag^+ + e o Ag$
- C. $Cu^{+\,2}2e
 ightarrow Cu$

D. $H^{\,+}e
ightarrow H$

Answer: A

975. The electroplating with chromium is undertaken because :

- A. Electrolysis of chromium is easier
- B. Chromium can from alloys with other metals
- C. Chromium gives a protective and decorative coating to the base

metal

D. Of high reactivity of chromium metal

Answer: C

976. For a given cell reaction,

 $Cr+3H_2O+OCI^{ightarrow}Cr^{3\,+}+3CI^{-\,6}OH^{-}$, the species undergoing

reduction is :

A. Cr

B. Cr^{6+}

C. OCI^{-}

D. $CI^{\,-}$

Answer: C

Watch Video Solution

977. Molten NaOH conducts electricity , because NaOH is :

A. A non-electrolyte

B. A strong electrolyte

C. A weak electrolyte

D. A non-polar compound

Answer: B

978. The standard reduction potentials of the metals A,B and C are 0.68, -2.50 and -0.50V respectively. The order of their reducing power is :

A. A > B > C

 $\mathsf{B}.\, A > C > B$

 $\mathsf{C}.\,C>B>A$

 $\mathsf{D}.\,B>C>A$

Answer: D

Watch Video Solution

979. If the half cell reaction $A + e
ightarrow A^-$ has a large negative reduction

potential, it follows that :

A. A is readily reduced

B. A is readily oxidised

C. A^{-} is readily reduced

D. A^{-} is readily oxidised

Answer: D

Watch Video Solution

980. Pure water does not conduct electricity because it is :

A. Neutral liquid

B. Low boiling b. pt. liquid

C. Almost non-ionised

D. None

Answer: C
981. An aqueous solution of an electrolyte:

A. Conducts electricity without any chemical change

B. Conducts electricity with chemical decomposition

C. Is an ensulator

D. All are correct

Answer: B

Watch Video Solution

982. Which porcess involves corrosion?

A. Brown deposits on iron articles

B. Green deposits on battery terminals

C. Black deposits on silver coin

D. All of these

Answer: D

Watch Video Solution

983. The metal that cannot be obtained by electrolysis of the aqueous of its salts are:

A. Ag

B. $Cr^{\,-}$

C. Cu

D. Al

Answer: D

984. Water is a non-electrolyte but conducts electricity on dissolving a small amount of :

A. O_2

B. Sugar

C. Acetone

D. NaCl

Answer: D

Watch Video Solution

985. Rust is a mixture of :

A. FeO and $Fe(OH)_2$

B. FeO and $Fe(OH)_3$

C. Fe_2O_3 and $Fe(OH)_3$

D. Fe_3O_4 and $Fe(OH)_3$

Answer: C

Watch Video Solution

986. In a salt bridge,KCI is used because:

A. It is an electrolyte

B. It is good conductor of electricity

C. The transport number of K^+ and CI^- ions are nearly same or

both have same ionic mobility

 $\mathsf{D}.\,Cu,\,Hg,\,Ag$

Watch Video Solution

Answer: C

by using inert electrodes. The values of standard electrode potentials in volt (reduction potentials) are,

 $Agig|Ag^+=0.80.2Hgig|Hg_2^{2+}=0.79, Cu\mid Cu^{2+}=+0.34$ and $Mg^{2+}=-2.37$

With increasign voltage, the sequence of deposition of metals on the cathode will be :

A. Ag, Hg , Cu,Mg

B. Mg, Cu, Hg, Ag

C. Ag, Hg, Cu

D.

Answer: C

Watch Video Solution

988. In a galvanic cell energy changes occurs as:

A. Chemical energy \rightarrow Electrical energy

B. Electrical energy \rightarrow Electrical energy

C. Chemical energy \rightarrow Internal energy

D. Internal energy \rightarrow Electric energy

Answer: A

Watch Video Solution

989. $AtpH=2, E^{\,\circ}_{
m Quinhydrone}=1.30V, E_{
m Quinhydrone}$ will be:

B. 1.30V

C. 1.42V

A. 1.36V

D. 1.20V

Answer: C

990. The passage of electricity in the Daniell cell when Zn and Cu electrodes are connected :

A. From Cu toZn inside the cell

B. From Cu to Zn outside the cell

C. From Zn to Cu outside the cell

D. None

Answer: B

991. A correct electrochemical series can be obtained from K,Ca,Na,Al,Mg,Zn,Fe,Pb,H,Cu,Hg,Ag,Au by interchanging:

A. Al and Mg

B. Zn and Fe

C. Zn and Pb

D. Pb and H

Answer: A

Watch Video Solution

992. Indicator electrode is :

A. SHE

B. Calomel electrode

C. Ag/Ag CI electrode

D. Quinhydrone electrode

Answer: D

993. When Zn piece is kept in $CuSO_4$ solution copper gets prectipitated because :

- A. Standard reduction potential of zinc is more than copper
- B. Standard reduction potential of zinc is less than copper
- C. Atomic number of zinc is largest than copper
- D. Atomic number of zinc is lower than copper

Answer: B

994. The standard oxidation potentials of Zn and Ag in water at $25^{\circ}C$ are.

$$Zn(s)
ightarrow Zn^{2\,+}\,=\,2e,\,E^{\,\circ}\,=\,0.76V$$

$$Ag(s)
ightarrow Ag^+ + e, E^\circ = \ - \ 0.80 V$$

Which reaction actually takes place:

A.
$$Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2Ag(s)$$

B. $Zn^{2+}(aq) + 2Ag(s) \rightarrow 2Ag^{+}(aq) + Zn(s)$
C. $Zn(s) + 2Ag(s) \rightarrow Zn^{2+}(aq) + Ag^{+}(aq)$
D. $Zn^{2+}(aq) + Ag^{+}(aq) \rightarrow Zn(s) + Ag(s)$

Answer: A

Watch Video Solution

995. The standard reduction potentials of the elements A, B.Care +2.37V,-1.85V and 1.36V respectively. The order of the their reducing power is :

A. B > C > A

 $\mathsf{B}.\, A > B > C$

 $\mathsf{C}.\,C>B>A$

$\mathsf{D}.\,B>A>C$

Answer: A

996. Is the reaction, $2Al + 3Fe^{2+} \rightarrow 2Al^{3+} + 3Fe$ possible?

A. No , because standard oxidation potential of AlltFe

B. Yes, because standard oxidation potential of AlgtFe

C. Nither (a) nor(b)

D. Data are unpredictable

Answer: B

997. Whether tin can displace lead from aqueous lead bromide solution:

A. No

B. Yes , because standard redutionpotential of SnltPb

C. Yes, because standard reduction potential of SngtPb-

D. None

Answer: B

Watch Video Solution

998. Faraday is equal to :

A. 96.5 coulombequivalent $^{-1}$

B. $96.5 imes 10^3$ coulomb equialent $^{-1}$

C. $96.5 imes 10^{10}$ coulomb equivalent $^{-1}$

D. $96.5 imes 10^{23} coomb$ mol^(-1)`

Answer: B

999. More electropositive elements have :

- A. Postive reduction potential
- B. Tendency to gain electrons
- C. Negative reduction potential
- D. Negative oxidation potential

Answer: C

Watch Video Solution

1000. Based on the data given below , the correct order of reducing power is :

$$egin{aligned} Fe^{3+}(aq)+e &
ightarrow Fe^{2+}(aq), E^{\,\circ}=\,+\,0.77V\ AI^{3+}(aq)+3e &
ightarrow AI(s), E^{\,\circ}=\,-\,1.66V\ Br_2(aq)+2e &
ightarrow 2Br^{-\,(aq)}, E^{\,\circ}=+1.08V \end{aligned}$$

A.
$$Br^{-\,<}Fe^{2\,+}\,< AI$$

B. $Fe^{2\,+}\,< AI < Br^{-}$
C. $Al < Br^{-\,<}Fe^{2\,+}$
D. $AI < Fe^{2\,+}\,< Br^{-}$

Answer: A

1001. Galvanised iron sheets have coating of :

A. Cu

B. Sn

C. Zn

D. Carbon

Answer: C

1002. The electrochemical that is easiest to be reduced is :

A. Fe

B. Cu

C. Ag

D. Su

Answer: C

Watch Video Solution

1003. An electrochemical cell consists of :

A. Cadmium cell

B. Lead accumulator

C. Two half cells

D. None

Answer: C

1004. The correct order of chemical reactivity with water according to electrochemical series is :

- A. K > Mg > Zn > Cu
- $\mathsf{B.}\, Mg > Zn > Cu > K$
- C. K>Zn>Mg>Cu
- D. Cu > Zn > Mg > fK

Answer: A

1005. Which graph correctly correlates E_{cell} as a function of concentrations for the cell (for deifferent values of M and M):

Answer: B

Watch Video Solution

1006. Faraday.s laws hold good at:

A. All pressures

B. Only at 298 K

C. In different solvents

D. All of these

Answer: A

Watch Video Solution

1007. The main function of the salt bridge is:

A. To allow ions to go from one cell to another

B. To provide link between two half cells

C. To keep the emf of the cell positive

D. To maintain electrical neutrality of the solution in two half cells

Answer: D

Watch Video Solution

1008. A substance that will reduce Ag + to Ag but will not reduce Ni^{2+}

to Ni is :

A. Zn

B. Pb

C. Mg

D. Al

Answer: B

1009. A dilute aqueous solution of Li_2SO_4 is electrolysed . The products formed at the anode and cathode, respectively are:

A. S and Li

B. O_2 and Li

C. SO_2 and O_2

D. O_2 and H_2

Answer: D

Watch Video Solution

1010. Blocks of magnesium metal are often strapped to the steel hulls of ocean going ships in order to :

A. Provide cathodic protection

B. Protect oxidation of steel

C. Both (a) and (b) correct

D. Neither (a) nor (b) is correct

Answer: C

Watch Video Solution

1011. Which statement is true about spontaneous cell reaction in galvanic

cell:

A.
$$E_{cell}^{\,\circ} > 0, \Delta G^{\,\circ} \, < 0, Quotient Q < K_c$$

B.
$$E_{cell}^{\,\circ} > 0, \Delta G^{\,\circ} \, > 0, Q < K_c$$

C.
$$E_{cell}^{\,\circ}>0,\Delta G^{\,\circ}\,>0,Q>K_{c}$$

D.
$$E^{\,\circ}_{cell} > 0, \Delta G^{\,\circ} \, > 0, Q < K_c$$

Answer: A

1012. It is impossible to measure the actual voltage of any half cell by itselft because :

A. Both half cell reactions takes place simultaneously

B. Of resistance of wire

C. A reaction does not take place on its own

D. None

Answer: A

Watch Video Solution

1013. Which metal will dissolve if the cell works $Cuig|Cu^{2\,+}ig|\mid Ag^{\,+}ig|Ag$:

A. Cu

B. Ag

C. Both (a) and (b)

D. None

Answer: A

Watch Video Solution

1014. In the concentration cells the electrical energy is produced due to :

A. Oxidation of fuel

B. Heat energy

C. Chemical reaction

D. Transfer of a substance from one concentration to other

Answer: D

> Watch Video Solution

1015. The Zn acts as sacrificial or cathodic porection to prevent rusting of

iron because :

A.
$$E_{OP}^{\,\circ}of_{Zn} < E_{OP}^{\,\circ}ofFe$$

- B. $E_{OP}^{\,\circ}of_{Zn}>E_{OP}^{\,\circ}ofFe$
- C. $E_{OP}^{\,\circ}of_{Zn}=E_{OP}^{\,\circ}ofFe$
- D. Zn is cheaper than iron

Answer: B

1016. The number of faraday required to liberate 1 mole of any element indicates :

A. Weight element

- B. Conductance of electrolyte
- C. Charge on the ion of that element

D. None

Answer: C

1017. Quantity of electricity is measured in :

A. ampere sec

B. ampere

C. $ampere^{-1}$

D. $ampere^{-1}$ sec

Answer: A

Watch Video Solution

1018. Which are used as secondary reference electrodes :

A. Calomel electrode

B. Ag/AgCI electrode

C.
$$Hrac{g}{H}g, CI, \ -KCI$$
electrode

D. All of these

Answer: D

1019. The corrosion of iron object is favoured by:

- A. Presence of $H^{\,+}\,$ ion
- B. Presence of moisture in air
- C. Presence of imputities in iron object
- D. All of these

Answer: D

1020. For a redox reaction to proceed spontaneously in a given direction,

the emf should:

A. be zero

B. have $+ve \operatorname{sign}$

C. have -ve sign

D. have either +ve or -ve sign

Answer: B

Watch Video Solution

1021. In a cell containing zinc electrode and standard hydrogen electrode(SHE),the zinc electrode acts as :

A. Anode

B. Cathode

C. Nither cathode nor anode

D. Both anode and cathode

Answer: A

1022. A cell in which electric current is produced by net oxidation and reduction process is called:

A. Voltic cell

B. Electrolytic cell

C. Concentration cell

D. None

Answer: A

1023. Faraday's first law of electrolysis can be expressed as :

A. $W \propto Q$ B. $W \propto 1/Q$ C. $W \propto Q^2$ D. $W \propto Q^3$

Answer: A

Watch Video Solution

1024. I faraday of electricity will liberate 1 g atom of the metal from the

solution of :

A. $AuCI_3$

B. $AgNO_3$

 $C. CaCI_2$

D. $CuSO_4$

Answer: B

Watch Video Solution

1025. In the electro-deposition of Ag, the silver ions are :

A. Reduced at anode

B. Reduced at cathode

C. Oxidised at anode

D. Oxidised at cathode

Answer: B

Watch Video Solution

1026. For the cell reaction,

 $Cu^{2+}(aq)(C_2)+Zn(s)
ightarrow Zn^{2+}(aq)(C_1)+Cu(s)$, the change in free

energy(ΔG) at a given temperature is a function of :

A. InC_1

- B. $1n(C_2 / C_1)$
- C. $In(C_1 + C_2)$

D. InC_2

Answer: B

1027. In an electrochemical cell ,the electrons flow:

A. From cathode to anode

- B. From anode to cathode
- C. From anode to solution
- D. From solution to cathode

Answer: B

1028. The art of electroplating was given by:

A. Faraday

B. Edison

C. Graham

D. Brugan

Answer: A

Watch Video Solution

1029. Which of the following is correct?

A. Zinc acts as cathode inDaniell cell

B. In a Li-Zn couple, zinc acts as anode

C. Copper will displace iron in solution

D. Zinc displaces tin from its solution

Answer: D

1030. In an electrolytic cell of $Ag|AgNO_3|AgNO_3|$ Ag,when current is

passed the concetration of $AgNO_{3}$

A. Increases

B. Decreases by 0.0.30V

C. Remains same

D. None

Answer: C