© 'doubtnut

CHEMISTRY

BOOKS - MBD CHEMISTRY (ODIA ENGLISH)

EQUILIBRIUM

QUESTION BANK

1. If K_{e} of the reaction, $2 \mathrm{HI} \rightarrow H_{2}+I_{2}$ is 0.25 , the equilibrium constant of the reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$ would be :
A. 1
B. 2
C. 3
D. 4
2. HI heated in a sealed tube at $440^{\circ} \mathrm{C}$ till the equilibrium was reached. HI was found to be 22% decomposed. The equilibrium constant for dissociation is:
A. 0.282
B. 0.0796
C. 0.0199
D. 1.99

Answer: C

- Watch Video Solution

3. For a reversible reaction the rate constant for the forward reaction is 2.38×10^{-4} and for the backward reaction is 8.15×10^{-5} The k_{c} of the reaction is:
A. 0.342
B. 2.92
C. 0.292
D. 3.42

Answer: B

- Watch Video Solution

4. $2 \mathrm{SO}_{3} \rightarrow 2 \mathrm{SO}_{2}+\mathrm{O}_{2}$ is at equilibrium. The SO_{2} concentration is 0.6

M . Initial concentration of SO_{3} is 1 M . The equilibrium constant is:
A. 2.7
B. 1.36
C. 0.34
D. 0.675

Answer: D

5. Which one favours the backward reaction in a comical equilibrium ?
A. Increasing the concentration of one of the reactants.
B. Removal of at least one of the products at regular interval.
C. Increasing the concentration of one or more of the products.
D. None of the above.

Answer: C

- Watch Video Solution

6. The concentration of pure solid and liquid phase is not inculded in the expression of equilibrium constant because:
A. solid and liquid conc. are independent of their quarries.
B. solid and liquid react slowly.
C. solid and liquid at equilibrium don't interact with gaseous phase
D. the molecules of solid and liquid cannot migrate to the gaseous phase.

Answer: A

- Watch Video Solution

7.4 moles of A are mixed with 4 moles of B. When 2 moles of C are formed at equilibrium accordingly to the reaction $A+B \rightarrow C+D . K_{c}$ is:
A. 4
B. 1
C. sqrt4
D. sqrt2

Answer: B

8. The unit of equilibrium constant K, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ will be:
A. $l i t^{2} m o \leq^{-2}$
B. ${ }^{`} \mathrm{~mole}^{\wedge} 2$ lit $^{\wedge}(-2)$
C. mole/lit
D. it has no unit

Answer: A

Watch Video Solution

9. When acetic acid and ethanol are mixed in equimolar proportions, equilibrium is attained when $2 / 3$ rd of the acid and alcohol are consumed. The value of K_{c} is:
A. 0.4
B. 4
C. 40
D. $4.0 \times x 10^{2}$

Answer: B

- Watch Video Solution

10. If $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ has equilibrium constant K and $2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \Leftrightarrow 4 \mathrm{NH}_{3}$ has equilibrium constant k^{\prime}, then $\mathrm{k}^{\prime}=$
A. K^{2}
B. sqrtK
C. $1 /$ sqrtK
D. $1 / K^{\wedge} 2$

Answer: A

11. Irreversible reaction is one which:
A. proceeds in one direction only
B. proceeds in both the direction
C. is an instantaneous reaction
D. is aslow reaction

Answer: A

- Watch Video Solution

12. When rate of forward reaction is equal and opposite to the rate of backward reaction, the state is said to be:
A. reversible state
B. Equilibrium
C. Chemical equilibrium
D. None of the above

Answer: C

- Watch Video Solution

13. Which of the following reaction will be favoured by low pressure ?
A. $H_{2}+I_{2} \leftrightarrow 2 H I$
B. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrow 2 \mathrm{NH}_{3}$
C. $P C L_{5} \leftrightarrow P C L_{3}+C L_{2}$
D. $\mathrm{N}_{2}+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{NO}$

Answer: C

- Watch Video Solution

14. Which of the following factor will be usefuk in manufacture of ammonia by Haber's process ?
A. High pressure
B. Low pressure
C. High temperature
D. Increase in the concentration of ammonia

Answer: A

D Watch Video Solution

15. The reaction in which heat is absorbed is known as:
A. Exothermic
B. Endothermic
C. Reversible
D. None of the above

Answer: B

16. The rate at which a substrance reacts is proportional to its active mass. This statement is :
A. Le-Chatelier's principle
B. Faraday's Law
C. Law of multiple proportion
D. Law of mass acction

Answer: D

- Watch Video Solution

17. When chemical equilibrium is reached the :
A. reaction stops
B. rate of forward reaction is equal to the rate of backward reaction
C. rate of forward reaction is more than that of backward reaction
D. none of the above

Answer: B

- Watch Video Solution

18. In a reversible reaction if there is no change in total number of molecules, the reaction will be favoured by
A. high pressure
B. low pressure
C. high temperature
D. higher concentration of a reactant

Answer: D

- Watch Video Solution

19. Which of the following will be favoured by high pressure?
A. $P C L_{5} \Leftrightarrow P C L_{3}+C L_{2}$
B. $N_{2}+O_{2} \Leftrightarrow 2 N O$
C. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
D. $H_{2}+I_{2} \Leftrightarrow 2 H I$

Answer: C

- Watch Video Solution

20. Chemical equilibrium is:
A. stationary
B. dynamic
C. interness
D. state of rest

- Watch Video Solution

21. For the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H$ Ithe K_{p} and K_{c} are related as :
A. $K_{p}=K_{c}(R T)^{2}$
B. $K_{p}=K_{c}(R T)^{0}$
C. $K_{p}=K_{c}(R T)^{-2}$
D. $K_{-} p=K_{-} c(R T)^{\wedge}-i$

Answer: B

Watch Video Solution

22. In which of the following reactions $K_{p}=K_{c}$?

$$
\text { A. } N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)
$$

B. $2 \mathrm{NOCI} \Leftrightarrow 2 \mathrm{NO}(g)+C L_{2}(g)$
C. $I_{2}(g)+H_{2}(g) \Leftrightarrow 2 H I(g)$
D. $H_{2}(g)+C L_{2}(g) \Leftrightarrow 2 H C L(g)$

Answer: D

- Watch Video Solution

23. The partial pressure of $P C L_{3}, C L_{2}$ and $P C L_{5}$ are $0.1,0.2$ and 0.008 atmosphere respectively for reaction
$P C L_{5} \Leftrightarrow P C L_{3}+C L_{2}$. Thevalueofk_̊ ${ }^{\prime}$ is :
A. 2.5
B. 5
C. 0.25
D. 25
24. For which of the following reactions the value of K_{p} is greatier than K_{c} ?
A. $N_{2}+O_{2} \leftrightarrow 2 N O$
B. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \leftrightarrow 2 \mathrm{SO}_{3}$
C. $2 \mathrm{SO}_{2} \leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
D. $P C L_{5} \leftrightarrow P C L_{3}+C L_{2}$

Answer: D

- Watch Video Solution

25. For the reaction 'PCL_5 hArr PCL_3+CL_2, the forward reaction at constant temperature is fovoured by :
A. introducing an inret gas at constant volume
B. introducing chlorine gas at constant volume
C. introdusing an inert gas at constant pressure
D. increasing the volume of the container

Answer: D

- Watch Video Solution

26. According to law of mass action, the rate of reaction is directly proportional to:
A. volume of the container
B. equilibrium constant
C. nature of reactants
D. molar concemtration of reactants

Answer: D

27. For a reversible reaction if the concentration of the reactants are doubled, the equilibrium constant will be :
A. halved
B. doubled
C. the same
D. one fourth

Answer: C

- Watch Video Solution

28. In of the following case does the reaction go farthest to completion ?
A. $K=10_{2}$
B. ${ }^{\prime} K=10^{\wedge}-2$
C. $K=10$
D. $K=1$

Answer: A

- Watch Video Solution

29. In a reversible reaction two substances are in equilibrium. If the concentration of each is double the equilibrium is:
A. reduced to half of its original value
B. reduced to $1 / 4$ th of its original value
C. doubled
D. constant

Answer: D

- Watch Video Solution

30. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, /\`H $=-93.5 \mathrm{kj}$ what will happen when helium gas is added to the vessel at constant valume:
A. more NH_{3} is formed
B. less NH_{3} is formed
C. no effect
D. none of these

Answer: C

- Watch Video Solution

31.1 mol of A and 0.5 mol of B were enclosed in a there litre vessel The following equilibrium was establised under suitable condition: $A+2 B \leftrightarrow C$ At equilibrium the amount of B was found to be 0.3 mol.The equilibrium constant K_{c} at the experimental temoerature will be
A. 11.1
B. 1.11
C. 0.01
D. 2.5

Answer: A

- Watch Video Solution

32. $\frac{K_{p}}{K_{c}}$ for the reaction: ${ }^{\text {CO }(\mathrm{g})+1 / 2 \mathrm{O}_{-} 2(\mathrm{~g}) \text { hArr } \mathrm{CO}_{-} 2(\mathrm{~g}) \text { is : }}$
A. 1
B. RT
C. $1 /($ sqrtRT)
D. $\mathrm{RT}^{\wedge}(1 / 2)$

Answer: C

33. The equilibrium constant, K_{c} for the reaction: $H_{2}+I_{2} \Leftrightarrow 2 H I$ at 700 K is 49. what is the equilibrium constant for the reaction ? $H I \leftrightarrow \frac{1}{2} H_{2}+\frac{1}{2} L_{2}$ at the same temperature
A. 49
B. 0.02
C. 1.43
D. 0.143

Answer: D

- Watch Video Solution

34. An equilibrium mixture for the reaction $2 H_{2} S(g) \Leftrightarrow 2 H_{2}(g)+S_{2}(g)$ had 1 mole of hydrogen sulphide, 0.2 mole of H_{2} and 0.8 mole of S_{2} in 2 litre vessel. The value of K_{c} is:
A. 0.004
B. 0.08
C. 0.016
D. 0.16

Answer: C

- Watch Video Solution

35. What is the equilibrium expression for the reaction:
$P_{4}(s)+5 O_{2}(g) \Leftrightarrow P_{4} O_{10}(s)$
A. $K=\left[O_{2}\right]^{5}$
B. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{5\left[P_{4}\right]\left[O_{2}\right]}$
C. $K_{c}=\frac{\left[P_{4} O_{10}\right]}{\left[P_{4}\right]\left[O_{2}\right]^{5}}$
D. $K_{c}=\frac{1}{\left[O_{2}\right]^{5}}$
36. The conjugate acid of NH_{2} is
A. NH_{3}
B. ${ }^{`} \mathrm{NH}_{2} 2 \mathrm{OH}$
C. NH_{4}^{+}
D. $\mathrm{N}_{2} \mathrm{H}_{4}$

Answer: A

- Watch Video Solution

37. Which of the following is not a lewis acid ?
A. $B F_{3}$
B. AlCl_{3}
C. BeCl_{2}
D. SnCl_{2}

Answer: A

- Watch Video Solution

38. The strongest bronsted base is:
A. CIO^{-}
B. CIO_{3}^{-}
C. CIO_{2}
D. CIO_{4}^{-}

Answer: A

- Watch Video Solution

39. An aqueous solution of acetic acid contains:
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and H^{+}
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{CH}_{3} \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}$and H^{+}
D. $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{-} 3 \mathrm{COO}^{\wedge}-$ and $\mathrm{H}^{\wedge}+^{`}$

Answer: D

- Watch Video Solution

40. Aqueous solution of copper sulphate changes blue litmus to red because:
A. $C u^{-2}$ is present
B. SO_{4}^{-2}
C. Hydrolysis take place
D. Reduction takes place

Answer: C

41. An aqueous solution of salt is alkaline. This show that the salt is made from as:
A. strong acid and strong base
B. strong acid and week base
C. weak acid and week base
D. weak acid and strong base

Answer: D

- Watch Video Solution

42. Which of the following statement is incorrect for a weak acid ?
A. It is partially dissociated.
B. Its dissociation constant is low.
C. Its K_{2} is very low.
D. solution of its sodium salt in water is alkaline.

Answer: C

- Watch Video Solution

43. Which of the following is not conjugate pair of acid base ?
A. HS and S^{-2}
B. $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}
C. HONO and NO_2
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$

Answer: A

- Watch Video Solution

44. According to bronstedconcept, the acids in the reaction : $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}=\mathrm{NH}_{4}+\mathrm{OH}^{\wedge}$ - are:
A. NH_{3} and NH_{4}^{+}
B. $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}
C. H_{2} and NH_{4}^{+}
D. NH_{3} and OH^{-}

Answer: B

- Watch Video Solution

45. Ammonium hydroxide is a weaker base because it is :
A. unstable
B. covalent compound
C. only slightly ionises
D. none of these.

Answer: C

- Watch Video Solution

46. Lewis acids are
A. electron acceptors
B. proton acceptors
C. electron donors
D. proton donors

Answer: A

Watch Video Solution

47. The pH of a soloution containing 0.4 gm NaOH per litre is :
A. 2
B. 12
C. 10
D. 11

Answer: B

- Watch Video Solution

48. conjugate base of HCO_{3}^{-}ion is:
A. CO_{2}
B. $\mathrm{CO}_{3}^{2}-$
C. $\mathrm{H}_{2} \mathrm{CO}_{3}$
D. HCO_{3}^{-}

Answer: C

49. Aqueous solution of FeCl_{3} is :
A. acidic
B. basic
C. amphoteric
D. netural

Answer: A

- Watch Video Solution

50. When 1.0 ml of dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 100 ml of a buffer solution of pH :
A. becomes 7.0
B. is less than 7.0
C. is more than 7.0
D. docs not change

Answer: D

D Watch Video Solution

51. What is the pH of 0.01 M NaOH assuming complete ionisation ?
A. 0.01
B. 2
C. 12
D. 14

Answer: C

- Watch Video Solution

52. The pH of the solution is 3.0 if its pH is changed to 6.0 then the $\left[H^{+}\right]$ of the original solution has to be :
A. doubled
B. halved
C. increased 1000 times
D. decreased 1000 times

Answer: D

D Watch Video Solution

53. The compound that is not a lewis acid is:
A. $B F_{3}$
B. $A l C l_{3}$
C. $B e C l_{2}$
D. $S n C l_{4}$

Answer: C

54. The conjugate acid of NH_{2} is
A. NH_{3}
B. $\mathrm{NH}_{2} \mathrm{OH}$
C. NH_{4}^{+}
D. $\mathrm{N}_{2} \mathrm{H}_{4}$

Answer: A

- Watch Video Solution

55. An acidic buffer can be prepared by making solution of:
A. HCl and NaCl
B. NaOH and NaCl
C. HCOOH and HCOONa
D. $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$

Answer: C

- Watch Video Solution

56. A compound is precipitated when its:
A. ionic product exceeds the solubility product
B. ionic product is less than its solubility product
C. ionic product is equal to the solubility product
D. none of the above

Answer: A

- Watch Video Solution

57. A basic buffer can be prepared by mixing
A. $\mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. NaOH and NaCl
D. $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$

Answer: D

- Watch Video Solution

58. Which of the following solutions has the maximum pH value ?
A. solution of caustic soda
B. Pure water
C. Water saturated with CO_{2} gas
D. Solution of sodium chloride

Answer: A

59. Hydrolysis is regarded as an interaction between :
A. $H^{+}, \mathrm{OH}^{\wedge-}$-ions
B. ions of acid with ions of base
C. ions of salt with ions of water
D. acid and base

Answer: C

- Watch Video Solution

60. Which of the following solutions have PH close to 1.0 ?
A. 100 ml of $\mathrm{M} / 10 \mathrm{HCl}+100 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaoH}$
B. 55 ml of $\mathrm{M} / 10 \mathrm{HCl}+45 \mathrm{ml}$ of $\mathrm{N} / 10 \mathrm{NaoH}$
C. 10 ml of $\mathrm{M} / 10 \mathrm{HCL}+90 \mathrm{ml}$ of $\mathrm{M} / 10 \mathrm{NaoH}$
D. 75 ml of $\mathrm{M} / 10 \mathrm{HCl}+25 \mathrm{ml}$ of $\mathrm{M} / 5 \mathrm{NaoH}$

Answer: D

- Watch Video Solution

61. The decrease in the ionisation of $H_{2} S$ in the presence of HCl is due to
A. solubility product
B. Dilation
C. Common ion effect
D. saturation

Answer: C

62. An aqueous solution of ammonia acetate is:
A. faintly acidic
B. faintly alkaline
C. fairly neutral
D. fairly acidic

Answer: C

- Watch Video Solution

63. Ammonia gas dissolves in water to give $\mathrm{NH}_{4} \mathrm{OH}$ In this reaction water act as :
A. a base
B. an acid
C. a salt
D. a conjugate base

Answer: B

D Watch Video Solution

64.4 gm of NaoH are added in 1 litre. The PH value of the solution will be :
A. 1
B. 0
C. 7
D. 13

Answer: D

65. Which of the following is a lewis base ?
A. $A L C l_{3}$
B. Ag
C. $\mathrm{Ag}(\mathrm{OH})_{3}$
D. NH_{3}

Answer: D

- Watch Video Solution

66. The PH of a solution obtained by mixing 50 ml of 0.4 M HCl and 50 ml of 0.2 M NaoH IS :
A. $-\log 2$
B. $-\log \times 10^{-1}$
C. 1
D. 2

Answer: C

67. pH of ${ }^{`} 10^{\wedge}-8 \mathrm{M}$ solution of HCl in water is:
A. 8
B. 6
C. Between 6 and 7
D. between 7 and 8

Answer: C

68. Which of the following will have highest PH in water solution :
A. Nacl
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. KCL
D. CuSO_{4}

- Watch Video Solution

69. Which of the following species is amphoteric in nature ?
A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. Cl^{-}
C. HSO_{4}^{-}
D. CO_{3}^{2-}

Answer: C

Watch Video Solution

70. For a springly soluble salt $A_{P} B_{q}$ the relationship between its solubility product $\left(L_{s}\right)$ and its solubility (S) is :
A. $L_{S}=S^{p+q} p^{p} q^{q}$
B. $L_{S}=S^{p+q} p^{q} q^{p}$
C. $L_{S}=S^{p q} p^{p} q^{q}$
D. $L_{S}=s^{p q} p q^{q+p}$

Answer: A

- Watch Video Solution

71. When a salt of strong base and Weak acid is hydrolysed the resulting solution has:
A. $\mathrm{PH}=7$
B. $\mathrm{PH}=0$
C. PHIt 7
D. PHgt7
72. 1 c.c. of 0.01 M HCl is added to 99.9 cc of NaCl solution. PH of resulting solution will be :
A. 7
B. 4
C. 2
D. 1

Answer: B

- Watch Video Solution

73. Precipitation takes place when the producty of concentration of ions:
A. equals the solubility product
B. Exceeds the solubility product
C. is less than the solubility product
D. is negligible

Answer: B

- Watch Video Solution

74. A sulphuric acid solutions has $\mathrm{PH}=2$ its molarity is :
A. $1 / 100$
B. $1 / 50$
C. $1 / 2$
D. $1 / 200$

Answer: D

75. The conjugate base of $\mathrm{H}_{3} \mathrm{PO}_{4}$ IS :
A. $H_{3} P O_{4}$
B. $\mathrm{P}_{2} \mathrm{O}_{5}$
C. PO_{4}
D. HPO_{4}^{2-}

Answer: D

- Watch Video Solution

76. What is common ion effect ?

- Watch Video Solution

77. Define 'active mass'.
78. Define 'law of mass action'.

- Watch Video Solution

79. Define solubility product. $\left(K_{s} p\right)$.

- Watch Video Solution

80. What is the approximate PH value of blood ?

- Watch Video Solution

81. What is the PH OF 0.1 M HCl .

- Watch Video Solution

82. write conjugate acid of NH_{3}.

- Watch Video Solution

83. What is buffer solution ?

- Watch Video Solution

84. Can PH value of any solution be less than zero?

- Watch Video Solution

85. What is acid buffer with some examples ?

- Watch Video Solution

86. Explain basic buffer with some example ?
87. What is relation between K_{p} and K_{c} ?

- Watch Video Solution

88. Give an example of buffer solution ?

- Watch Video Solution

89. What is PH value of 0.1 N HCl ?

- Watch Video Solution

90. What is necessary to add dilute HCl before passing $\mathrm{H}_{2} \mathrm{~S}$ for precipitation group of II cations ?
91. Calculate the PH of 0.001 M HCl .

- Watch Video Solution

92. Acetic acid is less acidic in sodium acetate solution than in sodium chloride solution .

- Watch Video Solution

93. Which catalyst is used in contact process for manufacture of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

- Watch Video Solution

94. What is the effect of pressure on the solubility of a solid ?

- Watch Video Solution

96. An aqueous solution of ferric chloride is acidic. Explain.

- Watch Video Solution

97. Discuss Lewis theory of acids and bases.

- Watch Video Solution

98. what is conjugate base of HSO_{4}^{-}?

- Watch Video Solution

99. What is the value of ionic product of water at $25^{\circ} \mathrm{C}$?
100. How K_{w} varies with temperature ?

- Watch Video Solution

101. How does PH of a solution vary with H^{+}ion concentration ?

- Watch Video Solution

102. How does PH of a solution vary with temperature?

- Watch Video Solution

103. Define reaction quotient?
104. Which catalyst is used for synthesis of NH_{3} by haber's process ?

- Watch Video Solution

105. Find the solubility product If solubility of $A_{2} B_{3}$ is 10^{-4}.

- Watch Video Solution

106. what is the value of $\mathrm{PH}+\mathrm{POH}$ for any aqueous solution at $25^{\circ} \mathrm{C}$.?

- Watch Video Solution

107. Why AlCl_{3} is lewis acid?

- Watch Video Solution

108. $S O_{2}$ is lewis acid ?
109. Write some application of buffer ?

- Watch Video Solution

110. Write two factors which influence the solubility of solid in a liquid .

- Watch Video Solution

111. An equillibrium reaction between hydrogen and iodine to give hydrogen iodide at 670 K in a 5 litre flask contains 0.4 mole of hydrogen 0.4 mole of iodine and 2.4 mole of hydrogen iodide. Calculate the equillibrium constants.
112. Calculate the value of equillibrium constant, $\mathrm{N} 2 \mathrm{O} 4(\mathrm{~g}) \rightarrow 2 \mathrm{NO} 2(\mathrm{~g})$, the concentration of $\mathrm{N} 2 \mathrm{O} 4(\mathrm{~g})$ and NO 2 at equilibrium are $4.8 \times 10-2$ and $1.2 \times 10-2 \mathrm{~mol} / \mathrm{L}$ respectively.

- Watch Video Solution

113. State Le-chatelier's principle.

- Watch Video Solution

114. What is equillibrium constant ? Explain

- Watch Video Solution

115. Define law of mass action or state guldberg-Wagge's law.

- Watch Video Solution

116. What is the effect of catalyst on equillibrium ?

- Watch Video Solution

117. Write the expression that shows the dependence of equilibrium constant on temperatue.

- Watch Video Solution

118. Two moles of NH_{3} are introduced into one litre flask in which it dissociates at high temperature as $2 \mathrm{NH}_{3}(g) \Leftrightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$ Find the value of K_{C}.

- Watch Video Solution

119. 1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ is heated in a flask with a volume of 10 dm . At equillibrium 1.708 mole of NO_{2} and 0.146 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ were found at
$134^{\circ} c$ calculate the equillibrium constant.

- Watch Video Solution

120. Write properties of chemical equillibrium.

- Watch Video Solution

121. Write some characteristics of equillibrium constants .

- Watch Video Solution

122. Derive relationship between K_{C} and K_{P}.

- Watch Video Solution

123. At a certain temperature the dissociation constant of 0.25 M
$\mathrm{NH}_{4} \mathrm{OH}$ is ${ }^{`} 1.8 \mathrm{xx} 10^{\wedge}-5$ calculate its degree of ionisation at the same
temperature.

(Watch Video Solution

124. Calculate the PH of KOH solution 5.6 gm of which is dissolved in 10 litre solution.

- Watch Video Solution

125. Calculate the PH Of $0.005 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

D Watch Video Solution

126. Calculate the PH of 0.004 M KOH .

- Watch Video Solution

127. Calculate the PH of a buffer solution which is formed by mixing 0.04 M sodium acetate and 0.08 acetic acid at $298 \mathrm{~K} .(\operatorname{Pk} \mathrm{a}=4.74)$

D Watch Video Solution

128. What is the pH of 0.01 M NaOH assuming complete ionisation ?

- Watch Video Solution

129. Calculate PH Of 0.01 M acetic acid . $K_{a}=1.8 \times 10^{-5}$ at 298 K .

- Watch Video Solution

130. How much sodium acetate should be added to 1 litre of 0.1 M $\mathrm{CH}_{3} \mathrm{COOH}$ to make a buffer of PH $=4.0\left(K_{a}=3\right)$

- Watch Video Solution

131. Discus Arhenius theory of acids and bases with examples .

- Watch Video Solution

132. Discuss about PH of a solution.

- Watch Video Solution

133. Write the application of PH.

- Watch Video Solution

134. what is the effect of temperature on PH value ? Explain

- Watch Video Solution

135. What is buffer solution?
136. How many types of buffer do u know ? explain with example.

- Watch Video Solution

137. Discuss about the relationship between solubility(S) and solubility $\operatorname{product}\left(K_{s p}\right)$.

- Watch Video Solution

138. What is common ion effect ?

- Watch Video Solution

139. What is the PH of $0.001(\mathrm{~N}) \mathrm{HCl}$?
140. What is normal salt ? Give some example.

- Watch Video Solution

141. Why sodium carbonate solution is alkaline ?

- Watch Video Solution

142. Calculate the H^{+}ion and OH^{-}ion conc of NaoH solution, 0.01 gm of which are dissolved in 250 cc solution .

- Watch Video Solution

143. Calculate the PH of 0.01 M aqueous solution of $\mathrm{NH}_{4} \mathrm{CN}$. Given dissociation constants Of HCN is $6.2 \times 10-10$ and of NH_{3} is $1.6 \times 10-5$
144. Determine the degree of hydrolysis and PH of 0.02 M of sodium acetate. (Given $k_{a}=1.8 \times 10^{-5}, K_{w}=1 \times 10^{-14}$)

- Watch Video Solution

145. Discuss Lowry-Bronsted theory of acids and bases .

- Watch Video Solution

146. Discuss Lewis theory of acids and bases.

- Watch Video Solution

147. What are the limitations of this theory?

- Watch Video Solution

148. Define solubility product. $\left(K_{s p}\right)$.

- Watch Video Solution

149. Write some application of common ion effect.

- Watch Video Solution

150. What is the pH of 0.01 M NaOH assuming complete ionisation ?

- Watch Video Solution

151. What is relation between K_{p} and K_{c} ?

- Watch Video Solution

152. If $K_{p}<K_{c}$ and $K_{p}=K_{c}$ then δn are \qquad and \qquad respectively.
153. The value of equillibrium constants depends on \qquad and \qquad .

- Watch Video Solution

154. The value of K_{p} for the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(\mathrm{~g})$ is than K_{c}.

- Watch Video Solution

155. In reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})=2 \mathrm{HCl}(\mathrm{g})$ relationbetweenK_p and K_c ${ }^{\prime}$ is \qquad .

- Watch Video Solution

156. The reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ favoured at \qquad .
157. The effect of concentration or pressure on the rate of a reversible reaction is given by \qquad .

- Watch Video Solution

158. Henderson's equation for the POH of a basic buffer is \qquad .

- Watch Video Solution

159. What is buffer solution ?

- Watch Video Solution

160. The buffer action of acidic buffer is maximum when its pH is equal to:
161. Acetic acid mixing with gives buffer solution.

- Watch Video Solution

162. what is conjugate base of HSO_{4}^{-}?

Watch Video Solution
163. A mixture of sodium acetate and acetic acid acts as a \qquad .

- Watch Video Solution

164. PH of 0.01 M HCl solution is \qquad .

- Watch Video Solution

165. The conjugate acid of HCO_{3}^{-}is \qquad .
166. How does PH of a solution vary with temperature?

- Watch Video Solution

167. The conjugate base of ${ }^{`} \mathrm{H}_{-} 3 \mathrm{O}^{\wedge}+$ is \qquad .

- Watch Video Solution

168. solubility of calcium acetate \qquad with increase in temperature.

- Watch Video Solution

169. What is the PH OF 0.1 M HCl .
170. PH of pure water is \qquad at $22^{\circ} C$.

- Watch Video Solution

171. 40% of a mixture of 0.2 mole of N_{2} and o. 6 mole of H_{2} react to give NH_{3} according to the equation: $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}$ (g) at constant temperature and pressure. Then what is the ratio of the final volume to the initial volume of gases?
A. $4: 5$
B. 5:4
C. 7:10
D. $8: 5$

Answer: A

172. At temperature T , a compound $A B_{2}(g)$ dissociates according to the reaction $2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$ with a degree of dissociation x , Which is small compared with unity. Predict the expression for K_{p} in terms of x and the total pressure P .
A. $P x^{3} / 2$
B. $P x^{2} / 3$
C. $P x^{3} / 3$
D. $P x^{2} / 2$

Answer: A

- Watch Video Solution

173. What is the amount of PCl_{5} (in mole) need to be aded to one litre vessel at $250^{\wedge} \mathrm{Oc}$ in order to obtain a concentration of 0.1 moles of Cl 2 ? K c for $\mathrm{PCl} 5 \Longleftrightarrow \mathrm{PCl} 3+\mathrm{Cl} 2$ is $0.0414 \mathrm{~mol} /$ litre
A. 0.3415
B. 0.0341
C. 3.415
D. 0.3415

Answer: A

- Watch Video Solution

174. For $\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(g)+\mathrm{H}_{2} S$, The observed pressure for reaction mixture in equillibrium is 1.12 atm at $160^{\circ} c$. Calculate the value of K_{p} for the reaction:
A. $3.136 \mathrm{~atm}^{2}$
B. $0.3136 \mathrm{~atm}^{2}$
C. $3.415 \mathrm{~atm}^{2}$
D. $0.3415 \mathrm{~atm}^{2}$

- Watch Video Solution

175. In a reaction at equillibrium X mole of the reactant A decompose to give 1 mole each of C and D. if the fraction of A decomposed at equillibrium is independent of initial concentration of A then what will be the value $\mathrm{pf} X$?
A. 1
B. 3
C. 2
D. 4

Answer: C

176. In a system : $\mathrm{A}(\mathrm{s})$ hArr $2 \mathrm{~B}(\mathrm{~g})+3 \mathrm{C}(\mathrm{g})$ If the concentration of C at equillibrium is increased by factor 2 then predict the equillibrium concentration of B in terms of original val,ue .
A. Two times of its original value
B. One half of its original value
C. $2 \sqrt{2}$ times of its original value
D. $\frac{1}{2} \sqrt{2}$ times of its original value

Answer: D

- Watch Video Solution

177. Eight mole of a gas $A B_{3}$ attain equillibrium in a closed container of volume $1 \mathrm{dm}^{3}$ as $2 A B_{3} \Leftrightarrow A_{2}(g)+3 B_{2}(g)$ if at equillibrium 2 mole of A_{2} are present then calculate the equillibrium constant.
A. $72 m o l^{2} L^{-2}$
B. $36 \mathrm{~mol}^{2} L^{-2}$
C. $3 \mathrm{~mol}^{2} L^{-2}$
D. $27 m o l^{2} L^{-2}$

Answer: D

- Watch Video Solution

178. In the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(g) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$ the equilibrium pressure is 12 atm . If 50% OF CO_{2} reacts. Calculate the K_{P} for the change:
A. 12 atm
B. 16 atm
C. 20 atm
D. 6 atm

Answer: B

179. When 20 g of CaCO_{3} were put into 10 litre flask and heated to $800^{\circ} \mathrm{c}$ $35 \% \mathrm{CaCO}_{3}$ remained unreacted at equillibrium. Predict k_{p} for decomposition of 'CaCO_3.
A. 1.145 atm
B. 0.145 atm
C. 2.145 atm
D. 3.145 atm

Answer: A

- Watch Video Solution

180. Sulphides ions in alkaline solution react with solid sulphur to form polyvalent sulphide ions. The equillibrium constant for the formation of S_{2}^{2-} and S_{3}^{2-} from S and S^{2-} ions are 1.7 and 5.3 respectively.What is the equillibrium constant for the formation of S_{3}^{2-} from S_{2}^{2-} and S ?
A. 1.33
B. 3.11
C. 4.21
D. 1.63

Answer: B

- Watch Video Solution

181. At equillibrium if $K_{p}=1$ then :
A. $\Delta G^{o}=0$
B. $\Delta G^{o}>1$
C. $\Delta G^{o}<1$
D. None

Answer: A

182. For $N_{2}+3 \mathrm{H}_{-} 2 \Leftrightarrow 2 \mathrm{NH}_{-} 3$ DeltaH` $=-\mathrm{VE}$ then :
A. $K_{P}=K_{C}$
B. $\mathrm{K}_{-} \mathrm{p}=\mathrm{K}$ CRT
C. $K_{P}=K_{c}(R T)^{-2}$
D. $K_{-} p=K_{-}(R T)^{\wedge}-1$

Answer: C

- Watch Video Solution

183. On applying pressure to the equilibrium, ice \Leftrightarrow water which phenomenon will happen:
A. More ice will be formed
B. More water will be formed
C. Equiliberium will not be disturbed
D. Water will equilibrium

Answer: B

- Watch Video Solution

184. For the equilibrium $2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(g)+14.6 \mathrm{kcal}$ An increase of temperature will:
A. Favour the formation of $\mathrm{N}_{2} \mathrm{O}_{4}$
B. Favour the decomposotion of $\mathrm{N}_{2} \mathrm{O}_{4}$
C. Not affect the equilibrium
D. Stop the reaction

Answer: B
185. Which equilibrium in gaseous phase would be unaffected by an increase in preassure:
A. $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
B. ${ }^{`} \mathrm{~N}_{2} 2+\mathrm{O} _2 \rightleftharpoons 2 \mathrm{NO}$
C. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
D. $\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightleftharpoons \mathrm{CO}_{2}$

Answer: B

- Watch Video Solution

186. For the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H$ Ithe K_{p} and K_{c} are related as :
A. $K_{C}=2 K_{P}$
B. $K_{C}>K_{P}$
C. $K_{C}=K_{P}$
D. $K_{C}<K_{P}$

Answer: C

D Watch Video Solution

187. The vapour density of compeletly disssociated $\mathrm{NH}_{4} \mathrm{Cl}$ would be :
A. Slightly less than half of that of ammonium chloride
B. Half of that of ammonium chloride
C. Double that of ammonium chloride
D. Determined by the amount of solid ammonium choride used in the experiment

Answer: B

D Watch Video Solution

188. For the chemical reaction, $3 X(g)+y(g) \rightarrow X_{3} Y(g)$: the amount of
$X_{3} Y$ at equilibrium is affected by:
A. Temperature and pressure
B. Temperature only
C. pressure only
D. Temperature,pressure and catalyst

Answer: A

- Watch Video Solution

189. Which oxide of nitrogen is the most stable:
A. $2 \mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) K=6.7 \times 10^{16}$ mollitre $^{-1}$
B. ${ }^{\prime} 2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{-} 2(\mathrm{~g})+\mathrm{O}_{-} 2(\mathrm{~g})$,
$K=2.2 \mathrm{xx} \mathrm{10}$ ^(30) mol litre ${ }^{\wedge}(-1)$
C. $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightleftharpoons 2 \mathrm{~N}_{2}(g)+5 \mathrm{O}_{2}(g), K=3.5 \times 10^{33} \mathrm{~mol}^{-5}$ litre $^{-5}$
D. $2 N_{2} O(g) \rightleftharpoons 2 N_{2}(g)+O_{2}(g), K=3.5 \times 10^{33}$ mollitre $^{-1}$
190. The equilibrium constant for equilibria $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)$ and $2 \mathrm{SO}_{3}(g) \rightleftharpoons 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$ are K_{1} and K_{2} respectively Then:
A. $K_{2}=K_{1}$
B. $K_{2}=K_{1}^{2 `}$
C. $K_{2}=\frac{1}{K_{1}}$
D. $K_{2}=\frac{1}{K_{1}^{2}}$

Answer: D

- Watch Video Solution

191. For $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}, \Delta H=22$ kcal the dissociation of $P C l_{5}$ will be more on:
A. Increasing temperature
B. Decreasing pressure
C. Increasing pressure
D. Increasing the concentration of chlorine

Answer: A

- Watch Video Solution

192. An increase in temprature on the reaction $N_{2}+O_{2} \rightleftharpoons 2 N O, \Delta H=$ 43.2 kcal will :
A. Increase the yield of NO
B. Decrease the yield of NO
C. Not effect the yield of NO
D. Not help the reaction to proceed in forward direction
193. The volume of the reaction vessel containing an equilibrium mixture
 equilibrium is reestablished:
A. The amount $\mathrm{SO}_{2}(\mathrm{~g})$ will decrease
B. The amount of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ will increase
C. The amount of $\mathrm{Cl}_{2}(\mathrm{~g})$ will increase
D. The amount of $C l_{2}(\mathrm{~g})$ will remain unchanged

Answer: C

- Watch Video Solution

194. The corrrect relationship between K_{c} and K_{p} is gaseous equilibrium is:
A. $K_{C}=K_{P}(R T)^{\Delta} n(b)$
B. $K_{p}=K_{C}(R T)^{\Delta} n$
C. $\frac{k_{c}}{R T}\left(K_{P}\right)^{\Delta} n$
D. $\left(K_{-} P\right) /(R T)=\left(K_{-} C\right)^{\wedge}$ Deltan

Answer: B

- Watch Video Solution

195. In which equilibrium reaction the equilibrium whould shift to the right, if the total pressure is increased:
A. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
B. $H_{2}+I_{2} \rightleftharpoons 2 H I$
C. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightleftharpoons 2 \mathrm{HCl}$
D. $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$
196. The chemical reaction in which the yield of the product cannot be increased by the application of high pressure is:
A. $P C l_{3}(g)+C l_{2}(g) \rightleftharpoons P C l_{5}(g)$
B. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
C. 'H_2 $2(\mathrm{~g})+3 \mathrm{Cl} 2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
D. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

Answer: B

- Watch Video Solution

197. For which reaction is $K_{p}=K_{c}$:
A. ${ }^{2} 2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{-} 2(\mathrm{~g})$
B. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$
C. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$
D. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

Answer: C

- Watch Video Solution

198. In a flask colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown colourless NO_{2}. At equilibrium when the flask is heated at $100^{\circ} \mathrm{c}$ the brown colour deepens and on cooling it becomes less coloured. The change in enthalpy $D a<a H$, for the system is:
A. Negative
B. Positive
C. Zero
D. Undefined

Answer: B

199. For which system at equilibrium, at constant temperature, will the doubling of the volume cause a shift to the right:
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ hArr $2 \mathrm{HCl}(\mathrm{g})$
B. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}$ 2 $2(\mathrm{~g})$ hArr 2CO_2(g)
C. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}$
D. $P_{c l}(g) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Answer: D

- Watch Video Solution

200. For which reaction K_{p} is less than ${ }^{\text {K_c: }}$
A. $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$
B. $2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}$
C. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$
D. $N_{2}+O_{2} \leftrightarrow 2 N O$

Answer: C

- Watch Video Solution

201. When NaCl_{3} is heated in a closed vessel, oxygen is liberated and $\mathrm{NaNO} \mathrm{O}_{2}$ is left behind. At equilibrium:
A. Addition of NaNO_{2} favours reverse reaction
B. Addition of NaNO_{2} favours forward reaction
C. Increasing temperature favours forward reaction
D. Decreasing pressure favour reverse reaction

Answer: C

- Watch Video Solution

202. Which is a reversible reaction:
A. $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Nacl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{Agcl} \downarrow$
D. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \downarrow$

Answer: A

- Watch Video Solution

203.

In
lime
kiln,the
reversible
reaction,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ proceeds to completion because:
A. of high temperature
B. CO_{2} escapes out
C. Cao is removed
D. of low temperature

Answer: B

- Watch Video Solution

204. In the reaction, $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ increase in H_{2} concentration equilibrium:
A. Favours the dissociation of NH_{3}
B. Does not effect the reaction
C. Increases the equilibrium constant
D. Favours the formation of NH_{3}

Answer: D

- Watch Video Solution

205. For the reaction, $\mathrm{CuSO} \mathrm{S}_{4.5} \mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{CuSO}_{4.3} \mathrm{H}_{2} \mathrm{O}(s)+2 \mathrm{H}_{2} \mathrm{O}(v)$. Which one is correct representation ?
A. $K_{p}=\left(p_{H_{20}}^{2}\right.$
B. $K_{c}=\left[H_{2} O\right]^{2}$
C. $K_{P}=K_{c}(R T)^{-2}$
D. All of the above

Answer: D

- Watch Video Solution

206. The equilibrium which remains uneffected by pressure change is :
A. $N_{2}(g)+O_{2} \Leftrightarrow 2 N O(g)$
B. $2 \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow 3 \mathrm{O}_{2}$
C. 2O_3(g) hArr 3O_2'
D. $2 \mathrm{NO}_{2} \Leftrightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$

Answer: A

207. In an equilibrium reaction if $\Delta G^{o}=0$ the equilibrium constant, K should be equal to:
A. Zero
B. 1
C. 2
D. 10

Answer: B

- Watch Video Solution

208. Solubility of a subsatnce which dissolves with a decrease in volume and absorption of heat will be favoured by:

A. High P and High T

B. low P and low T
C. High P and low T
D. Low P and high T

Answer: A

- Watch Video Solution

209. A chemical system is in equilibrium Addition of a catalyst would result in:
A. Increase in the rate of forward reaction
B. increase in the rate of reverse reaction
C. A new reaction path way to reaction
D. Increase the amount of heat evolved in the reaction

Answer: C

- Watch Video Solution

210. In a vessel containing $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and O_{2} at equilibrium,some helium gas is introduced os that the total pressure increases while temperature and volume remain constant. According to Le chatelier's principle the dissociation of SO_{3} :
A. Increases
B. decreases
C. Reamains unaltered
D. Changes unpredictably

Answer: C

- Watch Video Solution

211. Concentration of reaction and products at equilibrium for $\mathrm{A}+2 \mathrm{~B} \Leftrightarrow$ $\mathrm{C}+\mathrm{D}$ are, $[A]=0.20,[B]=0.10,[C]=0.30,[D]=0.50$. The value of equilibrium constant is:
A. 75
B. 150
C. 2.5
D. 750

Answer: A

- Watch Video Solution

212. For a gaseous equilibrium, ${ }^{\prime} A+2 B$ hArr $C+3 D$ the partial pressures of

A, B, C and D are found to be $0.20,0.10,0.30$ and 0.50 atm respectively. Predict the value of equilibrium constant.
A. 11.25
B. 18.75
C. 5
D. 3.75

Answer: B

213. HI was heated in a sealed tube at $440^{\circ} c$ till the equiibrium was reached. HI was found to be 22% decomposed. Calculate the equilibrium constant for dissociation.
A. 0.282
B. 0.0796
C. 0.0199
D. 1.99

Answer: C

- Watch Video Solution

214. The equilibrium constant for, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$ is 1.80 at 1000° c. If 1.0 mole of H_{2} and 1.0 mole of CO_{2} are placed in one
litre flask. What will be the final equilibrium concentration of CO at $1000^{\circ} c$?
A. 0.573 M
B. 0.385 M
C. 5.73 M
D. 0.295 M

Answer: A

- Watch Video Solution

215. An equilibrium mixture for the reaction, $2 \mathrm{H}_{2} S(g) \Leftrightarrow 2 \mathrm{H}_{2}(g)+S_{2}(g)$ had 0.5 mole $H_{2} S$, 0.10 mole H_{2} and 0.4 mole S_{2} in one litre vessel. K_{c} for the reaction is :
A. $0.004 \mathrm{~mol} / \mathrm{lit}$
B. $0.016 \mathrm{~mol} / \mathrm{lit}$
C. $0.008 \mathrm{~mol} / \mathrm{lit}$
D. $0.160 \mathrm{~mol} / \mathrm{lit}$

Answer: B

- Watch Video Solution

216. The equilibrium constant for the reaction, $3 C_{2} H_{2} \Leftrightarrow C_{6} H_{6}$ is 4.0 at T K. If the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{2}$ is 0.5 mole/litre the concentration of `C_6H_6.
A. 0.5 M
B. 1.5 M
C. 5×10^{-2}
D. 0.25 M

Answer: A

D Watch Video Solution

217. For the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ hArr 2CO(g) the partial pressure of CO_{2} and CO are 4 and 8 atm respectively K_{p} For the reaction is :
A. 16 atm
B. 2 atm
C. 5 atm
D. 4 atm

Answer: A

- Watch Video Solution

218. If one third HI decomposes at a particular temperature: K_{c} for $2 H I \Leftrightarrow H_{2}+I_{2}$ is :
A. $1 / 16$
B. $1 / 4$
C. 1/6
D. $1 / 2$

Answer: A

- Watch Video Solution

219. For a reversible reaction the rate constant for the forward reaction is 2.38×10^{-4} and for the backward reaction is 8.15×10^{-5} The k_{c} of the reaction is:
A. 0.342
B. 2.92
C. 0.292
D. 3.42

Answer: B

- Watch Video Solution

220. $28 \mathrm{~g} N_{2}$ and $6 \mathrm{~g} H_{2}$ were mixed .At equilibrium $17 \mathrm{~g} \mathrm{NH} H_{3}$ was formed. The weight of N_{2} and H_{2} of equilibrium are respectively:
A. 11 g zero
B. $1 \mathrm{~g}, 3 \mathrm{~g}$
C. $14 \mathrm{~g}, 3 \mathrm{~g}$
D. $11 \mathrm{~g}, 3 \mathrm{~g}$

Answer: C

- Watch Video Solution

221. At $25^{\circ} c$ the equilibrium constant K_{1} and K_{2} of two reaction are : $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{-} 2+3 H_{2}: \frac{1}{2} N_{2}+\frac{3}{2} H_{2} \Leftrightarrow N H_{3}$ the relation between two equilibrium constant is :
A. $K_{1}=K_{2}$
B. $K_{2}=\frac{1}{K_{1}^{2}}$
C. $K_{1}=\frac{1}{K_{2}^{2}}$
D. $K_{1}=\frac{1}{K_{2}}$

Answer: C

- Watch Video Solution

222. The function of an enzyme in a reaction of the type $\begin{gathered}A \\ A\end{gathered} \mathrm{~B}$ hArr $\mathrm{C}+\mathrm{D}$ is to decreases:
A. Equilibrium constant
B. Rate of forward reaction
C. Rate of backward reaction
D. Activation energy

Answer: D

223. The numerical value of K_{p} and $\mathrm{K}_{-} c f$ or theequilibrium $2 \mathrm{NH}_{-} 3$ hArr $\mathrm{N} 2+3 \mathrm{H}_{-} 2$ ' are related as :
A. $K_{p}=K_{c} \times(R T)^{3}$
B. $K_{p}=K_{c} \times(R T)^{-2}$
C. $K_{p}=K_{c} \times(R T)^{2}$
D. None of these

Answer: C

- Watch Video Solution

224. The variation of equilibrium constant with temperature is called :
A. van't Hoff isotherm
B. Kirchoff's equation
C. van't Hoff isochore
D. None of these

Answer: C

- Watch Video Solution

225. Which statement is correct about Henry's law?
A. The amount of gas dissolved per unit volume of solvent is directly propotional to pressure of gas.
B. The amount of gas dissolved per unit volume of solvent is directly independent to pressure of gas.
C. The law is valid only when the gas dissolved neither dissociates nor associates in solvent
D. All of the above

Answer: D

- Watch Video Solution

226. For the reaction $N_{2}+3 H_{2} \Leftrightarrow 2 N H_{3}$ in a vessel after the addition of equal number of mole of N_{2} and H_{2} equilibrium state is formed. Which of the following is correct ?
A. $\left[H_{2}\right]=\left[N_{2}\right]$
B. $\left.\left[H_{2}\right]<N_{2}\right]$
C. $\left.\left[H_{2}\right]>N_{2}\right]$
D. $\left[H_{2}\right]>\left[N H_{3}\right]$

Answer: B

- Watch Video Solution

227. For a reaction in gaseous state to reach an equilibrium state the reaction should be carried out in
A. An open vessel
B. Closed vessel
C. Glass vessel
D. Iron vessel

Answer: B

- Watch Video Solution

228. Which reaction gives more products as a result of increase in pressure:
A. $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \Leftrightarrow \mathrm{H}_{2}+\mathrm{CO}_{2}$
B. $\mathrm{H}_{2}+\mathrm{Br}_{2} \Leftrightarrow 2 \mathrm{HBr}$
C. $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$
D. $2 \mathrm{HI} \Leftrightarrow H_{2}+I_{2}$

Answer: C

229. On addition of an inert gas at constant volume to the reaction :
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at equilibrium:
A. The reaction halts
B. forward reaction is favoured
C. The reaction remains unaffected
D. Backward reaction is favoured

Answer: C

- Watch Video Solution

230. The equilibrium constant for the reaction :
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$ and $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}$ are K 1 and $K 2$ respectively. Then the equilibrium constant for the equilibrium 'NO 2

$$
(\mathrm{g}) \rightleftharpoons 1 / 2 \mathrm{~N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \text { ? }
$$

A. $\frac{K_{1}}{K_{2}}$
B. $\left[\frac{1}{K} 1 K 2\right] \frac{1}{2}$
C. $K_{1} K_{2}^{2}$
D. $K_{1}^{2} K_{2}$

Answer: C

- Watch Video Solution

231. In the reversible gaseous reaction, $A+2 B \Leftrightarrow C+3 D$ The partial pressure of A B C and D are $0.20,0.10,0.30,0.50$ atm respectively at equilibrium. The numerical value of ${ }^{\prime} K _p$ is :
A. 11.25
B. 18.75
C. 5
D. 3.75

Answer: B
232. The formation of phosgene is represented as, $\mathrm{CO}+\mathrm{Cl}_{2}$ hArr COCl_{2} The reaction is carried out in 500 ml flask. At equilibrium 0.3 mole of phosgene, 0.1 mole of CO and 0.1 mole of $C l_{2}$ are present. What is the equilibrium constant of the reaction ?
A. 30
B. 15
C. 5
D. 3

Answer: B

- Watch Video Solution

233. In the reaction, $A+B \Leftrightarrow 2 C$, at equilibrium, the concentration of A and B is 0.20 mol litre $^{-1}$ each and that of C was found to be 0.60 mol
litre $^{-1}$. The equilibrium constant of the reaction ?
A. 9
B. 4.8
C. 18
D. 2.4

Answer: A

- Watch Video Solution

234. The equilibrium constants for the reaction, $B r_{2} \Leftrightarrow 2 \mathrm{Br}$ at 500 K and 1×10^{-10} and $1 \times^{-5}$ respectively. The reaction is:
A. Endothermic
B. Exothermic
C. Fast
D. Slow

D Watch Video Solution

235. ΔG^{o} for the reaction $X+Y \Leftrightarrow Z$ is -4.606 kcal . The equilibrium constant for the reaction at $227^{\circ} c$ is:
A. 100
B. 10
C. 2
D. 0.01

Answer: A

- Watch Video Solution

236. The partial pressure of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ in equilibrium mixture for the reaction, $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ are 2.0,1.0 and
0.1 atm respectively at $427^{\circ} c$. ThevalueofK_pf or thedecompositionof $\mathrm{CH}_{-} 3 \mathrm{OH} \rightarrow \mathrm{CO}$ and $\mathrm{H}_{-} 2^{\prime}$ is :
A. $10^{2} \mathrm{~atm}$
B. $2 \times 10^{2} \mathrm{~atm}^{-1}$
C. $50 \mathrm{~atm}^{2}$
D. $5 \times 10(-3) \mathrm{atm}^{2}$

Answer: D

- Watch Video Solution

237. The equilibrium constant of a reaction is 20.0 . At equilibrium, the rate constant of forward reaction is 10.0. The rate constant for backward reaction is:
A. 0.5
B. 2
C. 10
D. 200

Answer: A

- Watch Video Solution

238. For the reaction $\mathrm{aC}(s)+\mathrm{CO}_{2}(g) \Leftrightarrow 2 \mathrm{CO}(g)$, the partial pressure of CO_{2} and CO are 2.0 and 4.0 atm respectively at equilibrium. The K_{p} for reaction is:
A. 0.5
B. 4
C. 8
D. 32

Answer: C

- Watch Video Solution

239. In the reaction, $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$, the amounts of $P C l_{5} P C l_{3}$ and $C l_{2}$ at equilibrium are 2 mole each and the total pressure is 3 atm. The equilibrium constant K_{p} is:
A. 1 atm
B. 2 atm
C. 3 atm
D. 6 atm

Answer: A

- Watch Video Solution

240. If 340 g of mixture N_{2} and H_{2} in the correct raito gave a 20% yield of NH_{3}. The mass produced would be:
A. 16 g
B. 17 g
C. 20 g
D. 68 g

Answer: D

- Watch Video Solution

241. In a chemical equilibrium, the rate constants of the forward and backward reactions are respectively 3.2×10^{-4} and 1.2×10^{-5}, the equilibrium constant is :
A. 0.37
B. 26.7
C. 0.25
D. 3.7

Answer: B

242. one mole of hydrogen iodide is heated in a closed container of 2 litre. At equilibrium half mole of hydrogen iodide has dissociated. What is the value of the equilibrium constant ?
A. 1
B. 5
C. 0.25
D. 0.75

Answer: C

- Watch Video Solution

243. For the reaction $2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+O_{2}(g), K_{c}=1.8 \times 10^{-6}$ at $185^{\circ} c$. At $185^{\circ} c$, What is the value of K_{c} for $N O(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O_{2}(g) ?$
A. 0.9×10^{-6}
B. 7.5×10^{2}
C. ${ }^{`} 1.95 \times x 10^{\wedge}(-3)$
D. ${ }^{`} 1.95 \times \times 10^{\wedge}(3)$

Answer: B

- Watch Video Solution

244. 4 moles of A are mixed with 4 moles of B. When 2 moles of C are formed at equilibrium accordingly to the reaction $A+B \rightarrow C+D . K_{c}$ is:
A. 4
B. 1
C. $\sqrt{2}$
D. $\sqrt{4}$
245. 3.2 mole of hydrogen iodide were heated in a sealed bulb at $444^{\circ} c$ till the equilibriumn was reached. The degreee of dissociation of HI at this temperature was found to be 22% calculate the number of mole of hydrogen iodide present at equlibrium.
A. 2.496
B. 1.87
C. 2
D. 4

Answer: A

- Watch Video Solution

246. For the reaction $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ at 720 K the value of equlibrium constant is 50 . When equilibrium concentration of H_{2} and I_{2}

IS 0.5 M.'K_p under the same conditions will be :
A. 0.02
B. 0.2
C. 50
D. 50RT

Answer: C

- Watch Video Solution

247. A quantity of PCl_{5} was heated in a 10 litre vessel at $250^{\circ} \mathrm{C}$ to show $P C L_{5}(g) \Leftrightarrow P C l_{3}+C l_{2}$ AT equilibrium the vessel contains 0.1 mole of $\mathrm{PCl}_{5} 0.20$ mole of PCl_{3} and 0.20 mole od cl_{2} The equilibrium constant of the reaction is:
A. 0.02
B. 0.05
C. 0.04
D. 0.025

Answer: C

- Watch Video Solution

248. If ΔG° for the reaction given below is 1.7 KJ : The equilibrium constant of the reaction $2 \mathrm{HI}(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$ at $25^{\wedge} @ C^{`}$ IS :
A. 24
B. 3.9
C. 2
D. 0.5

Answer: D

- Watch Video Solution

249. At a given temperature the K_{c} for the reaction $P C L_{5}(g) \Leftrightarrow P C l_{3}+C l_{2}$ is 2.4×10^{-3} At the same temperature the K_{c} for the reaction $P C l_{3}+C l_{2} \Leftrightarrow P C L_{5}(g)$ is :
A. $2.4 \times X 10^{-3}$
B. -2.4×10^{-3}
C. 4.2×10^{2}
D. 4.8×10^{-2}

Answer: C

- Watch Video Solution

250. For a reaction $2 A+B \Leftrightarrow C$ where initial concentration of $\mathrm{A}=2 \mathrm{M}$ $B=1 \mathrm{M}$ and $C=0$ the concentration of B at equilibrium is 0.5 M calculate the value of equilibrium constant for the reaction.
A. 0.5
B. 2
C. 1
D. 1.5

Answer: C

D Watch Video Solution

251. $\frac{K_{p}}{K_{c}}$ for the reaction: ${ }^{\text {CO }}(\mathrm{g})+1 / 2 \mathrm{O}_{-} 2(\mathrm{~g})$ hArr CO_2 $2(\mathrm{~g})$ is :
A. RT
B. $1 / \sqrt{R} T$
C. $\sqrt{R} T$
D. 1

Answer: B

252. If the concentration of N_{2}, H_{2} and $N H_{3}$ are $1,2,3$, respectively, their concentration at equilibrium will be : $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$.
A. $(1-x)(2-3 x)(2 x)$
B. $(1-\mathrm{x} / 3)(2-\mathrm{x})(2 \mathrm{x} / 3)$
C. $(1-x)(2-x)(3+x)$
D. $(1-x)(2-3 x)(3+2 x)$

Answer: D

- Watch Video Solution

253. For the equilibrium, $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$ which of the following expression is correct :
A. $\mathrm{K}_{p}=[\mathrm{CaO}] \frac{\mathrm{CO}_{2}}{\mathrm{CaCO}_{3}}$
B. $K_{p}=\frac{p_{(c a o)+p\left(c o s_{2}\right)}}{p_{\text {caco }_{2}}}$
C. $K_{p}=p\left(c o_{3}\right)$
D. ${ }^{K} _\mathbf{p}=(\mathrm{p}$ _(cao) $)$ p_(co_2))/p_(caco_3)

Answer: C

- Watch Video Solution

254. For the reaction $, A \Leftrightarrow \mathrm{~B}: K_{c}=2, B \Leftrightarrow \mathrm{C}: K_{c}=4, C \Leftrightarrow \mathrm{D}: K_{c}=6 K_{c}$ for the reaction A h Arr D is :
A. $(2 \div 4 \div 6)$
B. $\frac{2 \times 4}{6}$
C. $\frac{4 \times 6}{2}$
D. $2 \times 4 \times 6$

Answer: D

- Watch Video Solution

255. For the reversible reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g}) \mathrm{at500}$ @@ thevalueofK_p
1.44×10^{-5} when ∂ pressuremeasured \in atmosphereThec or rospond \in K_c` with concentration is mole/lit. IS :
A. $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$
B. $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$
C. $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$
D. $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$

Answer: D

- Watch Video Solution

256.2 MOLE of PCl_{5} were heated in a closed vessel of 2 litre capacity. AT equilibrium 40% Of $P l_{5}$ dissociated into PCl_{3} and Cl_{2}. Find the value of equilibrium constant.
A. 0.267
B. 0.53
C. 2.63
D. 5.3

Answer: A

- Watch Video Solution

257. If K_{e} of the reaction, $2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+I_{2}$ is 0.25 , the equilibrium constant of the reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$ would be :
A. 1
B. 2
C. 3
D. 4
258. One mole of ethyl alcohol was treated with one mole of acetic acid at '25^@C. 2/3 of the acid changes into ester at equilibrium Calculate the equilibrium constant for the reaction :
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

259. If in the reaction $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}, \alpha$ is degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$

Then the number of molecules at equiliberium will be :
A. 3
B. 1
C. $(1-\alpha)^{2}$
D. $(1+\alpha)$

Answer: D

- Watch Video Solution

260.

$$
K_{c} f \text { or } A+B \rightleftharpoons C+\text { Dis10at25^o }
$$

.Ifaconta \in erconta $\in s 1,2,3,4 m o \leq$ perlitreof A, B, C, and Drespect 25^{\wedge} o C' , the reaction shall :
A. Proceed from right to left
B. Proceed from right to left
C. Be at equilibrium
D. None of these

D Watch Video Solution

261. For a system in equilibrium, $\Delta G=0$ under conditions of constant :
A. Temperature and pressure
B. temperature and volume
C. Energy and volume
D. Pressure and volume

Answer: A

- Watch Video Solution

262. Dissolution of sugar being an endothermic reaction is favoured by :
A. Low T
B. High T
C. High P
D. Low P

Answer: B

D Watch Video Solution

263. For the reaction 'PCL_5 hArr PCL_3+CL_2, the forward reaction at constant temperature is fovoured by :
A. Introduction an inert gas at constant volume
B. Introduction chlorine gas at constant volume
C. Introduction an inert gas at constant pressure
D. None of these

Answer: C

264. The reaction which proceed in the forward direction is :
A. $\mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{HCl}=2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{SnCL}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2}=\mathrm{SnCl}_{2}+2 \mathrm{HgCl}_{2}$
C. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}=\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH}$
D. $2 \mathrm{CuI}+\mathrm{I}_{2}+4 \mathrm{~K}^{+}=2 \mathrm{Cu}^{2+} 3 \mathrm{KI}$

Answer: A

- Watch Video Solution

265. For reaction $\mathrm{PCl}_{3}(g)+C l_{2}(g) \rightleftharpoons P C l_{5}(g)$ the value of K_{c} at $250^{\circ} C$ is $26 \mathrm{~mol}^{\wedge}(-1)$ litre^((-1). The value of K_{P} at this temperature will be
A. $0.61 \mathrm{~atm}^{-1}$
B. $0,57 \mathrm{~atm}^{-1}$
C. $0.83 \mathrm{~atm}^{-1}$
D. $0.46 \mathrm{~atm}^{-1}$

Answer: A

- Watch Video Solution

266. For the gaseous phase reaction,
$2 \mathrm{NO} \rightleftharpoons \mathrm{N}_{2}+\mathrm{O}_{2}, \Delta H^{o}=-43.5 \mathrm{Kcalmol}^{-1}$, Whichstatementisc or rci
$\mathrm{N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}):$
A. K is independent of temperature
B. K increases as temperature decreases
C. K decreases as temperature decreases
D. K varies with addition of NO

Answer: C

267. In which of the following cases, does the reaction go farthest to completion :
A. $K=10^{3}$
B. $K=10^{-2}$
C. $K=10$
D. $K=1$

Answer: A

- Watch Video Solution

268. The solubility of CO_{2} in water increases with :
A. Increases in temperature
B. Increases in pressure
C. Decreases in pressure
D. None of these

Answer: B

- Watch Video Solution

269. If K_{1} and K_{2} are the respective equiliberium constant for the two reactions
$\mathrm{XeF}_{6}(g)+\mathrm{H}_{2} \mathrm{O}(g)=\mathrm{XeOF}_{4}(g)+2 \mathrm{HF}(g)$
$\mathrm{XeO}_{4}(g)+\mathrm{XeF}_{6}(g) \rightleftharpoons \mathrm{XeOF}_{4}(g) \mathrm{XeO}_{3} \mathrm{~F}_{2}(\mathrm{~g}) \quad$, The equiliberium constant for the reaction, $\mathrm{XeO}_{4}(g)+2 \mathrm{HF}(g) \rightleftharpoons \mathrm{XeO}_{3} \mathrm{~F}_{2}+\mathrm{H}_{2} \mathrm{O}(g)$ is
A. $K_{1} K_{2}$
B. $\frac{K_{1}}{K_{2}^{2}}$
C. $\frac{K_{2}}{K_{1}}$
D. $\frac{K_{1}}{K_{2}}$

Answer: C

- Watch Video Solution

270. A cylinder fitted with a movable piston contains liquid water in equiliberium with water vapour at $25^{\circ} \mathrm{C}$. Which operation result in a decrease in the equiliberium vapour pressure ?
A. Moving the oiston downward a short distance
B. removing a small amount of vapour
C. Removing a small amount of the liquid water
D. Dissolving salt in the water

Answer: D

- Watch Video Solution

271. The equiliberium constant for the reaction, $2 \mathrm{X}(\mathrm{g})+\mathrm{Y}(\mathrm{g}) \rightleftharpoons 2 \mathrm{Z}(\mathrm{g})$ is 2.25 litre mol^{-1} What would be the concentration of Y at equiliberium with 2.0 mole of X and 3.0 mole of Z in one litre vessel :
A. 1.0 M
B. 2.25 M
C. 2.0 M
D. 4.0 M

Answer: A

- Watch Video Solution

272. At constant temperature in one litre vessel when the reaction $2 \mathrm{SO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is at equiliberium the SO_{2} concentration is 6.0 M , initial concentration of SO_{3} is 1 M . calculate the equiliberium constant.
A. 2.7
B. 1.36
C. 0.34
D. 0.675

Answer: D

- Watch Video Solution

273.

$2 A+B \rightleftharpoons C+D$, the ∂ pressureof A, B, C and Datequiliberiumare 0.5
k_p for this reaction is :
A. 4.2
B. 2.4
C. 0.42
D. 0.24

Answer: A

274. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow \mathrm{NO}_{2}$ is carried out at 280 K in chloroform. When equiliberium has been established, 0.2 mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 2×10^{-3} mole of NO_{2} are present in a 2 litre solution. THE equiliberium constant for the reaction, $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ is :
A. 1×10^{-2}
B. 1×10^{-3}
C. 1×10^{-5}
D. 2×10^{-5}

Answer: C

- Watch Video Solution

275. In the equiliberium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}$, the partial pressure of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ AND SO_3 are $0.662,0.101$ and 0.331 atmrespectively. Wŝhodbethepartiaalpressure SO_2 and SO_3' are equal ?
A. 0.4 atm
B. 1.0 atm
C. 0.8 atm
D. 0.25 atm

Answer: A

- Watch Video Solution

276. For reaction $\mathrm{PCl}_{3}(g)+C l_{2}(g) \rightleftharpoons P C l_{5}(g)$ the value of K_{c} at $250^{\circ} C$ is $26 \mathrm{~mol}^{\wedge}(-1)$ litre^(-1). The value of K_{P} at this temperature will be
A. 0.605
B. 0.57
C. 0.83
D. 0.46

D Watch Video Solution

277. At equiliberium, the amount of HI in a 3 litre vessel was 12.8 g . Its equiliberium concentraction is :
A. 4.267 M
B. 0.033 M
C. 0.1 M
D. 0.2 M

Answer: B

- Watch Video Solution

278. One mole of nitrogen is mixed with 3 mole of hydrogen in a closed 3 litre vessel 20% of nitrogen is converted into NH_{3}. Then what is the K_{C}
for $\frac{1}{2}\left(N_{2}\right)+\frac{3}{2}\left(H_{2}\right) \rightleftharpoons N H_{3}$
A. 0.36 litre mol^{-1}
B. 0.46 litre mol^{-1}
C. 0.5 litre mol^{-1}
D. 0.2 litre mol^{-1}

Answer: A

- Watch Video Solution

279. 1.1 mole of A are mixed with 2.2 mole of Band the mixture is then kept In one litre flask till the equiliberium is attained $A+2 B \rightleftharpoons 2 C+D$. At the equiliberium, 0.2 mole of C are formed. The equiliberium constant of the rection is :
A. 0.001
B. 0.002
C. 0.003

D. 0.004

Answer: A

- Watch Video Solution

280. For the reaction $A+B \rightleftharpoons C+D$ the initial cocentration pf A and B are equal but the equiliberium concentration of C is twice that of equiliberium concentration of A. Find the value of the equiliberium constant.
A. 4
B. 9
C. $1 / 4$
D. $1 / 9$

Answer: A

281. The degree of dissociation of $\mathrm{PCl}_{5}(\alpha)$ obeying the equiliberium, $P C l_{5} \rightleftharpoons P C l_{3}+C l_{2}$ is approximately realted to the pressure at equilibrium by :
A. alpha prop P^{\prime}
B. $\alpha \propto \frac{1}{\sqrt{P}}$
C. $\alpha \propto \frac{1}{P^{2}}$
D. $\alpha \propto \frac{1}{P^{4}}$

Answer: B

- Watch Video Solution

282. If $\mathrm{K}_{-} 1$ and $\mathrm{K}_{-} 2$ are equiliberium constant for reactions (I) and (II) respectively for ,

$$
\begin{equation*}
N_{2}+O_{2} \rightleftharpoons 2 N O \tag{i}
\end{equation*}
$$

$\frac{1}{2} \mathrm{~N}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{NO}$
then :
A. $K_{2}=K_{1}$
B. $K_{2}=\sqrt{K_{1}}$
C. $K_{1}=2 K_{2}$
D. $K_{1}=\left(\frac{1}{2}\right) K_{2}$

Answer: B

- Watch Video Solution

283. The most favourable conditon of temperature and pressure for the oxidation of $\mathrm{SO}_{2} \int \mathrm{oSO}_{3}$ are :
A. Low remperature and high pressure
B. low temperature and low pressure
C. High temperature and high pressure
D. High temperature andlow pressure
284. When KOH is dissolved in water, Heat is evolved. If the temperature is raised, the solubility of KOH :
A. Increases
B. Decreases
C. Remains the same
D. Cannot be predicted

Answer: B

- Watch Video Solution

285. Solubility of a gas in liquid increaes on :
A. Addition of a catalyst
B. Increasiing the pressure
C. Decreasing the pressure
D. Increasing the temperature

Answer: B

- Watch Video Solution

286. A reversible chemical reaction having two reactant is in equiliberium. If the concentrations of the reactants are doubled then the equiliberium constant will :
A. Also be doubled
B. Be halved
C. Become one fourth
D. Remains the same

Answer: D

287. Reaction favoured by low pressure is :
A. $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
B. $P C l_{5} \rightleftharpoons P C l_{3}+C l_{2}$
C. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
D. $N_{2}+O_{2} \rightleftharpoons 2 N O$

Answer: B

- Watch Video Solution

288. van't Hoff' equation giving the effect of temperature on chemical equiliberium is represented a :
A. $\frac{d \ln F}{d T}=\frac{\Delta H}{R T^{2}}$
B. $\frac{d \ln K_{P}}{d T}=\frac{\Delta H T^{2}}{R}$
c. $\frac{d \ln K_{P}}{d T}=\frac{\Delta H}{R T^{2}}$
D. $\frac{d \ln K_{P}}{d T}=\frac{R T^{2}}{\Delta H}$

Answer: C

- Watch Video Solution

289. The unit of equilibrium constant for the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \Leftrightarrow 2 H I$

IS:

- Watch Video Solution

290. the equiliberium constant K for the reaction
$2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+I_{2}(\mathrm{~g})$ at room temperature 300 K is 2.85 and at 698 K is 1.84×10^{-2}. Hence the reason that HI existsas a stable compound at room temperature is because :
A. It decomposes so slowly that equilibrium is not readily achived
B. The HI bond has a large covalent contribution
C. The heat of reavtionat room temperature is -5.31 kcal
D. It is uncatalytic reaction

Answer: C

- Watch Video Solution

291. The equilibrium constant foa a reaction is 1×10^{20} at 300 K . Find the standard free energy vhange for this reaction.
A. ${ }^{-115 \mathrm{~kJ}}$
B. ${ }^{`}+115 \mathrm{~kJ}$
C. ${ }^{`}+16 \mathrm{~kJ}$
D. ` -166 kJ

Answer: A

292. $\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{AB}(\mathrm{g})$ is areversible reaction. At equilibrium 0.4 mole of $A B$ is formed whn each A and B are tsken on emole. How much of A change into AB ?
A. 20%
B. 40%
C. 60%
D. 4%

Answer: B

- Watch Video Solution

293. 8 mole of a gas $A B_{3}$ are introduced into a $1.0 \mathrm{dm}^{3}$ vessel. It dissociates as, $2 A B_{3}(g) \rightleftharpoons A_{2}(g)+3 B_{2}(g)$ At equilibrium, 2 mole of A_{2} are found ot be present. What is the equilibrium constant of rection ?
A. 2
B. 3
C. 27
D. 36

Answer: C

- Watch Video Solution

294. At a certain temperature , $2 \mathrm{HI} \rightleftharpoons \mathrm{H}_{-} 2+\mathrm{I}_{-} 20 n 50 \% \mathrm{HI}$ is dissolved at equilibrium .What the value of equilibrium constant ?
A. 1
B. 3
C. 0.5
D. 0.25

Answer: D

295. Equilibrium concentration of $H I, I_{2}$ and H_{2} are $0.7,0.1$ and 0.1 M respectively.The equilibrium constant for the reaction,

$$
I_{2}+H_{2} \rightleftharpoons 2 H I \text { is : }
$$

A. 0.36
B. 36
C. 49
D. 0.49

Answer: C

- Watch Video Solution

296.

An
equilibrium
mixture
of the
reaction
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ contains 0.120 mole of $\mathrm{NO}_{2}, 0.080$ mole of 0.640 mole of O_{2} in a 4 litre flask at a constant temperature. The value K_{c} for the reaction at this temperature is :
A. 14
B. 24
C. 7
D. 8

Answer: A

- Watch Video Solution

297. The equilibrium concentration of X, Y and $Y X_{2}$ are 4,2,2 respectively for the equilibrium $2 X+Y \Leftrightarrow Y X_{2}$ The equilibrium constant K_{c} is :
A. 0.0625
B. 0,625
C. 0.0628
D. None of these

Answer: D

298. The reaction $A+2 B \Leftrightarrow 2 C+D$ was situated using an initial concentration of B which was 1.5 times that of A But the equilibrium concentration of A and C were found to be equal . Then what is the K_{c} for the equilibrium?
A. 4
B. 8
C. 6
D. 0.632

Answer: A

- Watch Video Solution

299. The vapour density of undecomposed $N_{2} O_{4}$ is 46 . When heated vapour density decreases to 24.5 due to its dissociation to NO_{2} WHAT is
the percent dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at the final stage ?
A. 88
B. 60
C. 40
D. 70

Answer: A

- Watch Video Solution

300.

For
a
system
$A+2 B \Leftrightarrow 2$ Ctheequilibriumconcentrationare $[A]=0.06,[B]=0.12$ an
K_c` for the reaction is :
A. 54
B. 415
C. 4×10^{-5}

D. 125

Answer: A

- Watch Video Solution

301. An aqueous solution of hydrogen sulphide shows the equilibrium, $H_{2} S \rightleftharpoons H^{+}+H S^{-}$if dilute hydrochloric acid is added to an aqueous solution of hydrogen sulphide without any change in temperature:
A. The equilibrium constant will change
B. The concentration $H S^{-}$will increase
C. The concentration of undissociated hydrogen sulphide will decrease
D. The concentration of $H S^{-}$will decrease.

Answer: D

302.

$H C N($ aq. $) \rightleftharpoons H^{+}+C N^{-(\text {aq. })}$ Atequilibriumtheadditionof CN^{\wedge} (aq.) would:
A. Reduce HCN (aq.) concentration
B. Decrease the H^{+}(aq.) ion concentration
C. Increase the equilibrium constant
D. Decrease the equilibrium constant

Answer: B

- Watch Video Solution

303. Which can be explained as applications of Le Chatelier 's principle :
A. Transport of oxygen by haemoglobin in blood
B. Removal of CO_{2} from tissues by blood
C. Tooth decay due to use of sweet substances
D. All of these

Answer: D

- Watch Video Solution

304. The following equilibrium exist in aqueous solution, $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{-} 3 \mathrm{COO}^{\wedge}-+\mathrm{H}^{\wedge}+{ }^{\wedge}$ If dilute HCl is added without a change in temperature then :
A. Concentration of ${ }^{`} \mathrm{CH}_{-} 3 \mathrm{COO}^{\wedge}$ - will decrease
B. Concentration of ${ }^{`} \mathrm{CH}_{-} 3 \mathrm{COO}^{\wedge}$ - will increase
C. The equilibrium constant will increase
D. The equilibrium constant will decrease

Answer: A

305. The equilibrium constant for the reactions are : $\mathrm{H}_{3} \mathrm{PO}_{4} \xrightarrow{\mathrm{~K}} \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}: \mathrm{K}_{1}$
$\mathrm{H}_{2} \mathrm{PO}_{4} \xrightarrow{K} \mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-}: \mathrm{K}_{2}$
$\mathrm{HPO}_{4}^{2-} \xrightarrow{K} H^{+}+\mathrm{PO}_{4}^{3-}: K_{3}$ The equilibrium constant for $\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{H}^{+}+\mathrm{PO}_{4}^{3-}$ will be :
A. $\mathrm{K}_{-} 1 / \mathrm{K}_{-} 2 \mathrm{~K}_{-} 3$
B. $K_{1} \times K_{2} \times K_{3}$
C. K_2/K_1 K_3
D. $K_{-} 1 / K_{-} 2 / K_{-} 3$

Answer: B

- Watch Video Solution

306. If 1 mole of I_{2} is introduced into 1.0 litre flask at 1000 K , at equilibrium ($K_{-} c=10^{\wedge}-6$) which one is correct ?
A. $\left[I_{-} 2(\mathrm{~g})\right] \mathrm{gt}\left[I^{-(g)}\right]$
B. $\left[I_{-} 2(\mathrm{~g})\right] \mathrm{tt}\left[I^{-(g)}\right]$
C. $[$ I_ $2(\mathrm{~g})]=\left[I^{-(g)}\right]$
D. $\left[I_{-} 2(\mathrm{~g})\right] \mathrm{gt} 1 / 2\left[I^{-(g)}\right]$

Answer: A

- Watch Video Solution

307. If ammonia is added to pure water the concentration of a chemical species already present will decrease.The species is :
A. O^{2-}
B. OH^{-}
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: C

308.

If the system
$C a F_{2}(s) \Leftrightarrow$ Ca $^{2+}+2 F^{-\epsilon}$ crea \sin gtheconcentrationofCa^(2+) ions
4 times will cause the equilibrium concentration of F^{-}ions to change to :
A. $1 / 4$ of the initial value
B. $1 / 2$ of the initial value
C. 2 times of the initial value
D. None of these

Answer: B

- Watch Video Solution

309. When CO_{2} dissolves in water the following equilibrium is established, $\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+} \mathrm{HCO}_{3}^{-}$for which the equilibrium
constant is 3.8×10^{-7} and $\mathrm{PH}=6.0$ The ratio of $\frac{\mathrm{HCO}_{3}}{\mathrm{CO}_{2}^{-}} \mathrm{IS}$:
A. 3.8×10^{-18}
B. 3.8
C. 0.38
D. 13.8

Answer: C

- Watch Video Solution

310. For the reaction: $\left[A g(C N)_{2}\right]^{-\Leftrightarrow} A g^{+}+2 C N^{-}$the equilibrium constant K_{c} at $25^{\circ} \mathrm{C}$ is
4.0×10^{-19} thenthesilverionconcentration \in asolutionwhichwas or ig AgNO_3
A. 7.5×10^{18}
B. 7.5×10^{-18}
C. 7.5×10^{19}
D. 7.5×10^{-19}

Answer: B

- Watch Video Solution

311. Calculate the concentration of hydroxyl ion in a solution left after mixing 100 ml of $0.1 \mathrm{M} \mathrm{Mgcl}_{2}$ and 100 ml of $0.2 \mathrm{M} \mathrm{NaOH}\left[K_{s} p\right.$ of $\left.\left.M g\left(O H_{2}\right)=1.2 \times 10^{-11}\right)\right]$
A. 2.8×10^{-3}
B. 2.8×10^{-2}
C. 2.8×10^{-4}
D. 2.8×10^{-5}

Answer: C

312. Find the PH of saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2} \quad$ [K_p of $\left.\mathrm{Mg}\left(\mathrm{OH}_{-}\right)={ }^{\prime} 8.9 \mathrm{xx} 10^{\wedge}(-12)\right]$
A. 10.4168
B. 9.4168
C. 11.4168
D. 7

Answer: A

- Watch Video Solution

313. What is PH at which an acid indicator with $K_{a}=1 \times 10^{-5}$ changes colour when the indicator concentration is $1 \times 10^{-3} \mathrm{M}$?
A. 4
B. 5
C. 6
D. 3

Answer: B

D Watch Video Solution

314. An acid type indicator Hin differ in colour from its conjugate base $\left(\mathrm{In}^{\wedge}-\right)$ The human eye is sensitive to the colour of differences only when the ratio $\left[\mathrm{In}^{\wedge}-\right] /[\mathrm{HIn}]$ is greater than 10 or smaller than 0.1 . What should be the minimum change in the PH of the solution to observe a complete colour change $\left(K_{a}=1 \times 10^{-5}\right)$?
A. 4
B. 2
C. 6
D. 1
315. Soda water has a PH value :
A. Less than 7
B. More than 7
C. 7
D. Greater than 7

Answer: A

- Watch Video Solution

316. The ionic product of water \qquad with the increase in temperature
A. Increases
B. Decreases
C. Remains constant
D. None of the above

Answer: A

- Watch Video Solution

317. The PH of a solution is defined by the equation:
A. $p H=-\log \left[H_{3} O^{+}\right]$
B. $p H=\frac{\log 1}{H_{30}^{+}}$
C. $\left[H^{+}\right]=10^{-p H}$
D. All of these

Answer: D

- Watch Video Solution

A. pH of the solution increases
B. pH decreases
C. pH does not change
D. None of these

Answer: A

D Watch Video Solution

319. The pH of mixture of, $\mathrm{CH}_{3} \mathrm{COONA}+\mathrm{CH}_{3} \mathrm{COOH}$ after adding water shows \qquad value:
A. Increased
B. Decreased
C. Constant
D. All of the above

Answer: C

320. The unit of ionic product of water $\left(K_{w}\right)$ is:
A. mol $^{-1}$ litre e^{-1}
B. mol $^{-1}$ litre e^{-2}
C. mol $^{-2}$ litre e^{-2}
D. mol^{2} litre e^{-2}

Answer: D

- Watch Video Solution

321. Isoelctric point is defined as the pH at which :
A. An amino acid becomes acidic
B. An amino acid becomes basic
C. Zwitter ion has positive charge
D. Zwitter ion has zero charge

Answer: D

- Watch Video Solution

322. The addition of HCl does not suppresses the ionisation of:
A. Acetic acid
B. Benzoic acid
C. $H_{2} S$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: D

- Watch Video Solution

323. Water acts as an acid in presence of :
A. NH_{3}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $C_{6} H_{6}$
D. HCl

Answer: A

- Watch Video Solution

324. The dissociation constants of a weak acid and a weak base constituting the salt are same. The pH of a solution of salt is :
A. 7
B. More than 7
C. Less than 7
D. Zero
325. Which one is bronstad acid but not a bronstad base?
A. $\mathrm{H}_{2} \mathrm{O}$
B. NH_{3}
C. $H_{2} S$
D. HCO_{3}^{-}

Answer: C

- Watch Video Solution

326. The pH of blood is maintained by CO_{2} and $\mathrm{H}_{2} \mathrm{CO}_{3}$ in the body and chemical constituents of blood.The phenomenon is called:
A. Collidal
B. Buffer solution
C. Acidity
D. Salt balance

Answer: B

D Watch Video Solution

327. Fear or excitement generally cause one to breathe rapidly and it results in the decreases of concentration of CO_{2} in blood. In what way it will change pH of blood :
A. pH will increase
B. pH will decrease
C. No change
D. pH will be 7

Answer: C

328. On adding solid pottasium cyanide to water:
A. pH will increase
B. pH will decrease
C. pH will not change
D. Electrical conductance will not change

Answer: A

- Watch Video Solution

329. The hydrogen ion concentration in a solution of weak acid of dissociation constant K_{a} and concentration C is nearly equal to :
A. $\sqrt{\frac{k_{c}}{C}}$
B. $\frac{C}{K_{a}}$
C. $K_{a} C$
D. $\sqrt{K_{a} C}$

Answer: D

- Watch Video Solution

330. A 50 ml solution of 0.1 M acetic acid is titrated against a 0.1 M sodium hydroxide.The best indicator will be :
A. Phenophthalein
B. Methyl orange
C. A self indicator
D. Methyl red

Answer: A

- Watch Video Solution

331. Which is a mixed salt ?
A. NaHCO 3
B. $\mathrm{Ca}(\mathrm{OCL}) \mathrm{CL}$
C. $\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{324} \mathrm{H}_{2} \mathrm{O}$
D. $M g B r_{2}$

Answer: B

- Watch Video Solution

332. The aqueous solution of disodium hydrogen phosphate is:
A. Acidic
B. Neutral
C. Basic
D. None of these

Answer: C

- Watch Video Solution

333. The aqueous solution of aluminium chloride is acidic due to :
A. Cation hydrolysis
B. Anion hydrolysis
C. Hydrolysis of both anion and cation
D. Dissociation

Answer: A

- Watch Video Solution

334. Which gives a neutral solution in water?
A. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
B. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
C. Crcl_{3}
D. CuSO_{4}

Answer: B

- Watch Video Solution

335. Reaction of an acid with a base usually results in the production of
A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. H^{+}and OH^{-}ions
D. OH^{-}

Answer: B

336. The precipitation is noticed when an aqueous solution of:
A. NaNO_{2}
B. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
C. ZNSO_{4}
D. HgNO_{3}

Answer: D

- Watch Video Solution

337. Conjugate base of hydrazoic acid:
A. $H N_{3}^{-}$
B. N_{3}^{-}
C. N^{3-}
D. N_{2}^{-}

Answer: B

- Watch Video Solution

338. Which one of the strongest base ?
A. OH^{-}
B. RO^{-}
C. NH_{2}^{-}
D. R^{-}

Answer: D

339. Which one of the strongest acid ?
A. $\mathrm{ClO}_{3}(\mathrm{OH})$
B. $\mathrm{ClO}_{2}(\mathrm{OH})$
C. $\mathrm{SO}(\mathrm{OH})_{2}$
D. HCOO^{-}

Answer: A

- Watch Video Solution

340. Arrange $\mathrm{H}_{2} \mathrm{SO}_{4}$ (I), $\mathrm{H}_{3} \mathrm{PO}_{4}$ (II) HClO_{4} (III) in decreasing order of acidic nature:
A. IgtIIIgtII
B. IgtIIgtIII
C. IIIgtIIgtI
D. IIIgtIgtII

Answer: D

341. Which anion is weakest base?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$
B. NO_{3}^{-}
C. F^{-}
D. $\mathrm{CH}_{3} \mathrm{COO}^{-}$

Answer: B

342. The weakest base among the following is :
A. H^{-}
B. CH_{3}^{-}
C. $\mathrm{CH}_{3} \mathrm{O}^{-}$
D. $C L^{-}$

Answer: D

- Watch Video Solution

343. Which one is the strongest base?
A. AsH_{3}
B. NH_{3}
C. PH_{3}
D. SbH_{3}

Answer: B

Watch Video Solution
344. Weakest base among the following is :
A. NaOH
B. $\mathrm{Ca}(\mathrm{OH})_{2}$
C. $\mathrm{Zn}(\mathrm{OH})_{2}$
D. KOH

Answer: C

- Watch Video Solution

345. The strongest base is :
A. Cl^{-}
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
C. SO_{4}^{2-}
D. NO_{2}^{-}

Answer: B

346. The conjugate base of OH^{-}ion is:
A. $\mathrm{H}_{2} \mathrm{O}$
B. ${ }^{\circ} \mathrm{O}^{\wedge}(2-)$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. O^{-}

Answer: B

- Watch Video Solution

347. Aqueous solution of which salt has the lowest pH :
A. NaoH
B. $\mathrm{NH}_{4} \mathrm{CL}$
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. NaCl

- Watch Video Solution

348. The strongest acid among the following is:
A. $\mathrm{ClO}_{3}(\mathrm{OH})$
B. $\mathrm{ClO}_{2}(\mathrm{OH})$
C. $\mathrm{SO}(\mathrm{OH})_{2}$
D. $\mathrm{SO}_{2}(\mathrm{OH})_{2}$

Answer: A

Watch Video Solution

349. The correct representation for solubility product of $S n S_{2}$ is :
A. $\left[S n^{4+}\right]\left[S^{2-}\right]^{2}$
B. $\left[S n^{4+}\right]\left[S^{2-}\right]$
c. $\left[S n^{4+}\right]\left[2 S^{2-}\right]$
D. $\left[S n^{4+}\right]\left[2 S^{2-}\right]^{2}$

Answer: A

- Watch Video Solution

350. The hydrolysis of sodium carbonate involves the reaction betweem:
A. Na^{+}and water
B. Na^{+}and OH^{-}
C. CO_{3}^{2-} and water
D. CO_{3}^{2-} and H^{+}

Answer: C

351. Given $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{K}_{a}} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$
$F^{-+} \mathrm{H}_{2} \mathrm{OH} \mathrm{H} F+\mathrm{OH}^{-}$
Which relation is correct?
A. $K_{b}=K_{w}$
B. $K_{b}=\frac{1}{K_{w}}$
C. $K_{a} \times k_{b}=K_{w}$
D. $\frac{K_{a}}{K_{b}}=K_{w}$

Answer: C

Watch Video Solution
352. Which hydrolysis in water:
A. Nacl
B. $\mathrm{NH}_{4} \mathrm{CL}$
C. KCL
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Answer: B

- Watch Video Solution

353. The pH of 0.1 M solution of the following salts increases in the order:
A. $\mathrm{Nacllt} \mathrm{NH}_{4}$ clltNaCNItHCL
B. HCllt'NH_4clltNaclltNaCN
C. $\mathrm{NaCNIt} \mathrm{NH}_{4} \mathrm{ClltNaclltHCl}$
D. $\mathrm{HClltNaclltNaCNIt} \mathrm{NH}_{4} \mathrm{Cl}$

Answer: B

- Watch Video Solution

354. A solution of CuSO_{4} in water will :
A. Turn red litmus blue
B. Turns blue litmus red
C. Show no effect on litmus
D. Decolourise litmus

Answer: B

- Watch Video Solution

355. If s and S are respectively solubility and solubility product of a sparingaly soluble binary electrolyte then:
A. $s=S$
B. $\mathrm{s}=S^{12}$
C. $s=s^{\frac{1}{2}}$
D. $s=1 / 2 S$

Answer: C

356. Which statement is /are correct?
A. All bronstad bases are also Lewis bases
B. All bronstad acids are not Lewis acid
C. All cations are acids and all anions are base
D. All of the above

Answer: D

- Watch Video Solution

357. If the solubility of a sparingly soluble salt of the type $B A_{2}$ (giving three ions on dissociation of a molecule) is x mole per litre, Then its solubility product is given by :
A. x^{2}
B. $2 x^{2}$
C. $4 x^{2}$
D. $4 x^{3}$

Answer: D

- Watch Video Solution

358. The bronstad acid which gives the weakest conjugate base is:
A. HF
B. $H_{2} S$
C. $\mathrm{H}_{2} \mathrm{O}$
D. HCl

Answer: D

359. The correct statement for the equilibrium is

$$
\mathrm{HClO}_{4}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}_{4}^{-}:
$$

A. HClO_{4} is the conjugate acid of $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{O}$ is the conjugate acid of $\mathrm{H}_{3} \mathrm{O}^{+}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$is the conjugate base of $\mathrm{H}_{2} \mathrm{O}$
D. ClO_{4}^{-}is the conjugate base of HClO_{4}

Answer: D

- Watch Video Solution

360. The common ion effect is shown by which of the following:
A. $\mathrm{Bacl}_{2}+\mathrm{BaNO}_{3}$
B. $\mathrm{NaCl}+\mathrm{HCl}$
C. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$
D. None of these

Answer: C

D Watch Video Solution

361. A white substance having alkaline nature in solution:
A. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. NaNO_{3}

Answer: B

Watch Video Solution

362. The correct relation for hydrolysis constant of $\mathrm{NH}_{4} \mathrm{CN}$ is :
A. $\sqrt{\frac{K_{w}}{K_{a}}}$
B. $\frac{K_{w}}{K_{a} \times K_{b}}$
C. $\frac{\sqrt{K_{H}}}{C}$
D. $\frac{K_{a}}{K_{b}}$

Answer: B

- Watch Video Solution

363. For weak acid strong base titration the indicator used is:
A. Pottasium dichromate
B. Methyl orange
C. Litmus
D. Phenolphthalein

Answer: D

364. Phenolphthalein is not a good indicator for titrating:
A. NaOH against oxalic acid
B. Ferrous sulphate against KMnO_{4}
C. NaoH against HCl
D. NaoH against $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: B

- Watch Video Solution

365. The compound that does not act as lewis acid:
A. AlCl_{3}
B. $B F_{3}$
C. NH_{3}
D. Fecl_{2}

Answer: C

D Watch Video Solution

366. The conjugate acid of NH_{2}^{-}IS:
A. NH_{3}
B. $\mathrm{NH}_{2} \mathrm{OH}$
C. NH_{4}^{+}
D. $\mathrm{N}_{2} \mathrm{H}_{2}$

Answer: A

Watch Video Solution
367. Which is lewis acid ?
A. $C l$
B. NH_{3}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $B F_{3}$

Answer: D

- Watch Video Solution

368. Aprotic solvent is :
A. $\mathbb{C l}_{4}$
B. $C_{6} H_{6}$
C. SO_{2}
D. All of these

Answer: D

369. For which salt the pH OF its solution does not change the dilution:
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
C. $\mathrm{CH}_{3} \mathrm{COONa}$
D. None of these

Answer: B

- Watch Video Solution

370. Hcl does not behave as acid in :
A. NH_{3}
B. $C_{6} H_{6}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. None of these

Answer: B

D Watch Video Solution

371. In the reaction $\mathrm{Alcl}_{3}+\mathrm{Cl} \rightarrow\left[\mathrm{Alcl}_{4}\right]^{-}, \mathrm{AlCl}_{3}$ acts as :
A. Salt
B. Lewis base
C. Lewis acid
D. Bronstad acid

Answer: C

372. Which one is hard base ?
A. $A g^{+}$
B. ${ }^{`} \mathrm{Cr}^{\wedge}(3+)$
C. I_{2}
D. F^{-}

Answer: D

- Watch Video Solution

373. Which does not act as bronsted acid ?
A. NH_{4}^{+}
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
C. HCO_{3}^{-}
D. HSO_{3}^{-}

Answer: B

374. Which species would be least likely to act as Lewis base ?
A. PCl_{3}
B. $C N^{-}$
C. SCl_{2}
D. i^{+}

Answer: D

- Watch Video Solution

375. Which may be added to one litre of water to act as a buffer ?
A. One mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and one mole of HCl
B. One mole of $\mathrm{NH}_{4} \mathrm{OH}$ and on mole of NaOH
C. one mole of ' NH _ 4 Cl and one mole of HCl
D. One mole of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and 0.5 mole of NaoH

Answer: D

D Watch Video Solution

376. The OH^{-}ion concentration of a weak base is :
A. C. K_{b}
B. sqrt(C. K_b)
C. $\operatorname{sqrt}\left(\mathrm{K}_{-} \mathrm{b} / \mathrm{C}\right)$
D. $\operatorname{sqrt}\left(\mathrm{K}_{-} \mathrm{b}\right)$

Answer: B

377. Addition of $\mathrm{NH}_{4} \mathrm{Cl}$ to $\mathrm{NH}_{4} \mathrm{OH}$ results in :
A. Increases in OH^{-}concentration
B. Decreases in OH^{-}concentration
C. No change in OH^{-}concentration
D. None of these

Answer: B

- Watch Video Solution

378. The relation for calculating ph of a weak base is:
A. $\mathrm{pH}=P K_{w}-\frac{1}{2} p K_{b}+\frac{1}{2} \log C$
B. $\mathrm{pH}=P K_{w}-\frac{1}{2} p K_{b}-\frac{1}{2} \log C$
C. $\mathrm{pH}=P K_{w}-\frac{1}{2} p K_{b}+\frac{1}{2} \log C$
D. None of these

Answer: A

379. Which aqueous solution will have Ph less than 7 ?
A. KNO_{3}
B. NaOH
C. NaCN
D. Fecl_{3}

Answer: D

- Watch Video Solution

380. Which statement/relationship is correct?
A. Use hydrolysis salt of strong base and weak acid gives a solution
with phlt7
B. $\mathrm{pH}=-\frac{\log 1}{H^{+}}$
C. only at $25^{\circ} \mathrm{C}$ the ph of water is 7
D. The value of $P K_{w}$ at $25^{\circ} C$ is 7

Answer: C

- Watch Video Solution

381. Ionic product of water increass if:
A. Pressure is reduced
B. H^{+}ion is added
C. OH^{-}ion is added
D. Temperature is increased

Answer: D

- Watch Video Solution

382. A buffer solution helps in maintaining the :
A. Alkanity of solution
B. Acidic nature of solution
C. pH of medium
D. None of these

Answer: C

D Watch Video Solution

383. $\left[H^{+}\right]$in aqueous ammonium sulphate solution is :
A. More than 10^{-7}
B. Less than 10^{-7}
C. 10^{-7}
D. 10^{-4}

Answer: A

384. The correct statement about buffer solution:
A. It contains a weak acid and its conjugate base.
B. it contains a weak base and its conjugate acid
C. it shows little change in ph on adding small amount of an acid or base
D. All of the above

Answer: D

D Watch Video Solution

385. Phenolphthalein does not act as indicator for the titration between :
A. KOH and $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. $\mathrm{Ba}(\mathrm{OH})_{2}$ and HCl
C. NaoH and acetic acid
D. Oxalic acid and KMnO_{4}

Answer: D

- Watch Video Solution

386. The pink colour of phenolphthalein in alkaline medium is due to :
A. Negative ion
B. Positive ion
C. $O H^{-} \mathrm{ION}$
D. neutral ion

Answer: A

387. Phenolphthalein shows \qquad in acid medium:
A. Red colour
B. yellow colour
C. Pink colour
D. No colour

Answer: D

- Watch Video Solution

388. The indicator used in the titration of sodium carbonate with sulphuric acid is :
A. Pottasium ferrocyanide
B. Pottasium ferricyanide
C. Methyl orange
D. Phenolphthalein

Answer: C

- Watch Video Solution

389. The indicator use in the titrating oxalic acid with caustic soda solution is :
A. Methyl orange
B. Methyl red
C. Fluorescein
D. Phenolphthalein

Answer: D

- Watch Video Solution

390. Methyl orange gives red colour in :
A. Sodium carbonate solution
B. Sodium chloride solution
C. Hydrochloric acid solution
D. Pottasium hydroxide solution

Answer: C

- Watch Video Solution

391. The range of ph in which methyl orange works as indicator:
A. 3-4
B. 10-12
C. 8-10
D. 6-8

Answer: A

392. Which can act as buffer?
A. $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
C. 40 ml of $0.1 \mathrm{M} \mathrm{NaCN}+20 \mathrm{ml}$ of 0.1 M HCl
D. All of these

Answer: D

- Watch Video Solution

393. Which statement is /are correct?
A. All arhenius acids are bronstad acids
B. All arhenius bases are bronstad bases
C. H^{+}ion in solution exist as $\mathrm{H}_{9} \mathrm{PO}_{4}^{+}$
D. All of the above

Answer: D

- Watch Video Solution

394. Which indicator works in ph range 8-9.8?
A. Phenophthalein
B. Methyl orange
C. Methyl red
D. Litmus

Answer: A

- Watch Video Solution

395. Which of the following is not a lewis acid ?
A. $B F_{3}$
B. Alcl_{3}
C. Becl_{2}
D. $S n C L_{4}$

Answer: C

- Watch Video Solution

396. The strongest bronsted base is:
A. $C L O^{-}$
B. ClO_{2}^{-}
C. ClO_{3}^{-}
D. ClO_{4}^{-}

Answer: A

397. The weakest Lewis base is :
A. H^{-}
B. $O H^{-}$
C. $C l^{-}$
D. HCO_{3}^{-}

Answer: C

- Watch Video Solution

398. Glycine is :
A. Arhenius acid
B. Lewis base
C. Simplest amino acid
D. All of the above

Answer: D

- Watch Video Solution

399. Strongest conjugate base among the following is :
A. NO_{3}^{-}
B. Cl^{-}
C. SO_{4}^{2-}
D. $\mathrm{CH}_{3} \mathrm{COO}^{-}$

Answer: D

- Watch Video Solution

400. The strongest base among the following is :
A. CH_{3}^{-}
B. F^{-}
C. NH_{2}^{-}
D. OH^{-}

Answer: A

- Watch Video Solution

401. Hydrolysis of oxide ion in water produces
A. H^{+}
B. OH^{-}
C. O_{2}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: B

402. $\mathrm{H}_{3} B O_{3}$ IS acid ?
A. Monobasic
B. diabasic
C. Tribasic
D. NONE

Answer: A

- Watch Video Solution

403. The conjugate base of $\mathrm{H}_{3} \mathrm{BO}_{3}$ is :
A. $\mathrm{B}(\mathrm{OH})_{4}^{-}$
B. $\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$
C. $\mathrm{HBO}_{3} 3^{\wedge}(2-)$
D. none

Answer: A

- Watch Video Solution

404. The aqueous solution of an acid is characterised by the presence of :
A. $O H^{-}$ions
B. $\mathrm{H}_{3} \mathrm{O}^{+}$ions
C. H^{+}ions
D. $\mathrm{H}_{4} \mathrm{O}^{+}$ions

Answer: B

D Watch Video Solution

405. The solubility of $A_{2} X_{3}$ is $\mathrm{y} \mathrm{mol}{ }^{`} \mathrm{dm}^{\wedge}(-3)$ its solubility product is
A. $6 y^{4}$
B. $64 y^{4}$
C. $36 y^{5}$
D. $108 y^{5}$

Answer: D

- Watch Video Solution

406. Although CO is neutral but it shows acidic nature on reaction at high P and T with
A. $\mathrm{Ca}(\mathrm{OH})_{2}$
B. NaOH
C. $\mathrm{Mg}(\mathrm{OH})_{2}$
D. LiOH

Answer: B

407. Which oxide is neutral ?
A. $\mathrm{N}_{2} \mathrm{O}$
B. NO
C. Co
D. ALL

Answer: D

Watch Video Solution
408. Which is not a lewis acid ?
A. Zncl_{2}
B. $B F_{3}$
C. $A g^{+}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

409. Which is not a lewis base?
A. OH^{-}
B. $A g^{+}$
C. NH_{3}
D. H^{-}

Answer: B

- Watch Video Solution

410. Which is not a lewis acid ?
A. $\mathbb{C l} l_{4}$
B. SNCl_{2}
C. AlCl_{3}
D. $B F_{3}$

Answer: A

- Watch Video Solution

411. Which is acid anhydride?
A. BaO
B. $\mathrm{Na}_{2} \mathrm{O}$
C. CO_{2}
D. CO

Answer: C

412. The oxyacid of SO_{2} is :
A. $\mathrm{H}_{2} \mathrm{SO}_{3}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
D. None

Answer: A

- Watch Video Solution

413. The conjugate acid of H^{-}ion is :
A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. H_{2}
C. OH^{-}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

414. The increasing order of acid strength $\mathrm{HClO}_{4}, \mathrm{HClO}_{3}, \mathrm{HClO}_{2} \mathrm{HClO}$ is
A. HClO It HClO_{2} It HClO_{3} It HClO_{4}
B. $\mathrm{HClO}_{4} \mathrm{It} \mathrm{HClO}_{3} \mathrm{It} \mathrm{HClO}_{2} \mathrm{ItHClO}$
C. $\mathrm{HClO}_{4} \mathrm{It} \mathrm{HClO}_{2} \mathrm{It} \mathrm{HClO}_{3} \mathrm{ItHClO}$
D. None of these

Answer: A

- Watch Video Solution

415. Which metal sulphide has maximum solubility in water?
A. $C d S\left(K_{s} p=36 \times 10^{-30}\right)$
B. $\mathrm{FeS}\left(\mathrm{K}_{-} \mathrm{sp}=11 \mathrm{xx} 10^{\wedge}-20\right)$
C. $H g S\left(K_{s} p=32 \times 10^{-54}\right)$
D. $Z n S\left(K_{s} p=11 \times 10^{-22}\right)$

Answer: B

D Watch Video Solution

416. The solubility of $\mathrm{PbCL} L_{2}$ is given by,
A. $\sqrt{K}_{s p}$
B. $\left[K_{-} \text {sp }\right]^{\wedge}(1 / 3)$
C. $\left[\frac{\left(K_{s} p\right)}{4}\right]^{\frac{1}{3}}$
D. $\left[8 K_{s p}\right]^{\frac{1}{2}}$

Answer: C

- Watch Video Solution

417. The metallic sulphide not precipitated if $H_{2} S$ gas is passed through HCl containing aqueous solution is:
A. CoS
B. $B i_{2} S_{3}$
C. HgS
D. CuS

Answer: D

- Watch Video Solution

418. The solubility of AgI in Nal is lower than that in pure water, because:
A. Agl forms complex with NaI
B. Effect of common ion increases ionic concentration of I^{-}
C. Solubility product of Agl is less than that of NaI
D. The tempreature of the solution decreases

Answer: B

- Watch Video Solution

419. Which of the following is most solubule in water?
A. $M n S\left(K s p=8 \times 10^{-37}\right)$
B. $Z n s\left(K_{s} p=7 \times 10^{-16}\right)$
C. $B i_{2} S_{3}\left(K_{s} p=1 \times 10^{-70}\right)$
D. $A g_{2} S\left(K_{s} p=6 \times 10^{-51}\right)$

Answer: B

420. The polyprotic acid is:
A. HCL
B. HCLO_{4}
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. HNO_{3}

Answer: C

- Watch Video Solution

421. The salt that does not hydrolyse:
A. SnCl_{2}
B. FeCl_{3}
C. SnCl_{4}
D. CaCl_{2}

Answer: D

- Watch Video Solution

422. Which is not a Lewis acid?
A. $M g C l^{2}$
B. SnCl_{2}
C. $\mathbb{C l}_{4}$
D. RMgX

Answer: C

- Watch Video Solution

423. The conjugate acid of CO_{3}^{2-}
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{CO}_{3}$
C. OH^{-}
D. HCO_{3}^{-}

Answer: D

- Watch Video Solution

424. The conjugate base of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the following reaction is: $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{3}^{-4}$
A. $\mathrm{H}_{2} \mathrm{O}$
B. HSO_{4}^{-}
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. SO_{4}^{-2}
425. Ostwald's dilution law is applicable in the case of the solution of:
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. NaCl
C. NaOH
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: A

- Watch Video Solution

426. The decreasing order of strengthh of following bases is:
A. $\mathrm{Cl}^{-3}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{NH}_{2}^{-}$
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{NH}_{2}^{-}, \mathrm{Cl}^{-}$
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{Cl}^{-}, \mathrm{NH}_{2}^{-}$
D. $\mathrm{NH}_{2}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{Cl}^{-}$

Answer: D

- Watch Video Solution

427. The pH of 10 M HCl aqueous solution is:
A. Less than zero
B. One
C. Two
D. Zero

Answer: D

- Watch Video Solution

428. In a buffer solution consisting of a weak acid its salt, the ratio of concentration of salt to acid is increased tenfold, then the pH of the solution will:
A. Increase by one
B. Increase tenfold
C. Decrease by one
D. Decrease tenfold

Answer: A

- Watch Video Solution

429. The Ph of a 0.005 M aqueous solution of sulphuric acid is approximately:
A. 0.005
B. 2
C. 1
D. 0.01

Answer: B

- Watch Video Solution

430. The ph of a $10^{\wedge}(-10) \mathrm{HCl}$ solution is approximately:
A. 10
B. 7
C. 1
D. 14

Answer: B

431. If the dissociation constant of an acid HA is ${ }^{`} 1 \mathrm{xx} 10^{\wedge}(-5)$ the Ph of a 0.1

M solution of the acid HA will be approximately:
A. 3
B. 5
C. 1
D. 6

Answer: A

- Watch Video Solution

432. The ph of a solution is 5.0 to this solution sufficient acid is added to decreases the ph to 2.0 The increase in hydrogen ion concentration is :
A. 1000 times
B. 5/2 times
C. 100 times
D. 5 times

Answer: A

- Watch Video Solution

433. When the ph of a solution is 2 the hydrogen ion concentration is :
A. $1.0 \times 10^{-14} \mathrm{M}$
B. $1.0 \times 10^{-2} \mathrm{M}$
C. $1.0 \times 10^{-7} \mathrm{M}$
D. $1.0 \times 10^{-12} \mathrm{M}$

Answer: B

- Watch Video Solution

434. The Ph of $(1 / 1000) \mathrm{N} \mathrm{KOH}$ solution is:
A. 10^{-11}
B. 3
C. 2
D. 11

Answer: D

D Watch Video Solution

435. The ph of 1% ionised 0.1 M solution of a weak monotrooic acid :
A. 1
B. 2
C. 3
D. 11

Answer: C

436. A monotropic acid in 1.00 M solution is 0.01% ionised. What is the dissociation constant of the acid?
A. 1.0×10^{-4}
B. 1.0×10^{-6}
C. 1.0×10^{-8}
D. 10^{-5}

Answer: C

- Watch Video Solution

437. 50 ml of 2 N acetic acid mixed with 10 ml of 1 N sodium acetate solution will have an approximate ph of ($\mathrm{K}_{-} \mathrm{a}=10^{\wedge}(-5)$)
A. 4
B. 5
C. 6
D. 7

Answer: A

- Watch Video Solution

438. How many times a solution of $\mathrm{pH}=2$ has higher acidic nature than the solution of $\mathrm{pH}=6$?
A. 1000
B. 12
C. 400
D. 4

Answer: A

439. A monotropic acid in 1.00 M solution is 0.01% ionised. What is the dissociation constant of the acid ?
A. 1.0×10^{-3}
B. 1.0×10^{3}
C. 1.0×10^{-8}
D. 1.0×10^{-10}

Answer: D

- Watch Video Solution

440. one litre of water contains $10^{-7} \mathrm{mo} \leq \mathrm{H}^{\wedge}+^{`}$ ions what is degree of ionisation of water?
A. $1.8 \times 10^{-7} \%$
B. $1.8 \times 10^{-9} \%$
C. $3.6 \times 10^{-7} \%$
D. $3.6 \times 10^{-9} \%$

Answer: A

- Watch Video Solution

441. The hydrogen ion concentration of 0.001 N NaOH solution is:
A. $1.0 \times 10^{-2} \mathrm{M}$
B. $1.0 \times 10^{-11} \mathrm{M}$
C. $1.0 \times 10^{-14} \mathrm{M}$
D. $1.0 \times 10^{-12} \mathrm{M}$

Answer: B

- Watch Video Solution

442. Hclo is a weak acid. What is the concentration of H^{+}ions in 0.1 solution of Hclo ' $\left(\mathrm{K}-\mathrm{a}=5 \mathrm{xx} \mathrm{10} 0^{\wedge}-8\right)^{\prime}$?
A. $7.07 \times 10^{-5} \mathrm{M}$
B. $5 \times 10^{-7} \mathrm{M}$
C. $5 \times 10^{-7} \mathrm{M}$
D. $7 \times 10^{-4} \mathrm{M}$

Answer: A

- Watch Video Solution

443. The pH of simple sodium acetate and acetic acid buffer is given by, $\mathrm{pH}=p K_{a}+\log [$ Salt $] /[$ Acid $] K_{a}$ of acetic acid $=1.8 \times 10^{\wedge}-5$. If [Salt] $=[$ Acid $]$ $=0.1 \mathrm{M}$, the pH of the solution would be about:
A. 7
B. 4.7
C. 5.3
D. 1.4

Answer: B

- Watch Video Solution

444. Find the pH of a 0.01 M solution of acetic acid having degree of dissociation 12.5\%.
A. 4.509
B. 3.723
C. 2.903
D. 5.623

Answer: C

445. For weak acid strong base titration the indicator used is :
A. Methyl orange (3 to 4)
B. Methyl red (5 to 6)
C. Bromothymol blue (6 to 7.5)
D. Phenolphthalein (8 to 9.6)

Answer: D

- Watch Video Solution

446. The $p k_{a}$ of acetylsalicylic acid (aspirin) is 3.5. The PH of gastric juice in human stomach is about $2-3$ and the pH in the small intestine is about 9 . Aspirin wil be
A. unionized in the small intestine and in the stomach
B. Completely ionized in the small intestine and in the stomach
C. Ionized in the stomach and almost unionized in the small intestine
D. ionized in the small intestine and almost unionized in the stomach

Answer: D

- Watch Video Solution

447. The alkali not suitable for volumettric determination of HCl , using phenolphthalein as an indicator is:
A. NaOH
B. $\mathrm{Ba}(\mathrm{OH})_{2}$
C. KOH
D. $\mathrm{NH}_{4} \mathrm{OH}$

Answer: D

- Watch Video Solution

448. The hydrolysis of the salt of weak acid and strong base is known as:
A. Anionic hydrolysis
B. Cationic hydrolysis
C. Neutral hydrolysis
D. Acid hydrolysis

Answer: A

- Watch Video Solution

449. The hydrolysis of the salt of strong acid and weak base is called:
A. increases with concentration
B. decreases with concentration
C. Amphoteric hydrolysis
D. None of these

Answer: B

- Watch Video Solution

450. Degree of hydrolysis of a salt of weak acid and a seak base:
A. increases with concentration
B. decreases with concentration
C. Independent of concentration
D. None of these

Answer: C

- Watch Video Solution

451. The hydrolysis constant of a salt of weak acid and weak base is inversely propertional to:
A. Dissociation constant of weak acid
B. Dissociation constant of weak base
C. Ionic product of water
D. Dissociation constant of both weak acid and weak base

Answer: D

- Watch Video Solution

452. Ostwald dilution law is expressed as:
A. $K_{a}=\frac{C \cdot \alpha^{2}}{1-\alpha}$
B. $K_{a}=\frac{C \cdot \alpha}{1-\alpha}$
C. $K_{a}=\frac{1-\alpha}{C \cdot \alpha^{2}}$
D. $K_{a}=\frac{C(1-\alpha)}{\alpha^{2}}$

Answer: A

453. Phenolphthalein is a:
A. Weak acid
B. Weak base
C. strong acid
D. Strong base

Answer: A

- Watch Video Solution

454. Which on ehas maximum solubility in liquid $C c l_{4}$:
A. $C l_{2}$
B. I_{2}
C. NaCl
D. $B r_{2}$

Answer: B

- Watch Video Solution

455. The pH of gastric juice is normally:
A. Greater than 1.5 and less than 1.2
B. less than 1.5
C. greater than 1 and less than 3
D. Less than 1 and greater than zero

Answer: C

- Watch Video Solution

456. Blood is:
A. Strong acidic
B. Strongly basic
C. Neutral
D. Slightly basic

Answer: D

- Watch Video Solution

457. To a mixture of acetic acid and sodium acetate a further amount of sodium acetate is added. The pH of the mixture:
A. Increases
B. Decreases
C. Remains unchanged
D. Not predictable
458. pH for the solution of salt undergoing anionic hydrolysis (say $\mathrm{CH}_{3} \mathrm{COONa}$) is given by:
A. $\mathrm{pH}=\frac{1}{2}\left[P K_{w}+P K_{a}+\log C\right]$
B. $\mathrm{pH}=\frac{1}{2}\left[P K_{w}+P K_{a}-\log C\right]$
C. $\mathrm{pH}=\frac{1}{2}\left[P K_{w}+P K_{b}+\log C\right]$
D. None of these

Answer: A

- Watch Video Solution

459. Solubility of BaF_{2} in a solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ will be represented by the concentration term:
A. $\left[B a^{2+}\right]$
B. $\left[F^{-}\right]$
C. $1 / 2\left[F^{-}\right]$
D. $2\left[\mathrm{NO}_{3}^{-}\right]$

Answer: C

- Watch Video Solution

460. The blood buffers are most often involed in stabilizing the pH in presence of metabolically produced:
A. Acids
B. bases
C. salts
D. None of these

Answer: A

461. Acidosis is diagnosed when blood pH:
A. falls below 7.35
B. Rises above 7.45
C. BOTH (A) AND (B)
D. None of the above

Answer: A

Watch Video Solution

462. The solution of AgCl is unsaturated if:
A. $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]<K_{s} p$
B. $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]<K_{s} p$
C. $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=K_{s} p$
D. none of these

- Watch Video Solution

463. Select the correct order for the strength of bases given below:
A. $\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{NH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{OH}^{\rightarrow} \mathrm{C}_{2} \mathrm{H}^{-}$
B. $\mathrm{OH}^{\rightarrow} \mathrm{NH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}^{-}$
C. $\mathrm{C}_{2} \mathrm{H}^{\rightarrow} \mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{NH}_{2} \rightarrow \mathrm{OH}^{-}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \rightarrow \mathrm{NH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}^{\rightarrow} \mathrm{OH}^{-}$

Answer: D

- Watch Video Solution

464. In the precipitation of iron group in qualitative analysis, $\mathrm{NH}_{4} \mathrm{Cl}$ is added before the addition of $\mathrm{NH}_{4} \mathrm{OH}$:
A. To prevent the interference of phosphate
B. To decrease NH_{4}^{+}ions concentration
C. To increase OH^{-}ions concentration
D. To prevent the precipitation of subsequent groups

Answer: D

- Watch Video Solution

465. What is the pH of 0.01 M NaOH assuming complete ionisation?
A. 2
B. 14
C. 12
D. 0.01

Answer: C

466. The pH of the solution obtained by mixing 10 mL of $10^{-1} \mathrm{~N} \mathrm{HCl}$ and 10 mL of $10^{-1} \mathrm{~N} \mathrm{NaOH}$ is:
A. 8
B. 2
C. 7
D. None

Answer: C

- Watch Video Solution

467. At $90^{\circ} \mathrm{C}$ pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6} \mathrm{~mol} /$ litre. The value of K_{w} at $90^{\circ} \mathrm{C}$ is:
A. 10^{-6}
B. 10^{-12}
C. 10^{-14}
D. 10^{-8}

Answer: B

- Watch Video Solution

468. 0.4 g of NaOH present in one litre solution shows the pH :
A. 12
B. 2
C. 6
D. 10

Answer: A

- Watch Video Solution

469. $p H$ of ${ }^{1} 10^{\wedge}-8 \mathrm{M}$ solution of HCl in water is:
A. 8
B. -8
C. Between 7 and 8
D. Between 6 and 7

Answer: D

- Watch Video Solution

470. The hydrogen ion concentration in a given solution is ${ }^{`} 6 \mathrm{xx} 10^{\wedge}-4$. Its pH will be:
A. 6
B. 4
C. 3.22
D. 2

Answer: C

- Watch Video Solution

471. A certain buffer solution contains equal concentration of X^{-}and HX. The K_{b} for X^{-}is 10^{-10}. What is the pH of the buffer?
A. 4
B. 7
C. 10
D. 14

Answer: A

- Watch Video Solution

472. $10^{-6} \mathrm{M} \mathrm{HCl}$ is diluted to 100 times. Find its pH value.
A. 6
B. 8
C. 6.95
D. 9.5

Answer: C

- Watch Video Solution

473. An aqueous solution contains a substance which yields 4×10^{-3} mol liter ${ }^{-1}$ ion of $\mathrm{H}_{3} \mathrm{O}^{+}$. If $\log 2=0.3010$ the pH of the solution is:
A. 1.5
B. 2.398
C. 3
D. 3.4

Answer: B

474. If the hydrogen ion concentration of a given solution is ${ }^{`} 5.5 \mathrm{xx} 10^{\wedge}-3$
M. Find the pH of the solution.
A. 2.26
B. 3.4
C. 3.75
D. 4.76

Answer: A

- Watch Video Solution

475. What is the pH of a $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ solution? K_{2} of acetic acid =
1.8×10^{-5} and $K_{w}=10^{-14} \mathrm{~mol}^{\wedge} 2^{\text {' }}$ litre ${ }^{\wedge}-2$:
B. 3.6
C. 4.8
D. 9.4

Answer: D

- Watch Video Solution

476. A 0.01 M ammonia solution is 5% ionized. The concentration of ${ }^{`} \mathrm{OH}^{\wedge}$ ion is:
A. 0.005 M
B. 0.0001 M
C. 0.0005 M
D. 0.05 M

Answer: C

477. 0.04 g of pure NaOH is dissolved in 10 litof distilled water. The pH of the solution is:
A. 9
B. 10
C. 11
D. 12

Answer: B

- Watch Video Solution

478. The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is:
A. 3.3
B. 3.5
C. 4.5
D. 4

Answer: A

D Watch Video Solution

479. 100 mL of $1 \mathrm{~N} \mathrm{NH} H_{4} O H^{`}\left(\mathrm{~K} \mathrm{~b}=5 \mathrm{xx} \mathrm{10}{ }^{\wedge}-5\right)$ is neutralised to equivalence point by 1 NHCl . Calculate the pH of solution at equivalence point.
A. 2
B. 2.5
C. 3
D. 5

Answer: D

480. A certain weak acid has a dissociation constant ${ }^{`} 1.0 \times x 10^{\wedge}-4$. What is the equilibrium constant for its reaction with a strong base?
A. 1×10^{-4}
B. 1×10^{-10}
C. 1×10^{10}
D. 1×10^{-14}

Answer: C

Watch Video Solution

481. If K_{a} for a weak acid is $10^{-5} . p K_{b}$ value of its conjugate base is:
A. 5
B. 6
C. 7
D. 9

Answer: D

- Watch Video Solution

482. The buffer action of acidic buffer is maximum when its pH is equal to:
A. 5
B. 7
C. 10
D. $P k_{a}=1$

Answer: D

- Watch Video Solution

483. The pH of a solution is 2 . Its pH is to be changed to 4 . Then the H^{+} concentration of original solution has to be:
A. Halved
B. doubled
C. increase by 100 times
D. decrease by 100 times

Answer: D

- Watch Video Solution

484. A buffer mixture of acetic acid and potassium acetate has $\mathrm{pH}=5.24$.

The ratio of $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ in this buffer is, $\left(p K_{a}=4.740\right)$
A. 3:1
B. 1:3
C. 1:1
D. 1:2

Answer: A

- Watch Video Solution

485. The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the rain water of $\mathrm{pH}=4.35$ is:
A. $4.5 \times 10^{-5} \mathrm{M}$
B. $6.5 \times 10^{-5} \mathrm{M}$
C. $9.5 \times 10^{-5} \mathrm{M}$
D. $12.5 \times 10^{-5} \mathrm{M}$

Answer: A

486. What is the pH of a 0.02 M ammonia solution which is 5% ionised?
A. 2
B. 5
C. 7
D. 11

Answer: D

- Watch Video Solution

487. The hydrogen ion concentration of a solution is $3 \times 10^{-6} \mathrm{~g}$ ion/litre.

Find its pH value
A. 5.523
B. 6.523
C. 6.477
D. 6.3

- Watch Video Solution

488. Find the ${ }^{`}\left[\mathrm{OH}^{\wedge}-\right]$ in 100 mL of 0.015 M HCl (aq.) solution.
A. $5 \times 10^{-12} \mathrm{M}$
B. $3 \times 10^{-10} \mathrm{M}$
C. $6.7 \times 10^{-13} \mathrm{M}$
D. $2 \times 10^{-9} \mathrm{M}$

Answer: C

Watch Video Solution

489. A certain buffer solution contains equal concentration of X^{-}and HX . The K_{a} for HX is 10^{-8}. What is the pH of the buffer solution?
A. 3
B. 8
C. 11
D. 14

Answer: B

- Watch Video Solution

490. The pH of a $10^{-10} \mathrm{M} \mathrm{NaOH}$ solution is nearest to:
A. 10
B. 7
C. 4
D. -10

Answer: B

491. The $\mathrm{H}^{\wedge}+$ ion concentration in 0.001 M acetic acid is $1.34 \times 10^{-4} \mathrm{~g}$ ion/litre. What is the H^{+}ion concentration of 0.164 g of $\mathrm{CH}_{3} \mathrm{COONa}$ is added to a litre of 0.001 M CH 3 COOH will be ?
A. 9×10^{-6}
B. 18×10^{-6}
C. 4.5×10^{-6}
D. 5×10^{-6}

Answer: A

- Watch Video Solution

492. K_{a} for HCN is 5×10^{-10} at $25^{\circ} \mathrm{C}$. For maintaining a constant pH of 9. Find the volume of 5 M KCN solution required to be added to 10 mL of 2 M HCN solution.
A. 4 ml
B. 7.95 ml
C. 2 ml
D. 9.3 ml

Answer: C

D Watch Video Solution

493. An aqueous solution of $0.1 \mathrm{M} \mathrm{NH}_{-} 4 \mathrm{Cl}$ will have a pH closer to:
A. 9.1
B. 8.1
C. 7.1
D. 5.1

Answer: D

494. Find the number of mole of hydroxide $\left(\mathrm{OH}^{-}\right)$ion in 0.3 litre of 0.005 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$.
A. 0.0075
B. 0.0015
C. 0.003
D. 0.005

Answer: C

Watch Video Solution
495. How many grams of NaOH must be present in one litre of the solution of give it a $\mathrm{pH}=12$?
A. $0.20 \mathrm{~g} / \mathrm{lit}$
B. $0.4 \mathrm{~g} / \mathrm{lit}$
C. $4 \mathrm{~g} / \mathrm{lit}$
D. $0,10 \mathrm{~g} / \mathrm{lit}$

Answer: B

- Watch Video Solution

496. The pH of pure water at $50^{\circ} \mathrm{C}$ is $\left(p K_{w}=13.26\right.$ at $\left.50^{\circ} \mathrm{C}\right)$:
A. 6
B. 6.63
C. 7
D. 7.13

Answer: B

- Watch Video Solution

497. The pH of a solution formed by mixing 40 mL of 0.10 M HCl and 10 mL of 0.45 M NaOH is:
A. 5
B. 8
C. 12
D. 10

Answer: C

- Watch Video Solution

498. The pH of a soft drink is 3.82 . Its H^{+}ion concentration will be:
A. $1.96 \times 10^{-2} \mathrm{~mol} /$ lit
B. $1.96 \times 10^{-3} \mathrm{~mol} / \mathrm{lit}$
C. $1.5 \times 10^{-4} \mathrm{~mol} / \mathrm{lit}$
D. $1.96 \times 10^{-1} \mathrm{~mol} / \mathrm{lit}$

Answer: C

D Watch Video Solution

499. The solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ is 's' mol per litre, the solubility product of $A l(O H) 3$ is :
A. s^{3}
B. $27 s^{4}$
C. s^{2}
D. $4 s^{2}$

Answer: B

- Watch Video Solution

500. The equivalent conductance of 0.1 N acetic acid is $5 \mathrm{~cm}^{2}$ ohm ${ }^{-1} \mathrm{geq}^{-1}$ and at infinite dilution is $390 \mathrm{~cm}^{2} \mathrm{ohm}^{-1} \mathrm{geq}^{-1}$. Calculate
the degree of dissociation of acetic acid.
A. 0.0013
B. 0.013
C. 0.13
D. 0.5

Answer: B

- Watch Video Solution

501. The dissociation constant of HCN is 1.3×10^{-9}. The value of hydrolysis constant of KCN will be:
A. 1.3×10^{-19}
B. 10^{-14}
C. 7.7×10^{-5}
D. 0.77×10^{-5}

Answer: D

- Watch Video Solution

502. If the solubility of lithium sodium hexafluro-aluminate,
$L i_{3} N a_{3}\left(A l F_{6}\right)_{2}$ is 'a' mol/litre, its solubility product is equal to:
A. a^{2}
B. $12 a^{2}$
C. $18 a^{3}$
D. $2916 a^{8}$

Answer: D

- Watch Video Solution

503. The solubility of AgCl in water at $10^{\circ} C$ is $6.2 \times 10^{-6} \mathrm{~mol} / \mathrm{litre}$. The K_sp of AgCl is:
A. $\frac{\left[6.2 \times 10^{-6}\right]^{1}}{2}$
B. $6.2 \times 10^{-6}{ }^{\wedge} 2$
C. $(6.2)^{2} \times 10^{-6}$
D. $\left[6.2 \times 10^{-6}\right]^{2}$

Answer: D

- Watch Video Solution

504. $K_{s} p$ of AgCl at $18^{\circ} C$ is 1.8×10^{-10}. If $\mathrm{Ag}^{\wedge}+$ ofsolutionis $4 \mathrm{xx} 10^{\wedge}-3$ $m o \frac{l}{l}$ itre. The $\mathrm{Cl}^{\wedge}-t \widehat{\mu}$ stexceedbef or e AgCl is precipitated would be:
A. $4.5 \times 10^{-8} \mathrm{~mol} / \mathrm{lit}$
B. $7.2 \times 10^{-13} \mathrm{~mol} / \mathrm{lit}$
C. $4 \times 10^{-3} \mathrm{~mol} /$ lit
D. $4.5 \times 10^{-7} \mathrm{~mol} / \mathrm{lit}$

- Watch Video Solution

505. When equal volumes of the following solutions are mixed, precipitation of $\mathrm{AgCl}\left(K_{s} p=1.8 \times 10^{-10}\right)$ wil occur only with
A. $10^{-4} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-4} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
B. $10^{-5} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-5} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
C. $10^{-6} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-6} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$
D. $10^{-10} \mathrm{M}\left(\mathrm{Ag}^{+}\right)$and $10^{-10} \mathrm{M}\left(\mathrm{Cl}^{-}\right)$

Answer: A

- Watch Video Solution

506. Solubbility product of PbCl_{2} at 298 K is 1.0×10^{-6}. Atthistemperatureso lub ilityof $\mathrm{PbCL}_{-}{ }^{\prime}$ in mol per litre is :
A. $\left(1.0 \times 10^{-6}\right)^{\frac{1}{2}}$
B. $\left(1.0 \times 10^{-6}\right)^{\frac{1}{3}}$
C. $\left(0.25 \times 10^{-6}\right)^{\frac{1}{3}}$
D. $\left(0.25 \times 10^{-6}\right)^{\frac{1}{2}}$

Answer: C

- Watch Video Solution

507. Solubility product of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 4×10^{-9} its solubbility in water is
A. $1 \times 10^{-3} \mathrm{M}$
B. $1 \times 10^{-9} \mathrm{M}$
C. $4 \times 10^{-27} \mathrm{M}$
D. $1 \times 10^{-27} \mathrm{M}$

Answer: A

508. The precipitate of $C a F_{2}\left(K_{s}=1.7 \times 10^{-10}\right)$ is obtained when equal volmes of the following are mixed:
A. $10^{-4} \mathrm{M} \mathrm{Ca}^{2+}+10^{-4} \mathrm{MF}^{-}$
B. $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{MF}^{-}$
C. $10^{-5} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{-}$
D. $10^{-3} \mathrm{M} \mathrm{Ca}^{2+}+10^{-5} \mathrm{MF}^{-}$

Answer: B

- Watch Video Solution

509. The solubility of PbCl_{2} at $25^{\circ} \mathrm{C}$ is $6.3 \times 10^{-3} \mathrm{mo} \frac{l}{l}$ itre. The solubility product of PbCl_{2} at $25^{\circ} \mathrm{C}$ is:
A. $\left(6.3 \times 10^{-3}\right) \times\left(6.3 \times 10^{-3}\right)$
B. $\left(6.3 \times 10^{-3}\right) \times\left(12.6 \times 10^{-3}\right)$
C. $\left(6.3 \times 10^{-3}\right) \times\left(12.6 \times 10^{-3}\right)^{2}$
D. $\left(12.6 \times 10^{-3}\right) \times\left(12.6 \times 10^{-3}\right)$

Answer: C

- Watch Video Solution

510. A saturated solution of $A g_{2} S O_{4}$ is $2.5 \times 10^{-2} \mathrm{M}$. The value of its solubility product is:
A. 62.5×10^{-6}
B. 6.25×10^{-4}
C. 15.625×10^{-6}
D. 3.125×10^{-6}

Answer: A

511. The $p K_{a}$ of an indicator is 4 . Its working range lies in beetween pH :
A. 1-5
B. 3-5
C. 5-8
D. 8-12

Answer: B

- Watch Video Solution

512. A saturated solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ in water at $25^{\circ} \mathrm{C}$ contains 0.11 g $\mathrm{Mg}(\mathrm{OH})_{2}$ per litre of solution. The solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is :
A. $(0.11)^{2}$
B. $(0.11)^{3}$
C. $4 \times(0.11)^{3}$
D. $4 \times \frac{(0.11)^{3}}{(58)^{3}}$

Answer: D

- Watch Video Solution

513. Which is least soluble in $\mathrm{H}_{2} \mathrm{O}$.
A. ZnCO_{3}
B. $\mathrm{HgCL} L_{2}$
C. PbBr_{2}
D. $A g I$

Answer: B

514. The solubility porduct of CaSO_{4} is 6.4×10^{-5}. The solubbility of CaSO_{4} is:
A. $8 \times 10^{-3} \mathrm{M}$
B. $8 \times 10^{-6} \mathrm{M}$
C. $8 \times 10^{-10} \mathrm{M}$
D. $1.6 \times 10^{-3} \mathrm{M}$

Answer: A

- Watch Video Solution

515. What is the solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in mole per litre if $K_{p}=1.0 \times 10^{-11}$?
A. $2 . .46 \times 10^{-14}$
B. 1.36×10^{-4}
C. 2.60×10^{-7}
D. 1.2×10^{-10}

Answer: B

- Watch Video Solution

516. If the solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ is $\sqrt{3}$, the solubility product of $\mathrm{Ca}(\mathrm{OH})_{2}$ is :
A. 3
B. 27
C. $\sqrt{3}$
D. $12 \sqrt{3}$

Answer: D

- Watch Video Solution

517. The solubility product, K_{f} of a sparingly soluble salt MX at $25^{\circ} C$ is 2.5×10^{-9}. The solubility of the salt in mol litre ${ }^{\wedge}-1$ at this temperature is
A. 1.0×10^{-14}
B. 5.0×10^{-8}
C. 1.25×10^{-9}
D. 5.0×10^{-5}

Answer: D

- Watch Video Solution

518. What is the solubilty product of $C a F_{2}$, if its satuated solution contains 0.017 g of $C a F_{2}$ per litre ?
A. 1.44×10^{-4}
B. 4.14×10^{-11}
C. 4.14×10^{-18}
D. 41.4×10^{-24}

Answer: B

- Watch Video Solution

519. $K_{s} p=1.2 \times 10^{-5}$ of $M_{2} S O_{4}$ (M^{+}is monovalent metal ion) at 298 K find the maximum concentration of M^{+}ions that could be attaiined in a saturated solution of this solid at 298 K .
A. $3.46 \times 10^{-3} \mathrm{M}$
B. $7 \times 10^{-3} \mathrm{M}$
C. $2.88 \times 10^{-2} \mathrm{M}$
D. $14.4 \times \mathrm{xx} \mathrm{10} \mathrm{\wedge}(-3) \mathrm{M}$

Answer: C

520. To 100 mL of $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution solid $K_{2} S_{4}$ is added. Find the concentration of $K_{2} \mathrm{SO}_{4} t$ ŝhhowsthe $\prec i \pi t a t i o n$. (K_sp for Ag_2SO_4 $=6.4$ $\left.x \times 10^{\wedge}-5 \mathrm{M}\right)^{\prime}$
A. 0.1 M
B. $6.4 \times 10^{-3} \mathrm{M}$
C. $6.4 \times 10^{-7} \mathrm{M}$
D. $6.4 \times 10^{-5} \mathrm{M}$

Answer: B

- Watch Video Solution

521. If the solubility of $\mathrm{Pb3}\left(\mathrm{PO}_{4}\right)_{2}$ is mol per litre, then the solubility product of $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will be :
A. $6 s^{2}$
B. $6 s^{5}$
C. s^{5}
D. $108 s^{5}$

Answer: D

- Watch Video Solution

522. How many grams of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ saturation will dissolve in one litre of saturated solution ? $\left(K_{s} p\right.$ of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ is $2.5 \times 10^{-} 9 \mathrm{~mol}^{-2}$ and its molecular weight is 128).
A. 0.0064 g
B. 0.0128 g
C. 0.0032 g
D. 0.0640 g
523. The $K_{s} p$ of PbCO_{3} and MgCO_{3} are 1.5×10^{-15} and 1×10^{-15} repectively at 298 K . What is the concentration of $P b^{2}+$ ions in saturated solution containing MgCO_{3} and PbCO_{3} ?
A. $1.5 \times 10^{-4} \mathrm{M}$
B. $3 \times 10^{-8} \mathrm{M}$
C. $2 \times 10^{-8} \mathrm{M}$
D. $2.5 \times 10^{-8} \mathrm{M}$

Answer: B

- Watch Video Solution

524. K_{s} for the acid HA is 1×10^{-6}. The value of K fo the reaction $A+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{HA}+\mathrm{H}_{2} \mathrm{O}$ is:
A. 1×10^{-6}
B. 1×10^{12}
C. 1×10^{-12}
D. 1×10^{6}

Answer: D

- Watch Video Solution

525. The ph of a solution is 5.0 to this solution sufficient acid is added to decreases the ph to 2.0 The increase in hydrogen ion concentration is :
A. Increases 1000 times
B. Decreases 1000 times
C. Increases 100 times
D. Decreases 100 times
526. Decinormal solution of $\mathrm{CH}_{3} \mathrm{COOH}$ ionised to an extent of 1.3%. pH of the solution is, $(\log 1.3=0.11)$
A. 2.89
B. 1.945
C. 3.4
D. 4.98

Answer: A

- Watch Video Solution

527. If 50 mL of 0.2 M KOH is added to 40 mL of 0.5 M HCOOH . Find the resulting solution. $\left(K_{c}=1.8 \times 10^{-4}\right)$:
B. 5.6
C. 7.5
D. 3.4

Answer: A

D Watch Video Solution

528. In 100 mL of an aqueous HCl of $\mathrm{pH} 1.0,900 \mathrm{~mL}$ of distilled water is added, the pH of the resultant becomes:
A. 1
B. 2
C. 4
D. 7

Answer: B

529. If $\left[\mathrm{OH}^{-}\right]$is 1×10^{-8} ion/litre.Is pH is:
A. 6
B. 7
C. 5
D. 8

Answer: A

Watch Video Solution
530. The weight of HCl present in one litre of solution, if pH of the solution is one :
A. 3.65 g
B. 36.5 g
C. 0.365 g
D. 0.0365 g

Answer: A

- Watch Video Solution

531. Solution prepared by dissolving equal number of mole of HOCl $\left(K_{s}=3.2 \times 10^{-8}\right)$ and NaOCl is a buffer of pH :
A. 8
B. 3.2
C. 7.5
D. 4.8

Answer: C

- Watch Video Solution

532. The $p K_{c}$ of equimolecular sodium acetate and acetic acid mixtuare is 4.74. If pH is :
A. 1.4
B. 4.74
C. 9.2
D. 7

Answer: B

- Watch Video Solution

533. The ionic product of warter at $60^{\circ} \mathrm{C}$ is 9.61×10^{-14}. The pH of water at ${ }^{`} 60^{\wedge} @ c$ is :
A. 6.51
B. 6.7
C. 9.61
D. 7

Answer: A

- Watch Video Solution

534. What is the pH of boiling water (373 K)? (K_{w} at $373 \mathrm{~K}={ }^{`} 10^{\wedge}-12$):
A. 12
B. 8
C. 6
D. 2

Answer: C

- Watch Video Solution

535. The solubility of PbCl_{2} in water is 0.01 M at $25^{\circ} \mathrm{C}$ it maximum concentration in 0.1 M NaCl will be :
A. $2 \times 10^{-3} \mathrm{M}$
B. $1 \times 10^{-4} \mathrm{M}$
C. $1.6 \times 10^{-2} \mathrm{M}$
D. $4 \times 10^{-4} \mathrm{M}$

Answer: D

- Watch Video Solution

536. if the solubility of product of lead iodide $\left(P b I_{2}\right)$ is $3.2 \times x 10^{\wedge}(-8)$ its solubility will be:
A. $2 \times 10^{-3} \mathrm{M}$
B. $1 \times 10^{-4} \mathrm{M}$
C. $1.6 \times 10^{-5} \mathrm{M}$
D. $1.8 \times 10^{-5} \mathrm{M}$

Answer: A

- Watch Video Solution

537. The solubility product of salt $A B_{2}$ is 4×10^{-9} at 373 K . The solubility of $A B_{2}$ in boiling water will be:
A. $4 \times 10^{-3} \mathrm{M}$
B. $4 \times 10^{-4} \mathrm{M}$
C. $1 \times 10^{-10} \mathrm{M}$
D. $1 \times 10^{-3} \mathrm{M}$

Answer: D

- Watch Video Solution

538. The solubility of is $0.0015 \mathrm{gm} /$ /lit. The solubility product of AgCl will be :
A. 2×10^{-10}
B. 1.1×10^{-10}
C. 3.1×10^{-10}
D. 4.1×10^{-10}

Answer: B

- Watch Video Solution

539. A saturated solution of calcium fluoride contains 2×10^{-4} mole of the salt per litre of the solution its $K_{s} p$ is:
A. 8×10^{-18}
B. 3.2×10^{-11}
C. 4×10^{-6}
D. 1.43×10^{-9}

Answer: B

- Watch Video Solution

540. IF the concentration of CrO_{4}^{2-} ion in a saturated solution of silver chromate be $2 \times 10^{-4} \mathrm{M}$ solubility of sodium chloride is :
A. 4×10^{-8}
B. 8×10^{-12}
C. 32×10^{-12}
D. 6×10^{-12}

Answer: C

541. $K_{s} p$ for sodium chloride is $36 m o \frac{l^{2}}{l} i t e r^{2}$. The solubility of sodium chloride is :
A. $1 / 36 \mathrm{M}$
B. $1 / 6 \mathrm{M}$
C. 6 M
D. 3600 M

Answer: C

- Watch Video Solution

542. The solubility of $\mathrm{Agcl}\left(K_{s} p=1.2 \times 10^{-10}\right)$ in a 0.10 M NaCl solution is:
A. 0.1 M
B. $1.2 \times 10^{-6} \mathrm{M}$
C. $1.2 \times 10^{-9} \mathrm{M}$
D. $1.2 \times 10^{-10} \mathrm{M}$

Answer: C

- Watch Video Solution

543. The solubility product of a sparingly soluble salt $A B$ at room temperature is 1.21×10^{-6} its molar solubility is :
A. 1.21×10^{-6}
B. 1.21×10^{-3}
C. 1.1×10^{-4}
D. 1.1×10^{-3}

Answer: D
544. If the concentration of lead iodide in its saturated solution at $25^{\circ} \mathrm{C}$ be 2×10^{-3} mol per litre its solubility product is:
A. 4×10^{-6}
B. 8×10^{-12}
C. 6×10^{-12}
D. 32×10^{-9}

Answer: D

- Watch Video Solution

545. The dissociation constant of two weak acids are K_{1} and K_{2} their relative strength can given by:
A. $\sqrt{\frac{K_{1}}{K_{2}}}$
B. $K_{1}+K_{2}$
C. $K_{1}-K_{2}$
D. $\operatorname{sqrt}\left(K_{-} 1 x x K 2\right)$

Answer: A

- Watch Video Solution

546. K_{b} for the hydrolysis reaction : $B^{+}+H_{2} O \Leftrightarrow B O H+H^{+}$is ${ }^{`} 1.0 \times x 10^{\wedge}(-6)$ the hydrolysis constant of the salt is :
A. 10^{-6}
B. 10^{-7}
C. 10^{-8}
D. 10^{-9}

Answer: C

1.8×10^{-5} predictthehydrolysiscons \tan tof $\mathrm{NH}_{-} 4 \mathrm{Cl}^{`}$
A. 1.8×10^{-19}
B. 1.8×10^{-5}
C. 5.55×10^{-5}
D. 5.55×10^{-10}

Answer: D

- Watch Video Solution

548. The ph of 1 M aqueous solution of the weak acid HA is 6.0 .Find its dissociation constant.
A. 10^{-6}
B. 10^{-12}
C. 1
D. 6

Answer: B

- Watch Video Solution

549. A solution of ph 2.0 is more acidic than the one with ph 6.0 by a factor of
A. 3
B. 4
C. 3000
D. 10000

Answer: D

550. In a mixture of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$ the ratio of salt to acid concentration is increased by ten folds Thr ph of the solution will increase by :
A. zero
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

551. 0.1 M acetic acid solution is titrated against 0.1 M NaOH solution.

What would be the difference in Ph between $1 / 4$ and $3 / 4$ stages of neutralisation of acid:
A. $2 \log 3 / 4$
B. $2 \log 1 / 4$
C. $\log 1 / 3$
D. $2 \log 3$

Answer: D

- Watch Video Solution

552. The dissociation of water at $25^{\circ} C$ is 1.9×10^{-7} percent and the density of water is $1 \mathrm{~g} \frac{\mathrm{~m}}{\mathrm{c}} m_{3}$ the ionisation constant of water is:
A. 3.42×10^{-6}
B. 3.42×10^{-8}
C. 1.0×10^{-14}
D. 2.0×10^{-16}

Answer: D

553. If $P k_{b}$ for $C N^{-}$at $25^{\circ} C$ is 4.7. Find the pH of 0.5 M aqueous NaCN solution,
A. 12
B. 10
C. 11.5
D. 11

Answer: C

- Watch Video Solution

554. 50% neutralisation of a solution of formic acid ($\left.K_{a}=2 \times 106(-4)\right)$ with NaOH would result in a solution having a hydrogen ion concentration of :
A. 2×10^{-4}
B. 3.7
C. 2.7
D. 1.85

Answer: A

- Watch Video Solution

555. The pH of pure water at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ are 7 and 6 respectively. What is the heat of formation of water from H^{+}and OH^{-}?
A. $84.55 \mathrm{kcal} / \mathrm{mol}$
B. $84.55 \mathrm{kcal} / \mathrm{mol}$
C. $74.55 \mathrm{kcal} / \mathrm{mol}$
D. None of these

Answer: B

556. What is the Ph of a solution obtained by mixing 10 ml of 0.1 M HCl and 40 ml of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 1.4865
B. 0.4865
C. 0.4685
D. 3

Answer: C

- Watch Video Solution

557. Calculate the ph of solution obtained by mixing 100 ml of 0.1 M HCl and 9.9 ml of $1.0 \mathrm{~m} \mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
\text { A. } 3.0409
$$

B. 3.4049
C. 2.0409
D. None

Answer: A

- Watch Video Solution

558. What ids the resultant ph of solution of mixing 200 ml of an aqueous solution of $\mathrm{HCl}(\mathrm{ph}=2.0)$ is mixed with 300 ml of an aqueous solution of NaOH ($\mathrm{PH}=12$)?
A. 11.031
B. 11.301
C. 10
D. None

Answer: A

559. What volume of 1 M sodium formate solution should be added to 50 ml of 0.05 M formic acid to produce a buffer solution of (ph=4 ($P K_{a}$ of formic acid $=3.80$)?
A. 39 ml
B. 39.62 ml
C. 40 ml
D. 40.62 ml

Answer: B

- Watch Video Solution

560. How many mole of HCl are required to prepare one litre of buffer solution (conataining $\mathrm{NaCN}+\mathrm{HCl}$) of ph 8.5 using 0.01 g formula weight of $\mathrm{NaCN}(\mathrm{K}$ _ HCN$)=4.1 \times x 10^{\wedge}(-10)$?
A. 8.85×10^{-3}
B. 8.75×10^{-2}
C. 8.85×10^{-4}
D. 8.85×10^{-2}

Answer: A

- Watch Video Solution

561. Find the composition of an acidic buffer mixture made up of HA AND naA of total molarity 0.29 having ph 4.4 and $K_{a}=1.8 \times 10^{-5}$ in terms of concentration of salt and acid respectively:
A. 0.09 M and 0.20 M
B. 0.20 M and 0.09 M
C. 0.1 M and 0.19 M
D. 0.19 M and 0.10 M
562. A weak acid HA after treatment with 12 ml of 0.1 M strong base BOH has a PH of 5 . At the end point the volume of same base required is 26.6 ml what is the value K_{a} acid ?
A. 1.8×10^{-5}
B. 8.12×10^{-6}
C. 1.8×10^{-6}
D. 8.2×10^{-5}

Answer: B

- Watch Video Solution

563.

salt is mixed with $\left(\mathrm{NH}_{4}\right)_{2}$ Sofmolarity $0.021 M C a l c a t e t h e a m o u n t Z N^{\wedge}(2+)^{`} \quad$ remains unprecipitated in 12 ml of this solution.
A. $1.677 \times 10^{-22} \mathrm{~g}$
B. $1.767 \times 10^{-22} \mathrm{~g}$
C. $2.01 \times 10^{-23} \mathrm{~g}$
D. None of these

Answer: A

- Watch Video Solution

564. What is the PH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ begins precipitate from a solution containing $0.10 \mathrm{M} \mathrm{Mg}{ }^{2+}$ ions. [K_sp of $\left.\mathrm{Mg}(\mathrm{OH})_{-} 2=1 \times x 10^{\wedge}(-11)\right]^{\top}$
A. 5
B. 9
C. 4
D. 10

Answer: B

565. 18 ml of mixture of acetic acid and sodium acetate required 6 ml of 0.1 M NaOH For Neutrilisation of the acid and 12 ml of 0.1 M HCl for reaction with salt Seperately. If $P k_{a}$ of the acid is 4.75 What is the pH pf the mixture.
A. 5.05
B. 4.75
C. 4.5
D. 4.6

Answer: A

- Watch Video Solution

566. A certain ion B^{-}has an Arhenius constant of basic character (equ.

Constant :2.8 $\times 10^{-7}$) What is the equilibrium constant for lowry
bronstad character.
A. 2.8×10^{-7}
B. 3.57×10^{-8}
C. 3.57×10^{8}
D. 2.8×10^{7}

Answer: D

- Watch Video Solution

567. Acetic acid and propionic acid have K_{a} value 1.75×10^{-5} and 1.3×10^{-5} respectively at a certain temperature. An equimolar solution of a mixture of the two acid is partially neutralised by NaOH . How is the ratio of the contents of acetate and proponate ions related to the K_{a} value and the molarity ?
A. ionisation fraction of acids
B. The ratio is unrelated to the K_{a} values
C. The ratio is unrelated to the molaity
D. The ratio is unrelated to the PH of the solution

Answer: A

- Watch Video Solution

568. The ionisation constant of NH_{4}^{+}in water is 5.6×10^{-10} at $25^{\circ} \mathrm{C}$ the rate constant for the reaction of NH_{4}^{+}and OH^{-}to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ is $3.4 \times 10^{10} \mathrm{~L} \mathrm{~mol} / \mathrm{sec}$ Find the rate constant for proton transfer from water to NH_{3} ?
A. $6.07 \times 10^{5} s^{-1}$
B. $6.07 \times 10^{-10} s^{-1}$
C. $6.07 \times 10^{-5} s^{-1}$
D. $6.07 \times 10^{10} s^{-1}$

Answer: A

569. If $P K_{b}$ for fluoride ion at $25^{\circ} C$ is 10.83 . predict the ionisation constant of hydrofluoric acid in water at this temperature.
A. 1.74×10^{-5}
B. 3.52×10^{-3}
C. 6.75×10^{-4}
D. 5.38×10^{-2}

Answer: C

- Watch Video Solution

570. Approximate PH of 0.10 M aqueous $H_{2} S$ solution having K_{1} and K_{2} for $H_{2} S$ at $25^{\circ} \mathrm{C}$ are 10^{-7} and $10^{\wedge}(-13)^{\prime}$ respectively is :
A. 4
B. 5
C. 6
D. 8

Answer: A

- Watch Video Solution

571. Which of the following species is more soluble in water?
A. $M(O H)_{3}: K_{s} p=10^{-35}$
B. $M(O H): K_{s} p=10^{-30}$
C. $M(O H): K_{s} p=10^{-28}$
D. $M O H: K_{s} p=10^{-26}$

Answer: A

572. The self ionisation constant for pure formic acid $\mathrm{K}=\left[\mathrm{HCOOH}_{2}^{+}\right]$ $\left[\mathrm{HCOO}^{-}\right]$bas been estimated a 10^{-6} atr ∞ mtemperature. Thedensityoff or micacidis $1.22 \underline{g}{ }^{-} \mathrm{cm}^{\wedge} 3^{`}$ find the percentage of formic acid molecules in pure formic acid converted to formate ion.
A. 0.002%
B. 0.004%
C. 0.006%
D. 0.008%

Answer: B

- Watch Video Solution

573. Liquid ammonia ionises to a slight extent. At $-50^{\circ} C$ its self ionisation constant $K_{N H_{3}}=\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NH}_{2}^{-}\right]=10^{-30}$ How many amide ions are present per cm^{3} of pure liquid ammonia. (Assume $\mathrm{N}=6.0 \times 10^{23}$)?
A. 6×10^{6} ions
B. 6×10^{5} ions
C. 6×10^{-5} ions
D. $6 \times 106(-6)$ ions

Answer: B

- Watch Video Solution

574. What is the concentration of fluoracetic acid (K_{a} of acid $=$ 2.6×10^{-3}) Which is required to get $\left[H^{+}\right]=1.50 \times 10^{-3} \mathrm{M}$?
A. 0.865 M
B. $2.37 \times 10^{-3} \mathrm{M}$
C. $2.37 \times 10^{-4} \mathrm{M}$
D. $2.37 \times 10^{-2} \mathrm{M}$
575. What molar concentration of NH_{3} provides a $\left[\mathrm{OH}^{-}\right]$OF $1.5 \times 10^{-3} ?\left(K_{b}=1.8 \times \times 10^{\wedge}(-5)\right):$
A. $0,125 \mathrm{M}$
B. $\left(0.125+1.5 \times 10^{-3}\right) \mathrm{M}$
C. $\left(0.125-1.5 \times 10^{-3}\right) \mathrm{M}$
D. ${ }^{`} 1.5 \times x 10^{\wedge}(-3) \mathrm{M}$

Answer: A

- Watch Video Solution

576.1 ml of 0.1 N Hcl is added to 999 ml solution of NaCl . The PH of the resulting solution will be :
A. 7
B. 4
C. 2
D. 1

Answer: B

- Watch Video Solution

577. What is the volume of water needed to dissolve 1 g of BaSO_{4} $\left(K_{s} p=1.1 \times 10^{-10}\right)$ at $25^{\circ} C$?
A. 820 litre
B. 410 litre
C. 205 litre
D. None of these

Answer: B

578. The solubility of BaSO_{4} in water is 0.00233 g per litre at $30^{\circ} \mathrm{C}$. The solubility of BaSO_{4} in $0.1 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution at the same temperature is :
A. $10^{-5} \mathrm{~mol} / \mathrm{lit}$
B. $10^{-6} \mathrm{~mol} / \mathrm{lit}$
C. $10^{-8} \mathrm{~mol} / \mathrm{lit}$
D. $10^{-9} \mathrm{~mol} / \mathrm{lit}$

Answer: D

- Watch Video Solution

579. Formic acid is 4.6% dissociated in a 0.1 N solution at $20^{\circ} \mathrm{C}$. The ionisation constant of formic acid is :
A. 21×10^{-4}
B. 21
C. 0.21×10^{-4}
D. 2.1×10^{-4}

Answer: D

- Watch Video Solution

580. The dissociation constants of two acid $H A_{1}$ and $H A_{2}$ are 2.9×10^{-4} and 1.8×10^{-5} respectively The relative strengths of the acid will be :
A. 1:4
B. 4:1
C. 1:16
D. 16:1
581. In the hydrolytic equilibrium
$A^{-+} \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{HA}+\mathrm{OH}^{-} K_{a}=1.0 \times 10^{-5}$. The degree of hysrolysis of 0.001 M solution of the salt is :
A. 10^{-3}
B. 10^{-4}
C. 10^{-5}
D. 10^{-6}

Answer: A

- Watch Video Solution

582. For preparing a buffer solution of pH 6 BY mixing sodium acetate and acetic acid the ratio of concentration of salt and acid $\left(K_{a}=10^{-5}\right)$ Should be :
A. 1:10
B. $10: 1$
C. $100: 1$
D. 1:100

Answer: B

- Watch Video Solution

583. At $20^{\circ} \mathrm{C}$ the $\left[\mathrm{Ag}^{+}\right]$in a saturated solution of $\mathrm{Ag}_{2} \mathrm{CrO} \mathrm{O}_{4}$ is $1.5 \times 10^{-4} \mathrm{M}$ find the solubility product of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$:
A. 3.375×10^{-12}
B. 1.6875×10^{-10}
C. 1.6875×10^{-12}
D. 1.6875×10^{-11}

Answer: C

584. Let the solubilities of AgCl in $\mathrm{H}_{2} \mathrm{O} 0.01 \mathrm{M} \mathrm{CaCl}_{2} 0.01 \mathrm{M} \mathrm{NaCl}$ and $0.05 \mathrm{M}_{\mathrm{MgNO}}^{3}$ be $S_{1}, S_{2}, S_{3}, S_{4}$ respectively. What is the correct relationship between the quantities?
A. $S_{1}>S_{2}>S_{3}>S_{4}$
B. $S_{1}>S_{2}=S_{3}>S_{4}$
C. $S_{1}>S_{3}>S_{2}>S_{4}$
D. $S_{4}>S_{3}>S_{2}>S_{1}$

Answer: C

- Watch Video Solution

