

CHEMISTRY

BOOKS - MBD CHEMISTRY (ODIA ENGLISH)

EQUILIBRIUM

QUESTION BANK

1. If K_e of the reaction, $2HI o H_2 + I_2$ is 0.25, the equilibrium constant of the reaction $H_2 + I_2 o$ 2HI would be :

A. 1

B. 2

C. 3

D. 4

Answer: D

2. HI heated in a sealed tube at $440^{\circ}C$ till the equilibrium was reached. HI was found to be 22% decomposed. The equilibrium constant for dissociation is:

A. 0.282

B. 0.0796

C. 0.0199

D. 1.99

Answer: C

Watch Video Solution

3. For a reversible reaction the rate constant for the forward reaction is 2.38×10^{-4} and for the backward reaction is 8.15×10^{-5} The k_c of the reaction is:

A. 0.342

B. 2.92

C. 0.292

D. 3.42

Answer: B

Watch Video Solution

4. 2 $SO_3 \rightarrow 2SO_2 + O_2$ is at equilibrium. The SO_2 concentration is 0.6 M. Initial concentration of SO_3 is 1M. The equilibrium constant is:

A. 2.7

B. 1.36

C. 0.34

D. 0.675

Answer: D

5. Which one favours the backward reaction in a comical equilibrium ?

A. Increasing the concentration of one of the reactants.

B. Removal of at least one of the products at regular interval.

C. Increasing the concentration of one or more of the products.

D. None of the above.

Answer: C

Watch Video Solution

6. The concentration of pure solid and liquid phase is not inculded in the expression of equilibrium constant because:

A. solid and liquid conc. are independent of their quarries.

B. solid and liquid react slowly.

C. solid and liquid at equilibrium don't interact with gaseous phase

D. the molecules of solid and liquid cannot migrate to the gaseous

phase.

Answer: A

Watch Video Solution

7.4 moles of A are mixed with 4 moles of B. When 2 moles of C are formed

at equilibrium accordingly to the reaction A + B
ightarrow C + D. K_c is:

A. 4

B. 1

C. sqrt4

D. sqrt2

Answer: B

8. The unit of equilibrium constant K, $N_2 + 3H_2
ightarrow 2NH_3$ will be:

A. $lit^2mo\leq^{-2}$

B. `mole^2 lit^(-2)

C. mole/lit

D. it has no unit

Answer: A

Watch Video Solution

9. When acetic acid and ethanol are mixed in equimolar proportions, equilibrium is attained when 2/3rd of the acid and alcohol are consumed. The value of K_c is:

A. 0.4

B. 4

C. 40

D. $4.0xx10^{2}$

Answer: B

Watch Video Solution

10. If $N_2+3H_2\Leftrightarrow 2NH_3$ has equilibrium constant K and $2N_2+6H_2\Leftrightarrow 4NH_3$ has equilibrium constant k', then k' =

A. K^2

B. sqrtK

C. 1/sqrtK

D. 1/K^2

Answer: A

11. Irreversible reaction is one which:

A. proceeds in one direction only

B. proceeds in both the direction

C. is an instantaneous reaction

D. is aslow reaction

Answer: A

Watch Video Solution

12. When rate of forward reaction is equal and opposite to the rate of

backward reaction, the state is said to be:

A. reversible state

B. Equilibrium

C. Chemical equilibrium

D. None of the above

Answer: C

13. Which of the following reaction will be favoured by low pressure ?

A. $H_2 + I_2 \leftrightarrow 2HI$

 $\mathsf{B}.\,N_2+3H_2\leftrightarrow 2NH_3$

- $\mathsf{C}. \operatorname{PCL}_5 \leftrightarrow \operatorname{PCL}_3 + \operatorname{CL}_2$
- $\mathsf{D}.\,N_2 + O_2 \leftrightarrow 2NO$

Answer: C

14. Which of the following factor will be usefuk in manufacture of ammonia by Haber's process ?

A. High pressure

B. Low pressure

C. High temperature

D. Increase in the concentration of ammonia

Answer: A

Watch Video Solution

15. The reaction in which heat is absorbed is known as:

A. Exothermic

B. Endothermic

C. Reversible

D. None of the above

Answer: B

16. The rate at which a substrance reacts is proportional to its active mass. This statement is :

A. Le-Chatelier's principle

B. Faraday's Law

C. Law of multiple proportion

D. Law of mass acction

Answer: D

Watch Video Solution

17. When chemical equilibrium is reached the :

A. reaction stops

B. rate of forward reaction is equal to the rate of backward reaction

C. rate of forward reaction is more than that of backward reaction

D. none of the above

Answer: B

18. In a reversible reaction if there is no change in total number of molecules , the reaction will be favoured by

A. high pressure

B. low pressure

C. high temperature

D. higher concentration of a reactant

Answer: D

19. Which of the following will be favoured by high pressure?

A. $PCL_5 \Leftrightarrow PCL_3 + CL_2$

 $\mathsf{B}.\,N_2 + O_2 \Leftrightarrow 2NO$

 $\mathsf{C}.\,N_2 + 3H_2 \Leftrightarrow 2NH_3$

 $\mathsf{D}.\,H_2+I_2 \Leftrightarrow 2HI$

Answer: C

Watch Video Solution

20. Chemical equilibrium is:

A. stationary

B. dynamic

C. interness

D. state of rest

Answer: B

21. For the reaction, $H_2+I_2 \Leftrightarrow 2HI$ the K_p and K_c are related as :

A. $K_p = K_c (RT)^2$ B. $K_p = K_c (RT)^0$ C. $K_p = K_c (RT)^{-2}$ D. K_p = K_c (RT)^-i

Answer: B

Watch Video Solution

22. In which of the following reactions $K_p = K_c$?

A.
$$N_2(g)+3H_2(g) \Leftrightarrow 2NH_3(g)$$

$$\texttt{B.}\ 2NOCI \Leftrightarrow 2NO(g) + CL_2(g)$$

$$\mathsf{C}.\, I_2(g) + H_2(g) \Leftrightarrow 2HI(g)$$

 $\mathsf{D}.\, H_2(g) + CL_2(g) \Leftrightarrow 2HCL(g)$

Answer: D

Watch Video Solution

23. The partial pressure of PCL_3, CL_2 and PCL_5 are 0.1,0.2 and 0.008

,

atmosphererespectivelyforreaction $PCL_5 \Leftrightarrow PCL_3 + CL_2$. Thevalueof K_p`is :

A. 2.5

B. 5

C. 0.25

D. 25

Answer: A

24. For which of the following reactions the value of K_p is greatier than K_c ?

A. $N_2 + O_2 \leftrightarrow 2NO$

 $\texttt{B.}\,2SO_2+O_2\leftrightarrow 2SO_3$

 $\mathsf{C.}\,2SO_2\,\leftrightarrow\,N_2O_4$

 $\mathsf{D}. PCL_5 \leftrightarrow PCL_3 + CL_2$

Answer: D

Watch Video Solution

25. For the reaction `PCL_5 hArr PCL_3+CL_2, the forward reaction at constant temperature is fovoured by :

A. introducing an inret gas at constant volume

B. introducing chlorine gas at constant volume

C. introdusing an inert gas at constant pressure

D. increasing the volume of the container

Answer: D

Watch Video Solution

26. According to law of mass action, the rate of reaction is directly proportional to:

A. volume of the container

B. equilibrium constant

C. nature of reactants

D. molar concemtration of reactants

Answer: D

27. For a reversible reaction if the concentration of the reactants are doubled, the equilibrium constant will be :

A. halved

B. doubled

C. the same

D. one fourth

Answer: C

Watch Video Solution

28. In of the following case does the reaction go farthest to completion ?

A. $K = 10_2$

B. `K = 10^-2

C. K = 10

D. K=1

Answer: A

29. In a reversible reaction two substances are in equilibrium. If the concentration of each is double the equilibrium is:

A. reduced to half of its original value

B. reduced to 1/4th of its original value

C. doubled

D. constant

Answer: D

30. $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g), \ /_\H$ =-93.5 kj what will happen when

helium gas is added to the vessel at constant valume:

A. more NH_3 is formed

B. less NH_3 is formed

C. no effect

D. none of these

Answer: C

:

Watch Video Solution

31. 1 mol of A and 0.5 mol of B were enclosed in a there litre vessel The following equilibrium was establised under suitable condition: $A + 2B \leftrightarrow C$ At equilibrium the amount of B was found to be 0.3 mol.The equilibrium constant K_c at the experimental temoerature will be A. 11.1

B. 1.11

C. 0.01

D. 2.5

Answer: A

Watch Video Solution

32. $\frac{K_p}{K_c}$ for the reaction: `CO(g)+1/2O_2(g) hArr CO_2(g) is :

A. 1

B. RT

C. 1/(sqrtRT)

D. RT^(1/2)

Answer: C

33. The equilibrium constant, K_c for the reaction: $H_2 + I_2 \Leftrightarrow 2HI$ at 700 K is 49. what is the equilibrium constant for the reaction ? $HI \leftrightarrow \frac{1}{2}H_2 + \frac{1}{2}L_2$ at the same temperature

A. 49

B. 0.02

C. 1.43

D. 0.143

Answer: D

Watch Video Solution

34. An equilibrium mixture for the reaction $2H_2S(g) \Leftrightarrow 2H_2(g) + S_2(g)$ had 1 mole of hydrogen sulphide, 0.2 mole of H_2 and 0.8 mole of S_2 in 2 litre vessel. The value of K_c is: A. 0.004

B. 0.08

C. 0.016

D. 0.16

Answer: C

Watch Video Solution

35. What is the equilibrium expression for the reaction: $P_4(s)+5O_2(g) \Leftrightarrow P_4O_{10}(s)$

A.
$$K = [O_2]^5$$

B. $K_c = rac{[P_4O_{10}]}{5[P_4][O_2]}$
C. $K_c = rac{[P_4O_{10}]}{[P_4][O_2]^5}$
D. $K_c = rac{1}{[O_2]^5}$

Answer: D

36. The conjugate acid of NH_2 is

A. NH_3

B. `NH_2 OH

C. $NH_4^{\,+}$

D. N_2H_4

Answer: A

Watch Video Solution

37. Which of the following is not a lewis acid ?

A. BF_3

 $\mathsf{B.} AlCl_3$

C. Be Cl_2

D. Sn Cl_2

Answer: A

38. The strongest bronsted base is:

A. CIO^{-}

B. CIO_3^-

 $C.CIO_2$

D. CIO_4^-

Answer: A

Watch Video Solution

39. An aqueous solution of acetic acid contains:

A. CH_3 COOH and H^+

B. $CH_{3}COO^{-}, H_{3}O^{+}$ and $CH_{3}COOH$

C. CH_3COO^-, H_3O^+ and H^+

D. CH_3 COOH, CH_3COO^- and H^+`

Answer: D

Watch Video Solution

40. Aqueous solution of copper sulphate changes blue litmus to red because:

A. Cu^{-2} is present

 $\mathsf{B.}\,SO_4^{-2}$

C. Hydrolysis take place

D. Reduction takes place

Answer: C

41. An aqueous solution of salt is alkaline. This show that the salt is made

from as:

A. strong acid and strong base

B. strong acid and week base

C. weak acid and week base

D. weak acid and strong base

Answer: D

Watch Video Solution

42. Which of the following statement is incorrect for a weak acid ?

A. It is partially dissociated.

B. Its dissociation constant is low.

C. Its K_2 is very low.

D. solution of its sodium salt in water is alkaline.

Answer: C

Watch Video Solution

43. Which of the following is not conjugate pair of acid base ?

A. HS and $S^{\,-2}$

B. H_3O^+ and OH^-

C. HONO and NO_2

D. C_6H_5COOH and $C_6H_5COO^-$

Answer: A

44. According to bronsted concept, the acids in the reaction : $NH_3+H_2O=NH_4\text{+OH^-are:}$

A. NH_3 and NH_4^+

B. H_2O and OH^{-}

C. H_2 and NH_4^+

D. NH_3 and OH^{-}

Answer: B

Watch Video Solution

45. Ammonium hydroxide is a weaker base because it is :

A. unstable

B. covalent compound

C. only slightly ionises

D. none of these.

Answer: C

46. Lewis acids are

A. electron acceptors

B. proton acceptors

C. electron donors

D. proton donors

Answer: A

Watch Video Solution

47. The pH of a soloution containing 0.4 gm NaOH per litre is :

B. 12

C. 10

D. 11

Answer: B

Watch Video Solution

48. conjugate base of HCO_3^- ion is :

A. CO_2

- B. CO_3^2 –
- $\mathsf{C}.\,H_2CO_3$

D. HCO_3^-

Answer: C

49. Aqueous solution of $FeCl_3$ is :

A. acidic

B. basic

C. amphoteric

D. netural

Answer: A

Watch Video Solution

50. When 1.0 ml of dil H_2SO_4 is added to 100 ml of a buffer solution of

pH:

A. becomes 7.0

B. is less than 7.0

C. is more than 7.0

D. docs not change

Answer: D
Watch Video Solution
51. What is the pH of 0.01 M NaOH assuming complete ionisation ?
A 0.01
A. 0.01
B. 2
C. 12
D. 14
Answer: C
Watch Video Solution

52. The pH of the solution is 3.0 if its pH is changed to 6.0 then the $\left[H^{\,+}
ight]$

of the original solution has to be :

A. doubled

B. halved

C. increased 1000 times

D. decreased 1000 times

Answer: D

Watch Video Solution

53. The compound that is not a lewis acid is:

A. BF_3

B. $AlCl_3$

 $\mathsf{C}.\,BeCl_2$

D. $SnCl_4$

Answer: C

54. The conjugate acid of NH_2 is

A. NH_3

B. NH_2OH

 $\mathsf{C}.NH_4^+$

D. N_2H_4

Answer: A

Watch Video Solution

55. An acidic buffer can be prepared by making solution of :

A. HCl and NaCl

B. NaOH and NaCl

C. HCOOH and HCOONa

D. NH_4Cl and NH_4OH

Answer: C

56. A compound is precipitated when its:

A. ionic product exceeds the solubility product

B. ionic product is less than its solubility product

C. ionic product is equal to the solubility product

D. none of the above

Answer: A

57. A basic buffer can be prepared by mixing

A. CH_3COONa and CH_3COOH

- B. Na_2SO_4 and H_2SO_4
- C. NaOH and NaCl
- D. NH_4Cl and NH_4OH

Answer: D

58. Which of the following solutions has the maximum pH value ?

A. solution of caustic soda

B. Pure water

- C. Water saturated with CO_2 gas
- D. Solution of sodium chloride

Answer: A

59. Hydrolysis is regarded as an interaction between :

A. H^+ , OH^-` ions

B. ions of acid with ions of base

C. ions of salt with ions of water

D. acid and base

Answer: C

Watch Video Solution

60. Which of the following solutions have PH close to 1.0?

A. 100 ml of M/10 HCl + 100 ml of M/10 NaoH

B. 55 ml of M/10 HCl + 45 ml of N/10 NaoH

C. 10 ml of M/10 HCL + 90 ml of M/10 NaoH

D. 75 ml of M/10 HCl + 25 ml of M/5 NaoH

Answer: D

:

61. The decrease in the ionisation of H_2S in the presence of HCl is due to

A. solubility product

B. Dilation

C. Common ion effect

D. saturation

Answer: C

62. An aqueous solution of ammonia acetate is :

A. faintly acidic

B. faintly alkaline

C. fairly neutral

D. fairly acidic

Answer: C

Watch Video Solution

63. Ammonia gas dissolves in water to give NH_4OH In this reaction

water act as :

A. a base

B. an acid

C. a salt

D. a conjugate base

Answer: B

B. 0

C. 7

D. 13

Answer: D

65. Which of the following is a lewis base ?

A. $ALCl_3$

B. Ag

 $\mathsf{C.} Ag(OH)_3$

D. NH_3

Answer: D

Watch Video Solution

66. The PH of a solution obtained by mixing 50 ml of 0.4 M HCl and 50 ml

of 0.2 M NaoH IS :

A. -log 2

 $B. - \log \times 10^{-1}$

C. 1

D. 2

Answer: C

67. pH of `10^-8 M solution of HCl in water is:

A. 8

B. 6

C. Between 6 and 7

D. between 7 and 8

Answer: C

Watch Video Solution

68. Which of the following will have highest PH in water solution :

A. Nacl

 $\mathsf{B.}\, Na_2CO_3$

C. KCL

 $\mathsf{D.}\, CuSO_4$

Answer: B Watch Video Solution 69. Which of the following species is amphoteric in nature ? $A. H_3O^+$ $B. Cl^-$

D. CO_3^{2-}

 $\mathsf{C}.HSO_4^-$

-

Answer: C

70. For a springly soluble salt A_PB_q the relationship between its solubility product (L_s) and its solubility (S) is :

A.
$$L_S=S^{p+q}p^pq^q$$

B. $L_S=S^{p+q}p^qq^p$
C. $L_S=S^{pq}p^pq^q$
D. $L_S=s^{pq}pq^{q+p}$

Answer: A

71. When a salt of strong base and Weak acid is hydrolysed the resulting solution has :

A. PH=7

B. PH=0

C. PHlt 7

D. PHgt7

Answer: D

72. 1 c.c. of 0.01 M HCl is added to 99.9 cc of NaCl solution . PH of resulting solution will be :

A. 7 B. 4 C. 2 D. 1

Answer: B

Watch Video Solution

73. Precipitation takes place when the producty of concentration of ions :

A. equals the solubility product

B. Exceeds the solubility product

C. is less than the solubility product

D. is negligible

Answer: B

Watch Video Solution

74. A sulphuric acid solutions has PH =2 its molarity is :

A. 1/100

B. 1/50

C. 1/2

D. 1/200

Answer: D

75. The conjugate base of H_3PO_4 IS :

A. H_3PO_4

 $\mathsf{B}.\,P_2O_5$

 $\mathsf{C}.PO_4$

D. HPO_4^{2-}

Answer: D

Watch Video Solution

76. What is common ion effect ?

77. Define 'active mass'.

78. Define 'law of mass action'.

86. Explain basic buffer with some example ?

108. SO_2 is lewis acid ?

112. Calculate the value of equillibrium constant, N2 O4 $(g) \rightarrow 2NO 2$ (g), the concentration of N 2 O 4 (g) and NO 2 at equilibrium are 4.8×10 -2 and 1.2×10 -2 mol/L respectively.

Watch Video Solution

117. Write the expression that shows the dependence of equilibrium constant on temperatue.

Watch Video Solution

118. Two moles of NH_3 are introduced into one litre flask in which it dissociates at high temperature as $2NH_3(g) \Leftrightarrow N_2(g) + 3H_2(g)$ Find the value of K_C .

119. 1 mole of N_2O_4 is heated in a flask with a volume of 10 dm^3 . At equillibrium 1.708 mole of NO_2 and 0.146 mole of N_2O_4 were found at

 $134^\circ \, c$ calculate the equillibrium constant .

 NH_4OH is `1.8 xx 10^-5 calculate its degree of ionisation at the same

temperature.
Watch Video Solution
124. Calculate the PH of KOH solution 5.6 gm of which is dissolved in 10

litre solution .

Watch Video Solution

125. Calculate the PH Of 0.005 M H_2SO_4 .

Watch Video Solution

126. Calculate the PH of 0.004 M KOH.

M sodium acetate and 0.08 acetic acid at 298 K. (Pk a = 4.74)

131. Discus Arhenius theory of acids and bases with examples .

135. What is buffer solution ?

140. What is normal salt ? Give some example.

143. Calculate the PH of 0.01 M aqueous solution of NH_4CN . Given dissociation constants Of HCN is 6.2×10 –10 and of NH_3 is 1.6×10 –5

156. The reaction $N_2 + 3H_2 \Leftrightarrow 2NH_3$ favoured at _____.

157. The effect of concentration or pressure on the rate of a reversible						
reaction is given by						
Watch Video Solution						
158. Henderson's equation for the POH of a basic buffer is						
Watch Video Solution						
159. What is buffer solution ?						
Watch Video Solution						
160. The buffer action of acidic buffer is maximum when its pH is equal to:						

161. Acetic acid mixing with gives buffer solution.
Watch Video Solution
162. what is conjugate base Of HSO_4^- ?
Watch Video Solution
 163. A mixture of sodium acetate and acetic acid acts as a Watch Video Solution
164. PH of 0.01 M HCl solution is Watch Video Solution

165.	The	conjugate	acid	of H	CO_3^-	is	

Watch Video Solution						
166. How does PH of a solution vary with temperature ?						
Watch Video Solution						
167. The conjugate base of `H_3O^+ is						
Vatch Video Solution						
168. solubility of calcium acetate with increase in temperature.						
Watch Video Solution						
169. What is the PH OF 0.1 M HCl.						
Watch Video Solution						

Watch Video Solution

171. 40 % of a mixture of 0.2 mole of N_2 and 0.6 mole of H_2 react to give NH_3 according to the equation: $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3$ (g) at constant temperature and pressure. Then what is the ratio of the final volume to the initial volume of gases ?

A. 4:5

B. 5:4

C. 7:10

D. 8:5

Answer: A

172. At temperature T, a compound $AB_2(g)$ dissociates according to the reaction $2AB_2(g) \Leftrightarrow 2AB(g) + B_2(g)$ with a degree of dissociation x, Which is small compared with unity. Predict the expression for K_p in terms of x and the total pressure P.

A. $Px^3/2$

B. $Px^{2}/3$

C. $Px^{3}/3$

D. $Px^{2}/2$

Answer: A

Watch Video Solution

173. What is the amount of PCl_5 (in mole) need to be aded to one litre vessel at `250^Oc in order to obtain a concentration of 0.1 moles of Cl 2 ? K c for PCl 5 \iff PCl 3 +Cl 2 is 0.0414 mol/litre

A. 0.3415

B. 0.0341

C. 3.415

D. 0.3415

Answer: A

Watch Video Solution

174. For $NH_4HS(s) \Leftrightarrow NH_3(g) + H_2S$, The observed pressure for reaction mixture in equillibrium is 1.12 atm at 160^Oc . Calculate the value of K_p for the reaction:

A. 3.136 atm^2

B. 0.3136 atm^2

C. 3.415 atm^2

D. 0.3415 atm^2

Answer: B

175. In a reaction at equillibrium X mole of the reactant A decompose to give 1 mole each of C and D. if the fraction of A decomposed at equillibrium is independent of initial concentration of A then what will be the value pf X ?

- A. 1
- B. 3
- C. 2
- D. 4

Answer: C

176. In a system : A(s) hArr 2B(g) + 3C(g) If the concentration of C at equillibrium is increased by factor 2 then predict the equillibrium concentration of B in terms of original value.

A. Two times of its original value

B. One half of its original value

C. $2\sqrt{2}$ times of its original value

D. $\frac{1}{2}\sqrt{2}$ times of its original value

Answer: D

Watch Video Solution

177. Eight mole of a gas AB_3 attain equillibrium in a closed container of volume 1 dm^3 as 2 $AB_3 \Leftrightarrow A_2(g) + 3B_2(g)$ if at equillibrium 2 mole of A_2 are present then calculate the equillibrium constant.

A. $72mol^2L^{-2}$

B. $36mol^2L^{-2}$

C. $3mol^2L^{-2}$

D. $27mol^2L^{-2}$

Answer: D

Watch Video Solution

178. In the reaction C(s) + $CO_2(g) \Leftrightarrow 2CO(g)$ the equilibrium pressure is

12 atm. If 50~%~ OF CO_2 reacts. Calculate the K_P for the change:

A. 12 atm

B. 16 atm

C. 20 atm

D. 6 atm

Answer: B

179. When 20 g of $CaCO_3$ were put into 10 litre flask and heated to 800^Oc 35 % $CaCO_3$ remained unreacted at equillibrium . Predict k_p for decomposition of `CaCO_3 .

A. 1.145 atm

B. 0.145 atm

C. 2.145 atm

D. 3.145 atm

Answer: A

Watch Video Solution

180. Sulphides ions in alkaline solution react with solid sulphur to form polyvalent sulphide ions. The equillibrium constant for the formation of S_2^{2-} and S_3^{2-} from S and S^{2-} ions are 1.7 and 5.3 respectively. What is the equillibrium constant for the formation of S_3^{2-} from S_2^{2-} and S?

A. 1.33

B. 3.11

C. 4.21

D. 1.63

Answer: B

Watch Video Solution

181. At equillibrium if K_p =1 then :

A. $\Delta G^o=0$

B. $\Delta G^o > 1$

 $\mathsf{C.}\,\Delta G^o < 1$

D. None

Answer: A

182. For N_2 + 3H_2 \Leftrightarrow 2NH_3DeltaH` = -VE then :

A.
$$K_P = K_C$$

B. $K_p = K_CRT$

$$\mathsf{C}.\,K_P=K_c(RT)^{-2}$$

D. K_p = K_c (RT)^-1

Answer: C

Watch Video Solution

183. On applying pressure to the equilibrium, $ice \Leftrightarrow water$ which phenomenon will happen:

- A. More ice will be formed
- B. More water will be formed
- C. Equiliberium will not be disturbed

D. Water will equilibrium

Answer: B

184. For the equilibrium $2NO_2(g)
ightarrow N_2O_4(g) + 14.6kcal$ An increase of temperature will:

A. Favour the formation of N_2O_4

B. Favour the decomposotion of N_2O_4

C. Not affect the equilibrium

D. Stop the reaction

Answer: B

185. Which equilibrium in gaseous phase would be unaffected by an increase in preassure:

A. $N_2O_4 \rightleftharpoons 2NO_2$

B. $N_2 + O_2 \rightleftharpoons 2NO$

 $\mathsf{C}.N_2 + 3H_2 \rightleftharpoons 2NH_3$

D. CO + 1/2 $O_2 \rightleftharpoons CO_2$

Answer: B

> Watch Video Solution

186. For the reaction, $H_2 + I_2 \Leftrightarrow 2HI$ the K_p and K_c are related as :

A. $K_C = 2K_P$

 $\mathsf{B}.\,K_C > K_P$

 $\mathsf{C}.\,K_C=K_P$

D. $K_C < K_P$

Answer: C

Watch Video Solution

187. The vapour density of compeletly dissociated NH_4Cl would be :

A. Slightly less than half of that of ammonium chloride

B. Half of that of ammonium chloride

C. Double that of ammonium chloride

D. Determined by the amount of solid ammonium choride used in the

experiment

Answer: B

188. For the chemical reaction, $3X(g)+y(g)
ightarrow X_3Y(g)$: the amount of

 X_3Y at equilibrium is affected by:

A. Temperature and pressure

B. Temperature only

C. pressure only

D. Temperature, pressure and catalyst

Answer: A

Watch Video Solution

189. Which oxide of nitrogen is the most stable:

A.
$$2NO_2(g) \rightleftharpoons N_2(g) + 2O_2(g)K = 6.7 imes 10^{16} mollitre^{-1}$$

B. $2NO(g) \rightleftharpoons N_2(g) + O_2(g)$,

K = 2.2 xx 10⁽³⁰⁾ mol litre⁽⁻¹⁾

C. $2N_2O_5(g)
ightarrow 2N_2(g)+5O_2(g), K=3.5 imes 10^{33}mol^{-5}litre^{-5}$

D. $2N_2O(g) \rightleftharpoons 2N_2(g) + O_2(g), K = 3.5 imes 10^{33} mollitre^{-1}$

Answer: A

190. The equilibrium constant for equilibria $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$ and $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ are K_1 and K_2 respectively Then:

A. $K_2 = K_1$ B. $K_2 = K_1^{2^{\star}}$ C. $K_2 = \frac{1}{K_1}$ D. $K_2 = \frac{1}{K_1^2}$

Answer: D

> Watch Video Solution

191. For $PCl_5 \Leftrightarrow PCl_3 + Cl_2$, $\Delta H = 22$ kcal the dissociation of PCl_5

will be more on:

A. Increasing temperature

B. Decreasing pressure

C. Increasing pressure

D. Increasing the concentration of chlorine

Answer: A

Watch Video Solution

192. An increase in temprature on the reaction $N_2+O_2 \rightleftharpoons 2NO, \Delta H$ =

43.2 kcal will :

A. Increase the yield of NO

B. Decrease the yield of NO

C. Not effect the yield of NO

D. Not help the reaction to proceed in forward direction

Answer: A

193. The volume of the reaction vessel containing an equilibrium mixture in the reaction , $SO_2Cl_2(g) \Leftrightarrow SO_2(g) + Cl_2(g)$ is increased. When equilibrium is reestablished:

A. The amount $SO_2(g)$ will decrease

B. The amount of $SO_2Cl_2(g)$ will increase

C. The amount of $Cl_2(g)$ will increase

D. The amount of Cl_2 (g) will remain unchanged

Answer: C

Watch Video Solution

194. The corrrect relationship between K_c and K_p is gaseous equilibrium

is:

A.
$$K_C = K_P(RT)^{\Delta} n(b)$$

B. $K_p = K_C(RT)^{\Delta} n$
C. $rac{k_c}{RT} (K_P)^{\Delta} n$

Answer: B

195. In which equilibrium reaction the equilibrium whould shift to the right, if the total pressure is increased:

A.
$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

 $\mathsf{B}.\,H_2+I_2\rightleftharpoons 2HI$

$$\mathsf{C}.\,H_2+Cl_2 \rightleftharpoons 2HCl$$

D. $N_2O_4 \rightleftharpoons 2NO_2$

Answer: A

196. The chemical reaction in which the yield of the product cannot be increased by the application of high pressure is:

A.
$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$

 $\texttt{B}.\, N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$

D.
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

Answer: B

Watch Video Solution

197. For which reaction is $K_p = K_c$:

B. $N_2(g)+3H_2(g) \rightleftharpoons 2NH_3(g)$

$$\mathsf{C}.\, H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$$

$$\mathsf{D}.\,2SO_2(g)+O_2(g)\rightleftharpoons 2SO_3(g)$$

Answer: C

Watch Video Solution

198. In a flask colourless N_2O_4 is in equilibrium with brown colourless NO_2 . At equilibrium when the flask is heated at 100^Oc the brown colour deepens and on cooling it becomes less coloured. The change in enthalpy Da < aH, for the system is:

A. Negative

B. Positive

C. Zero

D. Undefined

Answer: B

199. For which system at equilibrium, at constant temperature, will the doubling of the volume cause a shift to the right:

A. $H_2(g) + Cl_2(g)$ hArr 2HCl(g)

B. 2CO(g) +O_2(g) hArr 2CO_2(g)

 $\mathsf{C}.\, N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3$

$$\mathsf{D}. Pcl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$$

Answer: D

Watch Video Solution

200. For which reaction K_p is less than 'K_c:

A. $N_2O_4 \Leftrightarrow 2NO_2$

 $\texttt{B.}\,2HI \Leftrightarrow H_2 + I_2$

 $\mathsf{C.}\,2SO_2+O_2 \Leftrightarrow 2SO_3$

 $\mathsf{D.}\,N_2 + O_2 \leftrightarrow 2NO$

Answer: C

Watch Video Solution

201. When $NaCl_3$ is heated in a closed vessel, oxygen is liberated and $NaNO_2$ is left behind. At equilibrium:

A. Addition of $NaNO_2$ favours reverse reaction

B. Addition of $NaNO_2$ favours forward reaction

C. Increasing temperature favours forward reaction

D. Decreasing pressure favour reverse reaction

Answer: C

202. Which is a reversible reaction:

A.
$$H_2+I_2
ightarrow 2HI$$

B. $H_2SO_4+Ba(OH)_2
ightarrow BaSO_4+2H_2O$
C. $Nacl+AgNO_3
ightarrow NaNO_3+Agcl\downarrow$

 $\text{D.}\,2KClO_3\rightarrow 2KCl+3O_2\downarrow$

Answer: A

Answer: B

204. In the reaction, $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$ increase in H_2 concentration equilibrium:

A. Favours the dissociation of NH_3

B. Does not effect the reaction

C. Increases the equilibrium constant

D. Favours the formation of NH_3

Answer: D

205. For the reaction, $CuSO_{4.5}H_2O(s) \Leftrightarrow CuSO_{4.3}H_2O(s) + 2H_2O(v)$.

Which one is correct representation ?

A.
$$K_p = \left(p_{H_{20}}^2
ight.$$

B. $K_c = \left[H_2O
ight]^2$
C. $K_P = K_c(RT)^{-2}$

D. All of the above

Answer: D

206. The equilibrium which remains uneffected by pressure change is :

A. $N_2(g) + O_2 \Leftrightarrow 2NO(g)$

 $\texttt{B.} 2O_3(g) \Leftrightarrow 3O_2$

C. 20_3(g) hArr 30_2`

 $\mathsf{D.}\, 2NO_2 \Leftrightarrow N_2O_4$

Answer: A

207. In an equilibrium reaction if $\Delta G^o = 0$ the equilibrium constant, K should be equal to:

A. Zero	
B. 1	
C. 2	
D. 10	

Answer: B

Watch Video Solution

208. Solubility of a subsatuce which dissolves with a decrease in volume and absorption of heat will be favoured by:

A. High P and High T

B. low P and low T

C. High P and low T

D. Low P and high T

Answer: A

Watch Video Solution

209. A chemical system is in equilibrium Addition of a catalyst would result in:

A. Increase in the rate of forward reaction

B. increase in the rate of reverse reaction

C. A new reaction path way to reaction

D. Increase the amount of heat evolved in the reaction

Answer: C

210. In a vessel containing SO_3 , SO_2 and O_2 at equilibrium, some helium gas is introduced os that the total pressure increases while temperature and volume remain constant. According to Le chatelier's principle the dissociation of SO_3 :

A. Increases

B. decreases

C. Reamains unaltered

D. Changes unpredictably

Answer: C

Watch Video Solution

211. Concentration of reaction and products at equilibrium for A + 2B \Leftrightarrow C + D are, [A] = 0.20, [B] = 0.10, [C] = 0.30, [D] = 0.50. The value of equilibrium constant is: B. 150

C. 2.5

D. 750

Answer: A

Watch Video Solution

212. For a gaseous equilibrium, `A +2B hArr C + 3D the partial pressures of

A, B, C and D are found to be 0.20, 0.10, 0.30 and 0.50 atm respectively.

Predict the value of equilibrium constant.

A. 11.25

B. 18.75

C. 5

D. 3.75

Answer: B

213. HI was heated in a sealed tube at $440^{O}c$ till the equiibrium was reached. HI was found to be 22% decomposed. Calculate the equilibrium constant for dissociation.

A. 0.282

B. 0.0796

C. 0.0199

D. 1.99

Answer: C

Watch Video Solution

214. The equilibrium constant for, $H_2(g) + CO_2(g) \Leftrightarrow H_2O(g) + CO(g)$ is 1.80 at 1000^Oc . If 1.0 mole of H_2 and 1.0 mole of CO_2 are placed in one litre flask. What will be the final equilibrium concentration of CO at $1000^{O}c$?

A. 0.573 M

B. 0.385 M

C. 5.73M

D. 0.295 M

Answer: A

Watch Video Solution

215. An equilibrium mixture for the reaction, $2H_2S(g) \Leftrightarrow 2H_2(g) + S_2(g)$

had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. K_c for

the reaction is :

A. 0.004 mol /lit

B. 0.016 mol/lit

C. 0.008 mol/lit

D. 0.160 mol/lit

Answer: B

216. The equilibrium constant for the reaction , $3C_2H_2 \Leftrightarrow C_6H_6$ is 4.0 at T K. If the equilibrium concentration of C_2H_2 is 0.5 mole/litre the concentration of `C_6H_6.

A. 0.5 M

B. 1.5 M

 ${\sf C.5 imes10^{-2}}$

D. 0.25 M

Answer: A

217. For the reaction $C(s) + CO_2(g)$ hArr 2CO(g) the partial pressure of

 CO_2 and CO are 4 and 8 atm respectively K_p For the reaction is :

A. 16 atm

B. 2 atm

C. 5 atm

D. 4 atm

Answer: A

Watch Video Solution

218. If one third HI decomposes at a particular temperature: K_c for

 $2HI \Leftrightarrow H_2 + I_2$ is :

A. 1/16

B. 1/4

C. 1/6

D. 1/2

Answer: A

219. For a reversible reaction the rate constant for the forward reaction is 2.38×10^{-4} and for the backward reaction is 8.15×10^{-5} The k_c of the reaction is:

A. 0.342

B. 2.92

C. 0.292

D. 3.42

Answer: B

220. 28 g N_2 and 6 g H_2 were mixed .At equilibrium 17 g NH_3 was formed. The weight of N_2 and H_2 of equilibrium are respectively:

A. 11 g zero

B. 1g , 3 g

C. 14 g , 3g

D. 11g , 3g

Answer: C

Watch Video Solution

221. At $25^{\circ}c$ the equilibrium constant K_1 and K_2 of two reaction are : $2NH_3 \Leftrightarrow N_2 + 3H_2 : \frac{1}{2}N_2 + \frac{3}{2}H_2 \Leftrightarrow NH_3$ the relation between two equilibrium constant is :

A.
$$K_1=K_2$$

B. $K_2=rac{1}{K_1^2}$

C.
$$K_1=rac{1}{K_2^2}$$

D. $K_1=rac{1}{K_2}$

Answer: C

Watch Video Solution

222. The function of an enzyme in a reaction of the type `A+B hArr C+D is

to decreases:

- A. Equilibrium constant
- B. Rate of forward reaction
- C. Rate of backward reaction
- D. Activation energy

Answer: D

223. The numerical value of K_p and K_cf or the equilibrium2NH_3 hArr

N_2 + 3H_2` are related as :

A. $K_p = K_c imes (RT)^3$

B.
$$K_p = K_c \times (RT)^{-2}$$

$$\mathsf{C}.\,K_p = K_c \times \left(RT\right)^2$$

D. None of these

Answer: C

Watch Video Solution

224. The variation of equilibrium constant with temperature is called :

A. van't Hoff isotherm

B. Kirchoff's equation

C. van't Hoff isochore

D. None of these

Answer: C

225. Which statement is correct about Henry's law?

A. The amount of gas dissolved per unit volume of solvent is directly

propotional to pressure of gas.

B. The amount of gas dissolved per unit volume of solvent is directly

independent to pressure of gas.

C. The law is valid only when the gas dissolved neither dissociates nor

associates in solvent

D. All of the above

Answer: D

226. For the reaction $N_2 + 3H_2 \Leftrightarrow 2NH_3$ in a vessel after the addition of equal number of mole of N_2 and H_2 equilibrium state is formed. Which of the following is correct ?

A. $[H_2] = [N_2]$ B. $[H_2] < N_2]$ C. $[H_2] > N_2]$ D. $[H_2] > [NH_3]$

Answer: B

Watch Video Solution

227. For a reaction in gaseous state to reach an equilibrium state the reaction should be carried out in

A. An open vessel

B. Closed vessel

C. Glass vessel

D. Iron vessel

Answer: B

Watch Video Solution

228. Which reaction gives more products as a result of increase in pressure :

A. $H_2O + CO \Leftrightarrow H_2 + CO_2$

 $\mathsf{B}.\,H_2+Br_2\Leftrightarrow 2HBr$

 $\mathsf{C.} 2SO_2 + O_2 \Leftrightarrow 2SO_3$

 $\mathsf{D.}\, 2HI \Leftrightarrow H_2 + I_2$

Answer: C

Watch Video Solution

229. On addition of an inert gas at constant volume to the reaction : $N_2 + 3H_2 \Leftrightarrow 2NH_3$ at equilibrium:

A. The reaction halts

B. forward reaction is favoured

C. The reaction remains unaffected

D. Backward reaction is favoured

Answer: C

Watch Video Solution

230. The equilibrium constant for the reaction : $N_2(g) + O_2(g) \rightarrow 2NO(g)$ and $2NO(g) + O_2(g) \rightarrow 2NO_2$ are K1 and K2 respectively. Then the equilibrium constant for the equilibrium `NO 2 (g) \Rightarrow 1/2 N 2 (g)+O 2 (g)?

A.
$$rac{K_1}{K_2}$$

B.
$$\left[\frac{1}{K}1K2\right]\frac{1}{2}$$

C. $K_1K_2^2$
D. $K_1^2K_2$

Answer: C

Watch Video Solution

231. In the reversible gaseous reaction , $A + 2B \Leftrightarrow C + 3D$ The partial pressure of A B C and D are 0.20 , 0.10 , 0.30 ,0.50 atm respectively at equilibrium. The numerical value of `K_p is :

A. 11.25

B. 18.75

C. 5

D. 3.75

Answer: B

232. The formation of phosgene is represented as , $CO+Cl_2$ hArr $COCl_2$ The reaction is carried out in 500 ml flask. At equilibrium 0.3 mole of phosgene, 0.1 mole of CO and 0.1 mole of Cl_2 are present. What is the equilibrium constant of the reaction ?

A. 30

B. 15

C. 5

D. 3

Answer: B

233. In the reaction, $A + B \Leftrightarrow 2C$, at equilibrium, the concentration of A

and B is 0.20 mol $litre^{-1}$ each and that of C was found to be 0.60 mol

 $litre^{-1}$. The equilibrium constant of the reaction ?

A. 9 B. 4.8 C. 18

D. 2.4

Answer: A

Watch Video Solution

234. The equilibrium constants for the reaction, $Br_2 \Leftrightarrow 2Br$ at 500 K and

 $1 imes 10^{-10}$ and $1 imes^{-5}\,$ respectively. The reaction is:

A. Endothermic

B. Exothermic

C. Fast

D. Slow

Answer: A

235. ΔG^o for the reaction $X + Y \Leftrightarrow Z$ IS -4.606 kcal. The equilibrium constant for the reaction at 227^Oc is:

A. 100

B. 10

C. 2

D. 0.01

Answer: A

236. The partial pressure of $CH_3OH(g)$, CO(g) and $H_2(g)$ in equilibrium

mixture for the reaction, $CO(g) + 2H_2(g) \Leftrightarrow CH_3OH(g)$ are 2.0,1.0 and

0.1 atm respectively at $427^{O}c$. The value of K_pf or the decomposition of CH_3OH \rightarrow CO and H_2`is :

A. $10^2 \ {\rm atm}$

B. $2 imes 10^2$ atm $^{-1}$

C. 50 atm^2

D. $5 imes 10(-3) \ atm^2$

Answer: D

Watch Video Solution

237. The equilibrium constant of a reaction is 20.0. At equilibrium, the rate constant of forward reaction is 10.0. The rate constant for backward reaction is:

A. 0.5

B. 2

C. 10

D. 200

Answer: A

238. For the reaction $aC(s) + CO_2(g) \Leftrightarrow 2CO(g)$, the partial pressure of CO_2 and CO are 2.0 and 4.0 atm respectively at equilibrium. The K_p for reaction is:

A. 0.5

B. 4

C. 8

D. 32

Answer: C

Watch Video Solution

239. In the reaction, $PCl_5 \Leftrightarrow PCl_3 + Cl_2$, the amounts of $PCl_5 PCl_3$ and Cl_2 at equilibrium are 2 mole each and the total pressure is 3 atm. The equilibrium constant K_p is:

A. 1 atm

B. 2 atm

C. 3 atm

D. 6 atm

Answer: A

Watch Video Solution

240. If 340 g of mixture N_2 and H_2 in the correct raito gave a 20~% yield

of NH_3 . The mass produced would be:

A. 16 g

B. 17 g

C. 20 g

D. 68g

Answer: D

Watch Video Solution

241. In a chemical equilibrium, the rate constants of the forward and backward reactions are respectively 3.2×10^{-4} and 1.2×10^{-5} , the equilibrium constant is :

A. 0.37

B. 26.7

C. 0.25

D. 3.7

Answer: B

Watch Video Solution

242. one mole of hydrogen iodide is heated in a closed container of 2 litre. At equilibrium half mole of hydrogen iodide has dissociated. What is the value of the equilibrium constant ?

A. 1

B. 5

C. 0.25

D. 0.75

Answer: C

Watch Video Solution

243. For the reaction $2NO_2(g) \Leftrightarrow 2NO(g) + O_2(g), K_c = 1.8 imes 10^{-6}$ at

 $185^Oc.$ At 185^Oc , What is the value of K_c for $NO(g)+rac{1}{2}O_2(g) \Leftrightarrow NO_2(g)$?

A. $0.9 imes10^{-6}$

B. 7.5 imes 10^2

C. `1.95xx10^(-3)

D. `1.95xx10^(3)

Answer: B

Watch Video Solution

244. 4 moles of A are mixed with 4 moles of B. When 2 moles of C are formed at equilibrium accordingly to the reaction $A+B \rightarrow C+D.~K_c$ is:

A. 4

B. 1

C. $\sqrt{2}$

D. $\sqrt{4}$

Answer: B

245. 3.2 mole of hydrogen iodide were heated in a sealed bulb at $444^{O}c$ till the equilibriumn was reached . The degreee of dissociation of HI at this temperature was found to be 22% calculate the number of mole of hydrogen iodide present at equilibrium.

A. 2.496

B. 1.87

C. 2

D. 4

Answer: A

246. For the reaction $H_2(g)+I_2(g) \Leftrightarrow 2HI(g)$ at 720 K the value of

equilibrium constant is 50. When equilibrium concentration of H_2 and I_2

IS 0.5 M.`K_p under the same conditions will be :

A. 0.02

B. 0.2

C. 50

D. 50RT

Answer: C

Watch Video Solution

247. A quantity of PCl_5 was heated in a 10 litre vessel at $250^{\circ}C$ to show $PCL_5(g) \Leftrightarrow PCl_3 + Cl_2$ AT equilibrium the vessel contains 0.1 mole of PCl_5 0.20 mole of PCl_3 and 0.20 mole od cl_2 The equilibrium constant of the reaction is :

A. 0.02

B. 0.05

C. 0.04

D. 0.025

Answer: C

248. If ΔG° for the reaction given below is 1.7KJ : The equilibrium constant of the reaction $2HI(g) \Leftrightarrow H_2(g) + I_2(g)at$ 25^@C`IS :

A. 24

B. 3.9

C. 2

D. 0.5

Answer: D

Watch Video Solution

249. At a given temperature the K_c for the reaction $PCL_5(g) \Leftrightarrow PCl_3 + Cl_2$ is 2.4×10^{-3} At the same temperature the K_c for the reaction $PCl_3 + Cl_2 \Leftrightarrow PCL_5(g)$ is :

A. $2.4XX10^{-3}$ B. $-2.4 imes10^{-3}$ C. $4.2 imes10^2$ D. $4.8 imes10^{-2}$

Answer: C

Watch Video Solution

250. For a reaction $2A + B \Leftrightarrow C$ where initial concentration of A=2M B=1M and C=0 the concentration of B at equilibrium is 0.5 M calculate the value of equilibrium constant for the reaction .

B. 2

C. 1

D. 1.5

Answer: C

Watch Video Solution

251. $\frac{K_p}{K_c}$ for the reaction: `CO(g)+1/2O_2(g) hArr CO_2(g) is :

A. RT

B. $1/\sqrt{R}T$

C. $\sqrt{R}T$

D. 1

Answer: B

Watch Video Solution

252. If the concentration of N_2 , H_2 and NH_3 are 1,2,3, respectively , their concentration at equilibrium will be : $N_2+3H_2\Leftrightarrow 2NH_3$.

A. (1-x) (2-3x) (2x)

B. (1-x/3) (2-x) (2x/3)

C. (1-x) (2-x) (3+x)

D. (1-x) (2-3x) (3+2x)

Answer: D

Watch Video Solution

253. For the equilibrium, $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$ which of the following expression is correct :

A.
$$K_p = [CaO]rac{CO_2}{CaCO_3}$$

B. $K_p = rac{p_{(cao)}+p_{(co_2)}}{p_{caco_2}}$

 $\mathsf{C}.\,K_p=p(co_3)$

Answer: C

254. For the reaction , $A \Leftrightarrow \mathsf{B}: K_c$ =2 , $B \Leftrightarrow \mathsf{C}: K_c$ =4 , $C \Leftrightarrow \mathsf{D}: K_c$ =6 K_c

for the reaction A hArr D is :

A. $(2 \div 4 \div 6)$ B. $\frac{2 \times 4}{6}$ C. $\frac{4 \times 6}{2}$

D. 2 imes 4 imes 6

Answer: D

Watch Video Solution

255. For the reversible reaction $N_2(g) + 3H_2(g) = 2NH_3(g)at$ 500^@C

$the value of K_p$

 $1.44 imes 10^{-5} when \, \partial pressure measured \in atmosphere Thec \,\, {
m or} \,\, rospond \in C_{2}^{-1}$

is

K_c` with concentration is mole/lit. IS :

$$\begin{array}{l} \text{A.} \ \displaystyle \frac{1.44 \times 10^{-5}}{\left(0.082 \times 500\right)^{-2}} \\ \text{B.} \ \displaystyle \frac{1.44 \times 10^{-5}}{\left(8.314 \times 773\right)^{-2}} \\ \text{C.} \ \displaystyle \frac{1.44 \times 10^{-5}}{\left(0.082 \times 773\right)^{-2}} \\ \text{D.} \ \displaystyle \frac{1.44 \times 10^{-5}}{\left(0.082 \times 773\right)^{-2}} \end{array}$$

Answer: D

Watch Video Solution

256. 2 MOLE of PCl_5 were heated in a closed vessel of 2 litre capacity. AT equilibrium 40 % Of PCl_5 dissociated into PCl_3 and Cl_2 .Find the value of equilibrium constant.

A. 0.267

B. 0.53

C. 2.63

D. 5.3

Answer: A

Watch Video Solution

257. If K_e of the reaction, $2HI o H_2 + I_2$ is 0.25, the equilibrium constant of the reaction $H_2 + I_2 o$ 2HI would be :

A. 1

B. 2

C. 3

D. 4

Answer: D

258. One mole of ethyl alcohol was treated with one mole of acetic acid at `25^@C. 2/3 of the acid changes into ester at equilibrium Calculate the equilibrium constant for the reaction :

A. 1 B. 2 C. 3 D. 4

Answer: D

259. If in the reaction $N_2O_4 \rightleftharpoons 2NO_2$,lpha is degree of dissociation of N_2O_4

Then the number of molecules at equiliberium will be :

A. 3

B. 1

 $\mathsf{C}.\left(1-\alpha\right)^2$

 $\mathsf{D}.\left(1+\alpha\right)$

Answer: D

Watch Video Solution

 $. \ If a conta \in erconta \in s1, 2, 3, 4mo \leq perlitreof A, B, C, \ \ ext{and} \ \ Drespect$

25^o C`, the reaction shall :

A. Proceed from right to left

B. Proceed from right to left

C. Be at equilibrium

D. None of these

Answer: A

261. For a system in equilibrium, ΔG = 0 under conditions of constant :

A. Temperature and pressure

B. temperature and volume

C. Energy and volume

D. Pressure and volume

Answer: A

Watch Video Solution

262. Dissolution of sugar being an endothermic reaction is favoured by :

A. Low T

B. High T

C. High P

D. Low P

Answer: B

Watch Video Solution

263. For the reaction 'PCL_5 hArr PCL_3+CL_2, the forward reaction at

constant temperature is fovoured by :

A. Introduction an inert gas at constant volume

B. Introduction chlorine gas at constant volume

C. Introduction an inert gas at constant pressure

D. None of these

Answer: C

Watch Video Solution

264. The reaction which proceed in the forward direction is :

A.
$$Fe_2O_3 + 6HCl = 2FeCl_3 + 3H_2O$$

B.
$$SnCL_4 + Hg_2Cl_2 = SnCl_2 + 2HgCl_2$$

 $\mathsf{C.} \, NH_3 + H_2O + NaCl = NH_4Cl + NaOH$

D. $2CuI + I_2 + 4K^+ = 2Cu^{2+}3KI$

Answer: A

Watch Video Solution

265. For reaction $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ the value of K_c at 250^oC is 26 mol^(-1) litre^(-1). The value of K_P at this temperature will be

A. 0.61 atm^{-1}

:

B. 0,57 atm^{-1}

C. 0.83 atm^{-1}

D. 0.46 atm^{-1}

Answer: A

Watch Video Solution

266. For the gaseous phase reaction,

 $2NO
ightarrow N_2 + O_2, \Delta H^o = -43.5 K calmol^{-1}, Which statement is c ext{ or } rc$

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$:

A. K is independent of temperature

B. K increases as temperature decreases

C. K decreases as temperature decreases

D. K varies with addition of NO

Answer: C

267. In which of the following cases, does the reaction go farthest to completion :

A. K = 10^3 B. K = 10^{-2} C. K = 10

Answer: A

Watch Video Solution

268. The solubility of CO_2 in water increases with :

A. Increases in temperature

B. Increases in pressure

C. Decreases in pressure

D. None of these

Answer: B

Watch Video Solution

269. If K_1 and K_2 are the respective equiliberium constant for the two reactions

 $XeF_6(g) + H_2O(g) = XeOF_4(g) + 2HF(g)$ $XeO_4(g) + XeF_6(g) \rightleftharpoons XeOF_4(g)XeO_3F_2(g)$, The equiliberium constant for the reaction, $XeO_4(g) + 2HF(g) \rightleftharpoons XeO_3F_2 + H_2O(g)$ is

T 7

:

B.
$$\frac{K_1}{K_2^2}$$

C. $\frac{K_2}{K_1}$
D. $\frac{K_1}{K_2}$

Answer: C

270. A cylinder fitted with a movable piston contains liquid water in equiliberium with water vapour at $25^{\circ}C$. Which operation result in a decrease in the equiliberium vapour pressure ?

A. Moving the oiston downward a short distance

B. removing a small amount of vapour

C. Removing a small amount of the liquid water

D. Dissolving salt in the water

Answer: D

Watch Video Solution

271. The equiliberium constant for the reaction, $2X(g) + Y(g) \rightleftharpoons 2Z(g)$ is 2.25 litre mol^{-1} What would be the concentration of Y at equiliberium with 2.0 mole of X and 3.0 mole of Z in one litre vessel : A. 1.0 M

B. 2.25 M

C. 2.0 M

D. 4.0 M

Answer: A

Watch Video Solution

272. At constant temperature in one litre vessel when the reaction $2SO_2(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ is at equiliberium the SO_2 concentration is 6.0 M, initial concentration of SO_3 is 1 M. calculate the equiliberium constant.

A. 2.7

B. 1.36

C. 0.34

D. 0.675

Answer: D

Watch	Video Solution		
273.	For	a	reaction
$2A + B \rightleftharpoons 0$	$C+D, the\partial pressure$	ofA, B, C and $Date$	equiliberium are 0.5
k_p` for this r	eaction is :		
A. 4.2			
B. 2.4			
C. 0.42			
D. 0.24			
Answer: A			
O Watch	Video Solution		

274. The decomposition of $N_2O_4 \rightarrow NO_2$ is carried out at 280 K in chloroform. When equiliberium has been established, 0.2 mole of N_2O_4 and 2×10^{-3} mole of NO_2 are present in a 2 litre solution. THE equiliberium constant for the reaction, $N_2O_4 \rightleftharpoons 2NO_2$ is :

A. 1×10^{-2} B. 1×10^{-3} C. 1×10^{-5} D. 2×10^{-5}

Answer: C

Watch Video Solution

275. In the equiliberium

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3$, the partial pressure of SO_2, O_2 AND SO_3 are0.662, 0.101 and 0.331 atmrespectively. WshodbethepartialpressureSO_2 and SO_3` are equal ? A. 0.4 atm

B. 1.0 atm

C. 0.8 atm

D. 0.25 atm

Answer: A

Watch Video Solution

276. For reaction $PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$ the value of K_c at 250^oC is 26 mol^(-1) litre^(-1). The value of K_P at this temperature will be

A. 0.605

:

B. 0.57

C. 0.83

D. 0.46

Answer: A

277. At equiliberium , the amount of HI in a 3 litre vessel was 12.8 g. Its equiliberium concentraction is :

A. 4.267 M

B. 0.033 M

C. 0.1 M

D. 0.2 M

Answer: B

278. One mole of nitrogen is mixed with 3 mole of hydrogen in a closed 3

litre vessel $20~\%\,$ of nitrogen is converted into NH_3 .Then what is the K_C

for
$$rac{1}{2}(N_2)+rac{3}{2}(H_2) \rightleftharpoons NH_3$$

- A. 0.36 litre mol^{-1}
- B. 0.46 litre mol^{-1}
- C. 0.5 litre mol^{-1}
- D. 0.2 litre mol^{-1}

Answer: A

Watch Video Solution

279. 1.1 mole of A are mixed with 2.2 mole of Band the mixture is then kept In one litre flask till the equiliberium is attained A + 2B \rightleftharpoons 2C + D. At the equiliberium, 0.2 mole of C are formed. The equiliberium constant of the rection is :

A. 0.001

B. 0.002

C. 0.003

Answer: A

Watch Video Solution

280. For the reaction $A + B \rightleftharpoons C + D$ the initial cocentration of A and B are equal but the equiliberium concentration of C is twice that of equiliberium concentration of A. Find the value of the equiliberium constant.

A. 4

B. 9

C. 1/4

D. 1/9

Answer: A

Watch Video Solution

281. The degree of dissociation of $PCl_5(\alpha)$ obeying the equiliberium, $PCl_5 \rightleftharpoons PCl_3 + Cl_2$ is approximately realted to the pressure at equilibrium by :

A. alpha prop P`

B.
$$\alpha \propto rac{1}{\sqrt{P}}$$

C. $\alpha \propto rac{1}{P^2}$
D. $\alpha \propto rac{1}{P^4}$

Answer: B

Watch Video Solution

282. If K_1 and K_2 are equiliberium constant for reactions (I) and (II) respectively for ,

$$N_2+O_2 \rightleftharpoons 2NO$$
(i) $rac{1}{2}N_2+rac{1}{2}O_2 \rightleftharpoons NO$ (ii)

then :

A.
$$K_2=K_1$$

B. $K_2=\sqrt{K_1}$
C. $K_1=2K_2$
D. $K_1=\left(rac{1}{2}
ight)K_2$

Answer: B

283. The most favourable conditon of temperature and pressure for the oxidation of $SO_2 \int \!\! oSO_3$ are :

A. Low remperature and high pressure

B. low temperature and low pressure

C. High temperature and high pressure

D. High temperature and low pressure

Answer: A

284. When KOH is dissolved in water, Heat is evolved. If the temperature is

raised, the solubility of KOH:

A. Increases

B. Decreases

C. Remains the same

D. Cannot be predicted

Answer: B

Watch Video Solution

285. Solubility of a gas in liquid increaes on :

A. Addition of a catalyst

B. Increasiing the pressure

C. Decreasing the pressure

D. Increasing the temperature

Answer: B

Watch Video Solution

286. A reversible chemical reaction having two reactant is in equiliberium.

If the concentrations of the reactants are doubled then the equiliberium

constant will :

A. Also be doubled

B. Be halved

C. Become one fourth

D. Remains the same

Answer: D

Watch Video Solution

287. Reaction favoured by low pressure is :

A. $H_2+I_2\rightleftharpoons 2HI$ B. $PCl_5\rightleftharpoons PCl_3+Cl_2$ C. $N_2+3H_2\rightleftharpoons 2NH_3$ D. $N_2+O_2\rightleftharpoons 2NO$

Answer: B

Watch Video Solution

288. van't Hoff' equation giving the effect of temperature on chemical equiliberium is represented a :

A.
$$rac{d\ln F}{dT} = rac{\Delta H}{RT^2}$$

B. $rac{d\ln K_P}{dT} = rac{\Delta HT^2}{R}$
C. $rac{d\ln K_P}{dT} = rac{\Delta H}{RT^2}$

D.
$$\frac{d \ln K_P}{dT} = \frac{RT^2}{\Delta H}$$

Answer: C

289. The unit of equilibrium constant for the reaction , $H_2+I_2 \Leftrightarrow 2HI$ IS :

290. the equiliberium constant K for the reaction $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ at room temperature 300 K is 2.85 and at 698 K is 1.84×10^{-2} . Hence the reason that HI exists as a stable compound at room temperature is because :

A. It decomposes so slowly that equilibrium is not readily achived

B. The HI bond has a large covalent contribution

C. The heat of reavtionat room temperature is -5.31 kcal

D. It is uncatalytic reaction

Answer: C

Watch Video Solution

291. The equilibrium constant foa a reaction is 1×10^{20} at 300 K.Find the standard free energy vhange for this reaction.

A. `-115 kJ

B. `+115 kJ

C. `+16 kJ

D. `-166 kJ

Answer: A

Watch Video Solution

292. $A(g) + B(g) \rightleftharpoons AB(g)$ is areversible reaction. At equilibrium 0.4 mole of AB is formed whn each A and B are tsken on emole. How much of A change into AB ?

A. 20~%

 $\mathsf{B.}\,40~\%$

 $\mathsf{C.}\,60\,\%$

D. 4%

Answer: B

293. 8 mole of a gas AB_3 are introduced into a 1.0 dm^3 vessel. It dissociates as, $2AB_3(g) \rightleftharpoons A_2(g) + 3B_2(g)$ At equilibrium, 2 mole of A_2 are found ot be present. What is the equilibrium constant of rection ?

B. 3

C. 27

D. 36

Answer: C

Watch Video Solution

294. At a certain temperature , 2HI \rightleftharpoons H_2 + I_2*on*50 % HI is dissolved at

equilibrium .What the value of equilibrium constant ?

A. 1

B. 3

C. 0.5

D. 0.25

Answer: D

Watch Video Solution

295. Equilibrium concentration of HI, I_2 and H_2 are 0.7, 0.1 and 0.1 M respectively. The equilibrium constant for the reaction,

 $I_2 + H_2 \rightleftharpoons 2HI$ is :

A. 0.36

B. 36

C. 49

D. 0.49

Answer: C

Watch Video Solution

296. An equilibrium mixture of the reaction $2NO(g) + O_2(g) \Leftrightarrow 2NO_2(g)$ contains 0.120 mole of NO_2 , 0.080 mole of 0.640 mole of O_2 in a 4 litre flask at a constant temperature. The value K_c for the reaction at this temperature is :

A. 14		
B. 24		
C. 7		
D. 8		

Answer: A

Watch Video Solution

297. The equilibrium concentration of X , Y and YX_2 are 4,2,2 respectively for the equilibrium $2X + Y \Leftrightarrow YX_2$ The equilibrium constant K_c is :

A. 0.0625

B. 0,625

C. 0.0628

D. None of these

Answer: D

298. The reaction $A + 2B \Leftrightarrow 2C + D$ was situated using an initial concentration of B which was 1.5 times that of A But the equilibrium concentration of A and C were found to be equal. Then what is the K_c for the equilibrium?

B. 8

A. 4

C. 6

D. 0.632

Answer: A

299. The vapour density of undecomposed N_2O_4 is 46. When heated vapour density decreases to 24.5 due to its dissociation to NO_2 WHAT is

the percent dissociation of N_2O_4 at the final stage ?

A. 88 B. 60 C. 40

D. 70

Answer: A

300. For a system $A + 2B \Leftrightarrow 2C the equilibrium concentration are [A] = 0.06, [B] = 0.12$ and K_c' for the reaction is : A. 54 B. 415 C. 4×10^{-5}

Answer: A

Watch Video Solution

301. An aqueous solution of hydrogen sulphide shows the equilibrium, $H_2S \rightleftharpoons H^+ + HS^-$ if dilute hydrochloric acid is added to an aqueous solution of hydrogen sulphide without any change in temperature:

A. The equilibrium constant will change

B. The concentration HS^{-} will increase

C. The concentration of undissociated hydrogen sulphide will

decrease

D. The concentration of HS^{-} will decrease.

Answer: D

302. Consider the reversible reaction, $HCN(aq.) \rightleftharpoons H^+ + CN^{-(aq.)} At equilibrium the addition of CN^-$ (aq.) would:

A. Reduce HCN(aq.) concentration

B. Decrease the H^+ (aq.) ion concentration

C. Increase the equilibrium constant

D. Decrease the equilibrium constant

Answer: B

Watch Video Solution

303. Which can be explained as applications of Le Chatelier 's principle :

A. Transport of oxygen by haemoglobin in blood

B. Removal of CO_2 from tissues by blood

C. Tooth decay due to use of sweet substances

D. All of these

Answer: D

Watch Video Solution

304. The following equilibrium exist in aqueous solution, $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ If dilute HCl is added without a change in temperature then :

A. Concentration of `CH_3COO^- will decrease

B. Concentration of `CH_3COO^- will increase

C. The equilibrium constant will increase

D. The equilibrium constant will decrease

Answer: A

305. The equilibrium constant for the reactions are $H_3PO_4 \xrightarrow{K} H^+ + H_2PO_4^{-:}K_1$ $H_2PO_4 \xrightarrow{K} H^+ + HPO_4^{2-:}K_2$ $HPO_4^{2-} \xrightarrow{K} H^+ + PO_4^{3-:}K_3$ The equilibrium constant for $H_3PO_4 \rightarrow 3H^+ + PO_4^{3-}$ will be :

:

A. K_1/K_2 K_3

B. $K_1 imes K_2 imes K_3$

C. K 2/K 1 K 3

D. K_1/K_2/K_3

Answer: B

Watch Video Solution

306. If 1 mole of I_2 is introduced into 1.0 litre flask at 1000 K, at equilibrium (K_c = 10^-6) which one is correct ?

A.
$$[I_2(g)]gt[I^{-(g)}]$$

B. $[I_2(g)]lt[I^{-(g)}]$
C. $[I_2(g)]=[I^{-(g)}]$
D. $[I_2(g)]gt1/2[I^{-(g)}]$

Answer: A

307. If ammonia is added to pure water the concentration of a chemical species already present will decrease. The species is :

A. O^{2-}

 $\mathsf{B.}\,OH^{\,-}$

C. H_3O^+

D. H_2O

Answer: C

- B. 1/2 of the initial value
- C. 2 times of the initial value
- D. None of these

Answer: B

309. When CO_2 dissolves in water the following equilibrium is established, $CO_2 + 2H_2O \Leftrightarrow H_3O^+HCO_3^-$ for which the equilibrium

constant is $3.8 imes 10^{-7}$ and PH =6.0 The ratio of ${HCO_3 \over CO_2^-}$ IS :

A. $3.8 imes 10^{-18}$

B. 3.8

C. 0.38

D. 13.8

Answer: C

Watch Video Solution

310. For the reaction: $[Ag(CN)_2]^{-\Leftrightarrow}Ag^+ + 2CN^-$ the equilibrium constant K_c at $25^{\circ}C$ is 4.0×10^{-19} then the silverion concentration \in a solution which was or ig \in AgNO_3`

A. $7.5 imes10^{18}$

B. $7.5 imes 10^{-18}$

 ${\sf C.7.5 imes10^{19}}$

D. $7.5 imes10^{-19}$

Answer: B

Watch Video Solution

311. Calculate the concentration of hydroxyl ion in a solution left after mixing 100 ml of 0.1 M $Mgcl_2$ and 100 ml of 0.2 M NaOH [K_sp of $Mg(OH_2)$ =1.2 imes 10⁻¹¹)]

A. $2.8 imes10^{-3}$

B. $2.8 imes10^{-2}$

C. $2.8 imes10^{-4}$

D. $2.8 imes10^{-5}$

Answer: C

Watch Video Solution

312. Find the PH of saturated solution of $Mg(OH)_2$ [K_p of Mg(OH_2)=`8.9xx 10^(-12)]

A. 10.4168

B. 9.4168

C. 11.4168

D. 7

Answer: A

Watch Video Solution

313. What is PH at which an acid indicator with $K_a=1 imes 10^{-5}$ changes colour when the indicator concentration is $1 imes 10^{-3}$ M ?

A. 4

B. 5

C. 6

D. 3

Answer: B

Watch Video Solution

314. An acid type indicator Hin differ in colour from its conjugate base (In⁻) The human eye is sensitive to the colour of differences only when the ratio [In⁻]/[HIn] is greater than 10 or smaller than 0.1. What should be the minimum change in the PH of the solution to observe a complete colour change ($K_a = 1 \times 10^{-5}$)?

A. 4

B. 2

C. 6

D. 1

Answer: B

315. Soda water has a PH value :

A. Less than 7

B. More than 7

C. 7

D. Greater than 7

Answer: A

Watch Video Solution

316. The ionic product of water _____ with the increase in temperature

A. Increases

B. Decreases

C. Remains constant

D. None of the above

Answer: A

317. The PH of a solution is defined by the equation:

A.
$$pH=-\logig[H_3O^+ig]$$
B. $pH=rac{\log 1}{H_{30}^+}$

$$\mathsf{C}.\left[H^{\,+}\right]=10^{-\,pH}$$

D. All of these

Answer: D

Watch Video Solution

318. If 1 M $CH_3COOHNa$ is added to 1M CH_3COOH :

A. pH of the solution increases

B. pH decreases

C. pH does not change

D. None of these

Answer: A

Watch Video Solution

319. The pH of mixture of , $CH_3COONA + CH_3COOH$ after adding

water shows value:

A. Increased

B. Decreased

C. Constant

D. All of the above

Answer: C

320. The unit of ionic product of water (K_w) is :

A. $mol^{-1}litre^{-1}$

 $B. mol^{-1} litre^{-2}$

C. $mol^{-2}litre^{-2}$

D. $mol^2 litre^{-2}$

Answer: D

Watch Video Solution

321. Isoelctric point is defined as the pH at which :

A. An amino acid becomes acidic

B. An amino acid becomes basic

C. Zwitter ion has positive charge

D. Zwitter ion has zero charge

Answer: D

322. The addition of HCl does not suppresses the ionisation of :

A. Acetic acid

B. Benzoic acid

 $\mathsf{C}.\,H_2S$

D. H_2SO_4

Answer: D

Watch Video Solution

323. Water acts as an acid in presence of :

A. NH_3

 $\mathsf{B.}\,H_2SO_4$

 $\mathsf{C.}\, C_6 H_6$

D. HCl

Answer: A

Watch Video Solution

324. The dissociation constants of a weak acid and a weak base constituting the salt are same. The pH of a solution of salt is :

A. 7

B. More than 7

C. Less than 7

D. Zero

Answer: A

325. Which one is bronstad acid but not a bronstad base?

A. H_2O

B. NH_3

 $\mathsf{C}.\,H_2S$

D. HCO_3^-

Answer: C

Watch Video Solution

326. The pH of blood is maintained by CO_2 and H_2CO_3 in the body and chemical constituents of blood. The phenomenon is called:

A. Collidal

B. Buffer solution

C. Acidity

D. Salt balance

Answer: B

Watch Video Solution

327. Fear or excitement generally cause one to breathe rapidly and it results in the decreases of concentration of CO_2 in blood. In what way it will change pH of blood :

A. pH will increase

B. pH will decrease

C. No change

D. pH will be 7

Answer: C

Watch Video Solution

328. On adding solid pottasium cyanide to water :

A. pH will increase

B. pH will decrease

C. pH will not change

D. Electrical conductance will not change

Answer: A

Watch Video Solution

329. The hydrogen ion concentration in a solution of weak acid of dissociation constant K_a and concentration C is nearly equal to :

A.
$$\sqrt{rac{k_c}{C}}$$

B. $rac{C}{K_a}$

$$\mathsf{C}.\,K_aC$$

D.
$$\sqrt{K_aC}$$

Answer: D

330. A 50 ml solution of 0.1M acetic acid is titrated against a 0.1 M sodium

hydroxide.The best indicator will be :

A. Phenophthalein

B. Methyl orange

C. A self indicator

D. Methyl red

Answer: A

Watch Video Solution

331. Which is a mixed salt?

A. $NaHCO_3$

B. Ca(OCL)CL

 ${\sf C}.\,K_2SO_4Al_2(SO_4)_{324}H_2O$

D. $MgBr_2$

Answer: B

Watch Video Solution

332. The aqueous solution of disodium hydrogen phosphate is :

A. Acidic

B. Neutral

C. Basic

D. None of these

Answer: C

Watch Video Solution

333. The aqueous solution of aluminium chloride is acidic due to :

A. Cation hydrolysis

B. Anion hydrolysis

C. Hydrolysis of both anion and cation

D. Dissociation

Answer: A

Watch Video Solution

334. Which gives a neutral solution in water?

A. $(NH_4)_2SO_4$

B. $Ba(NO_3)_2$

 $\mathsf{C.} \mathit{Crcl}_3$

D. $CuSO_4$

Answer: B

Watch Video Solution

335. Reaction of an acid with a base usually results in the production of

A. H_3O^+

 $\mathsf{B}.\,H_2O$

C. H^+ and OH^- ions

D. $OH^{\,-}$

Answer: B

336. The precipitation is noticed when an aqueous solution of :

A. $NaNO_2$

B. $Ba(NO_3)_2$

C. $ZNSO_4$

D. $HgNO_3$

Answer: D

Watch Video Solution

337. Conjugate base of hydrazoic acid :

A. HN_3^-

 $\mathsf{B}.\,N_3^{\,-}$

 $\mathsf{C}.\,N^{3\,-}$

 $\mathsf{D.}\,N_2^{\,-}$

Answer: B

339. Which one of the strongest acid ?

A. $ClO_3(OH)$

B. $ClO_2(OH)$

 $\mathsf{C.}\,SO(OH)_2$

D. $HCOO^-$

Answer: A

Watch Video Solution

340. Arrange H_2SO_4 (I) , H_3PO_4 (II) $HClO_4$ (III) in decreasing order of

acidic nature:

A. IgtIIIgtII

B. Igtllgtlll

C. IIIgtIIgtI

D. IIIgtIgtII

Answer: D

341. Which anion is weakest base ?

A. $C_2H_5O^{\,-}$

 $\mathsf{B.}\,NO_3^{\,-}$

C. $F^{\,-}$

D. CH_3COO^-

Answer: B

Watch Video Solution

342. The weakest base among the following is :

A. $H^{\,-}$

 $\operatorname{B.}CH_3^{\,-}$

 $C. CH_3O^-$

D. CL^-

Answer: D

344. Weakest base among the following is :

A. NaOH

B. $Ca(OH)_2$

 $\mathsf{C.} Zn(OH)_2$

D. KOH

Answer: C

Watch Video Solution

345. The strongest base is :

A. Cl^-

B. CH_3COO^-

 $\mathsf{C.}\,SO_4^{2\,-}$

 $\mathrm{D.}\,NO_2^{\,-}$

Answer: B

346. The conjugate base of OH^{-} ion is :

A. H_2O

B. `O^(2-)

 $\mathsf{C}.\,H_3O^+$

 $D.O^-$

Answer: B

Watch Video Solution

347. Aqueous solution of which salt has the lowest pH :

A. NaoH

 $\mathsf{B.}\, NH_4CL$

 $C. Na_2CO_3$

D. Nacl

Answer: B Watch Video Solution 348. The strongest acid among the following is : A. $ClO_3(OH)$ B. $ClO_2(OH)$ $C.SO(OH)_2$ D. $SO_2(OH)_2$ Answer: A

Watch Video Solution

349. The correct representation for solubility product of SnS_2 is :

A.
$$\left[Sn^{4\,+}
ight]\left[S^{2\,-}
ight]^2$$

B.
$$[Sn^{4+}][S^{2-}]$$

C. $[Sn^{4+}][2S^{2-}]$
D. $[Sn^{4+}][2S^{2-}]^2$

Answer: A

Watch Video Solution

350. The hydrolysis of sodium carbonate involves the reaction betweem:

- B. Na^+ and OH^-
- C. CO_3^{2-} and water
- D. $CO_3^{2\,-}$ and $H^{\,+}$

Answer: C

351. Given
$$HF + H_2O \xrightarrow{K_a} H_3O^+ + F^-$$

 $F^{-+}H_2O\overset{K_b}{H}F + OH^-$

Which relation is correct?

A.
$$K_b = K_w$$

B. $K_b = rac{1}{K_w}$
C. $K_a imes k_b = K_w$
D. $rac{K_a}{K_b} = K_w$

Answer: C

Watch Video Solution

352. Which hydrolysis in water :

A. Nacl

$\mathsf{B.}\, NH_4CL$

C. KCL

D. Na_2SO_4

Answer: B

353. The pH of 0.1 M solution of the following salts increases in the order:

A. Nacllt NH_4cl ltNaCNltHCL

B. HCllt`NH_4clltNaclltNaCN

C. NaCNIt NH_4Cl ltNaclItHCl

D. HClltNaclltNaCNlt NH_4Cl

Answer: B

354. A solution of $CuSO_4$ in water will :

A. Turn red litmus blue

- B. Turns blue litmus red
- C. Show no effect on litmus
- D. Decolourise litmus

Answer: B

Watch Video Solution

355. If s and S are respectively solubility and solubility product of a sparingaly soluble binary electrolyte then:

A. s=S

B. s= S^{12}

C. s= $s^{\frac{1}{2}}$

D. s=1/2S

Answer: C

357. If the solubility of a sparingly soluble salt of the type BA_2 (giving three ions on dissociation of a molecule) is x mole per litre, Then its solubility product is given by :

 $\mathsf{B.}\,2x^2$

 $\mathsf{C.}\,4x^2$

D. $4x^3$

Answer: D

Watch Video Solution

358. The bronstad acid which gives the weakest conjugate base is :

A. HF

 $\mathsf{B}.\,H_2S$

 $\mathsf{C}.\,H_2O$

D. HCl

Answer: D

359. The correct statement for the equilibrium is $HClO_4 + H_2O \Leftrightarrow H_3O^+ + ClO_4^-$:

,

A. $HClO_4$ is the conjugate acid of H_2O

B. H_2O is the conjugate acid of H_3O^+

C. H_3O^+ is the conjugate base of H_2O

D. ClO_4^- is the conjugate base of $HClO_4$

Answer: D

Watch Video Solution

360. The common ion effect is shown by which of the following:

A. $Bacl_2 + BaNO_3$

B. Nacl+ HCl

 $\mathsf{C.}\, NH_4OH + NH_4Cl$

D. None of these

Answer: C

Watch Video Solution

362. The correct relation for hydrolysis constant of NH_4CN is :

A.
$$\sqrt{rac{K_w}{K_a}}$$

B.
$$rac{K_w}{K_a imes K_b}$$

C. $rac{\sqrt{K_H}}{C}$
D. $rac{K_a}{K_b}$

Answer: B

Watch Video Solution

363. For weak acid strong base titration the indicator used is :

A. Pottasium dichromate

B. Methyl orange

C. Litmus

D. Phenolphthalein

Answer: D

364. Phenolphthalein is not a good indicator for titrating:

A. NaOH against oxalic acid

B. Ferrous sulphate against $KMnO_4$

C. NaoH against HCl

D. NaoH against H_2SO_4

Answer: B

Watch Video Solution

365. The compound that does not act as lewis acid :

A. $AlCl_3$

 $\mathsf{B.}\,BF_3$

 $\mathsf{C}.NH_3$

D. $Fecl_2$

Answer: C

366. The conjugate acid of NH_2^- IS :

A. NH_3

 $\mathsf{B.}\, NH_2OH$

C. NH_4^{+}

D. N_2H_2

Answer: A

Watch Video Solution

367. Which is lewis acid ?

A. Cl

B. NH_3

 $\mathsf{C}.\,H_2O$

D. BF_3

Answer: D

Watch Video Solution

368. Aprotic solvent is :

A. $\mathbb{C}l_4$

 $\mathsf{B.}\, C_6 H_6$

 $\mathsf{C}.SO_2$

D. All of these

Answer: D

369. For which salt the pH OF its solution does not change the dilution:

A. NH_4Cl

B. CH_3COONH_4

C. CH_3COONa

D. None of these

Answer: B

Watch Video Solution

370. Hcl does not behave as acid in :

A. NH_3

 $\mathsf{B.}\, C_6 H_6$

 $\mathsf{C}.\,H_2O$

D. None of these

Answer: B

371. In the reaction $Alcl_3+Cl
ightarrow [Alcl_4]^-\;$, $AlCl_3$ acts as :

A. Salt

B. Lewis base

C. Lewis acid

D. Bronstad acid

Answer: C

Watch Video Solution

372. Which one is hard base ?

A. Ag^+

B. `Cr^(3+)

 $\mathsf{C}.\,I_2$

D. $F^{\,-}$

Answer: D

Watch Video Solution

373. Which does not act as bronsted acid ?

A. $NH_4^{\,+}$

- B. CH_3COO^-
- $C.HCO_3^-$
- $\mathsf{D.}\,HSO_3^{\,-}$

Answer: B

374. Which species would be least likely to act as Lewis base ?

A. PCl_3

B. $CN^{\,-}$

 $C. SCl_2$

D. i^+

Answer: D

Watch Video Solution

375. Which may be added to one litre of water to act as a buffer ?

A. One mole of $HC_2H_3O_2$ and one mole of HCl

B. One mole of NH_4OH and on mole of NaoH

C. one mole of `NH_4Cl and one mole of HCl

D. One mole of $HC_2H_3O_2$ and 0.5 mole of NaoH

Answer: D

376. The OH^{-} ion concentration of a weak base is :

A. C $.K_b$

B. sqrt(C . K_b)

C. sqrt(K_b/C)

D. sqrt(K_b)

Answer: B

Watch Video Solution

377. Addition of NH_4Cl to NH_4OH results in :

A. Increases in OH^{-} concentration

B. Decreases in OH^{-} concentration

C. No change in OH^- concentration

D. None of these

Answer: B

Watch Video Solution

378. The relation for calculating ph of a weak base is :

A. pH =
$$PK_w - \frac{1}{2}pK_b + \frac{1}{2}\log C$$

B. pH = $PK_w - \frac{1}{2}pK_b - \frac{1}{2}\log C$
C. pH = $PK_w - \frac{1}{2}pK_b + \frac{1}{2}\log C$

D. None of these

Answer: A

379. Which aqueous solution will have Ph less than 7?

A. KNO_3

B. NaoH

C. NaCN

D. $Fecl_3$

Answer: D

Watch Video Solution

380. Which statement/relationship is correct?

A. Use hydrolysis salt of strong base and weak acid gives a solution

with phlt7

 $\text{B. pH=}-\frac{\log 1}{H^+}$

C. only at $25\,^\circ\,C$ the ph of water is 7

D. The value of PK_w at $25^{\,\circ}C$ is 7

Answer: C

381. Ionic product of water increass if :

A. Pressure is reduced

B. H^+ ion is added

C. OH^{-} ion is added

D. Temperature is increased

Answer: D

382. A buffer solution helps in maintaining the :

A. Alkanity of solution

B. Acidic nature of solution

C. pH of medium

D. None of these

Answer: C

Watch Video Solution

383. $\left[H^{\,+}
ight]$ in aqueous ammonium sulphate solution is :

A. More than 10^{-7}

B. Less than 10^{-7}

 $C. 10^{-7}$

D. 10^{-4}

Answer: A

384. The correct statement about buffer solution:

A. It contains a weak acid and its conjugate base.

B. it contains a weak base and its conjugate acid

C. it shows little change in ph on adding small amount of an acid or

base

D. All of the above

Answer: D

Watch Video Solution

385. Phenolphthalein does not act as indicator for the titration between :

A. KOH and H_2SO_4

B. $Ba(OH)_2$ and HCl

C. NaoH and acetic acid

D. Oxalic acid and $KMnO_4$

Answer: D

Watch Video Solution

386. The pink colour of phenolphthalein in alkaline medium is due to :

A. Negative ion

B. Positive ion

 $\mathrm{C.}\,OH^{\,-}\,$ ION

D. neutral ion

Answer: A

387. Phenolphthalein shows ____ in acid medium:

A. Red colour

B. yellow colour

C. Pink colour

D. No colour

Answer: D

Watch Video Solution

388. The indicator used in the titration of sodium carbonate with sulphuric acid is :

A. Pottasium ferrocyanide

- B. Pottasium ferricyanide
- C. Methyl orange
- D. Phenolphthalein

Answer: C

389. The indicator use in the titrating oxalic acid with caustic soda solution is :

A. Methyl orange

B. Methyl red

C. Fluorescein

D. Phenolphthalein

Answer: D

Watch Video Solution

390. Methyl orange gives red colour in :

- A. Sodium carbonate solution
- B. Sodium chloride solution
- C. Hydrochloric acid solution
- D. Pottasium hydroxide solution

Answer: C

Watch Video Solution

391. The range of ph in which methyl orange works as indicator:

A. 3-4

B. 10-12

C. 8-10

D. 6-8

Answer: A

392. Which can act as buffer?

A. $NH_4Cl + NH_4OH$

 $\mathsf{B.}\, CH_3COOH+CH_3COONa$

C. 40 ml of 0.1 M NaCN + 20 ml of 0.1 M HCl

D. All of these

Answer: D

Watch Video Solution

393. Which statement is /are correct?

A. All arhenius acids are bronstad acids

B. All arhenius bases are bronstad bases

C. H^+ ion in solution exist as $H_9PO_4^+$

D. All of the above

Answer: D

394. Which indicator works in ph range 8-9.8?

A. Phenophthalein

B. Methyl orange

C. Methyl red

D. Litmus

Answer: A

395. Which of the following is not a lewis acid?

A. BF_3

B. $Alcl_3$

 $C. Becl_2$

D. $SnCL_4$

Answer: C

Watch Video Solution

396. The strongest bronsted base is:

A. CLO^{-}

 $\mathrm{B.}\, ClO_2^{\,-}$

 ${\rm C.}\, ClO_3^{\,-}$

D. ClO_4^-

Answer: A

397. The weakest Lewis base is :

A. $H^{\,-}$

B. OH^{-}

 $\mathsf{C}.\,Cl^{\,-}$

D. HCO_3^-

Answer: C

Watch Video Solution

398. Glycine is :

A. Arhenius acid

B. Lewis base

C. Simplest amino acid

D. All of the above

Answer: D

399. Strongest conjugate base among the following is :

A. NO_3^-

 $\mathsf{B.}\,Cl^{\,-}$

 $\mathsf{C.}\,SO_4^{2\,-}$

D. CH_3COO^-

Answer: D

Watch Video Solution

400. The strongest base among the following is :

A. CH_3^{-}

B. $F^{\,-}$

 $\mathsf{C.}\,NH_2^{\,-}$

D. $OH^{\,-}$

Answer: A

Watch Video Solution

401. Hydrolysis of oxide ion in water produces

A. $H^{\,+}$

 $\mathsf{B.}\,OH^{\,-}$

 $\mathsf{C}.\,O_2$

 $\mathsf{D}.\,H_2O$

Answer: B

402. H_3BO_3 IS _____ acid ?

A. Monobasic

B. diabasic

C. Tribasic

D. NONE

Answer: A

Watch Video Solution

403. The conjugate base of H_3BO_3 is :

A. $B(OH)_4^-$

 $B. H_2 BO_3^-$

C. HBO_3^(2-)

D. none

Answer: A

404. The aqueous solution of an acid is characterised by the presence of :

A. OH^{-} ions

B. H_3O^+ ions

C. H^+ ions

D. H_4O^+ ions

Answer: B

Watch Video Solution

405. The solubility of A_2X_3 is y mol `dm^(-3) its solubility product is

A. $6y^4$

B. $64y^4$

 $\mathsf{C.}\,36y^5$

D. $108y^5$

Answer: D

Watch Video Solution

406. Although CO is neutral but it shows acidic nature on reaction at high

P and T with

A. $Ca(OH)_2$

B. NaoH

 $\mathsf{C}.Mg(OH)_2$

D. LiOH

Answer: B

407. Which oxide is neutral ?

A. N_2O

B. NO

C. Co

D. ALL

Answer: D

Watch Video Solution

408. Which is not a lewis acid?

A. $Zncl_2$

 $\mathsf{B.}\,BF_3$

C. Ag^+

D. H_2O

Answer: D

409. Which is not a lewis base?

A. OH^{-}

B. Ag^+

 $\mathsf{C}.NH_3$

D. $H^{\,-}$

Answer: B

Watch Video Solution

410. Which is not a lewis acid?

A. $\mathbb{C}l_4$

B. $SNCl_2$

 $C. AlCl_3$

D. BF_3

Answer: A

Watch Video Solution

411. Which is acid anhydride?

A. BaO

B. Na_2O

 $\mathsf{C}.\,CO_2$

D. CO

Answer: C

412. The oxyacid of SO_2 is :

A. H_2SO_3

 $\mathsf{B}.\,H_2SO_4$

 $\mathsf{C}.\,H_2S_2O_8$

D. None

Answer: A

Watch Video Solution

413. The conjugate acid of H^{-} ion is :

A. H_3O^+

 $\mathsf{B}.\,H_2$

 $\mathsf{C}.\,OH^{\,-}$

D. H_2O

Answer: B

414. The increasing order of acid strength $HClO_4$, $HClO_3$, $HClO_2$ HClO

is

A. HClO It $HClO_2$ It $HClO_3$ It $HClO_4$

 $\mathsf{B}. HClO_4 \mathsf{lt} HClO_3 \mathsf{lt} HClO_2 \mathsf{lt} \mathsf{HClO}_2 \mathsf{lt}$

C. $HClO_4$ lt $HClO_2$ lt $HClO_3$ ltHClO

D. None of these

Answer: A

415. Which metal sulphide has maximum solubility in water?

A.
$$CdSig(K_sp=36 imes10^{-30}ig)$$

B. FeS(K_sp=11xx10^-20)

C.
$$HgS(K_sp=32 imes10^{-54})$$

D.
$$ZnSig(K_sp=11 imes10^{-22}ig)$$
 .

Answer: B

Watch Video Solution

416. The solubility of $PbCL_2$ is given by,

A.
$$\sqrt{K}_{sp}$$

B. [K_sp]^(1/3)

C.
$$\left[\frac{(K_s p)}{4}\right]^{\frac{1}{3}}$$

D. $\left[8K_{sp}\right]^{\frac{1}{2}}$

Answer: C

417. The metallic sulphide not precipitated if H_2S gas is passed through

HCl containing aqueous solution is:

A. CoS

 $\mathsf{B.}\,Bi_2S_3$

C. HgS

 $\mathsf{D.}\, CuS$

Answer: D

418. The solubility of AgI in NaI is lower than that in pure water, because:

- A. AgI forms complex with Nal
- B. Effect of common ion increases ionic concentration of $I^{\,-}$
- C. Solubility product of AgI is less than that of NaI
- D. The tempreature of the solution decreases

Answer: B

Watch Video Solution

419. Which of the following is most solubule in water?

A.
$$MnS(Ksp=8 imes 10^{-37})$$

B. $Znsig(K_sp=7 imes10^{-16}ig)$

C.
$$Bi_2S_3ig(K_sp=1 imes10^{-70}ig)$$

D.
$$Ag_2Sig(K_sp=6 imes10^{-51}ig)$$

Answer: B

420. The polyprotic acid is:

A. HCL

B. $HCLO_4$

 $\mathsf{C}. H_3 PO_4$

D. HNO_3

Answer: C

Watch Video Solution

421. The salt that does not hydrolyse:

A. $SnCl_2$

B. $FeCl_3$

C. $SnCl_4$

D. $CaCl_2$

Answer: D

422. Which is not a Lewis acid?

A. $MgCl^2$

B. $SnCl_2$

 $\mathsf{C}. \mathbb{C}l_4$

D. RMgX

Answer: C

423. The conjugate acid of CO_3^{2-}

A. H_2O

B. H_2CO_3

 $\mathsf{C.}\,OH^{\,-}$

D. HCO_3^-

Answer: D

Watch Video Solution

424. The conjugate base of H_2SO_4 in the following reaction is: $H_2SO_4 + H_2O \leftrightarrow H_3O^+ + HSO_3^{-4}$

A. H_2O

 $\mathsf{B}.\,HSO_4^{\,-}$

 $C. H_3 O^+$

D. SO_4^{-2}

Answer: B

425. Ostwald's dilution law is applicable in the case of the solution of:

A. CH_3COOH

B. NaCl

C. NaOH

D. H_2SO_4

Answer: A

Watch Video Solution

426. The decreasing order of strengthh of following bases is :

A. $Cl^{-3}, CH_3COO^-, NH_2^-$

 $\mathsf{B}.\,CH_3COO^-,\,NH_2^-,\,Cl^-$

 $\mathsf{C.}\,CH_3COO^-,Cl^-,NH_2^-$

D.
$$NH_2^{-}, CH_3COO^-, Cl^-$$

Answer: D

427. The pH of 10 M HCl aqueous solution is:

A. Less than zero

B. One

C. Two

D. Zero

Answer: D

428. In a buffer solution consisting of a weak acid its salt, the ratio of concentration of salt to acid is increased tenfold, then the pH of the solution will:

A. Increase by one

B. Increase tenfold

C. Decrease by one

D. Decrease tenfold

Answer: A

Watch Video Solution

429. The Ph of a 0.005 M aqueous solution of sulphuric acid is approximately:

A. 0.005

B. 2

C. 1

D. 0.01

Answer: B

Watch Video Solution

430. The ph of a `10^(-10) HCl solution is approximately:

A. 10

B. 7

C. 1

D. 14

Answer: B

431. If the dissociation constant of an acid HA is `1 xx 10^{-5} the Ph of a 0.1

M solution of the acid HA will be approximately:

A. 3 B. 5 C. 1 D. 6

Answer: A

Watch Video Solution

432. The ph of a solution is 5.0 to this solution sufficient acid is added to

decreases the ph to 2.0 The increase in hydrogen ion concentration is :

A. 1000 times

B. 5/2 times

C. 100 times

D. 5 times

Answer: A

433. When the ph of a solution is 2 the hydrogen ion concentration is :

A. $1.0 \times 10^{-14}~\text{M}$

- $\mathrm{B.}\,1.0\times10^{-2}~\mathrm{M}$
- $\mathrm{C.}\,1.0\times10^{-7}~\mathrm{M}$

D. $1.0 imes 10^{-12}$ M

Answer: B

Watch Video Solution

434. The Ph of (1/1000) N KOH solution is :

A. 10^{-2}	11

B. 3

C. 2

D. 11

Answer: D

Watch Video Solution

435. The ph of 1~% ionised 0.1 M solution of a weak monotrooic acid :

A. 1

B. 2

C. 3

D. 11

Answer: C

436. A monotropic acid in 1.00 M solution is 0.01 % ionised. What is the dissociation constant of the acid ?

A. 1.0×10^{-4} B. 1.0×10^{-6} C. 1.0×10^{-8} D. 10^{-5}

Answer: C

Watch Video Solution

437. 50 ml of 2 N acetic acid mixed with 10 ml of 1N sodium acetate solution will have an approximate ph of (K $a=10^{(-5)}$)

A. 4

B. 5

C. 6

D. 7

Answer: A

Watch Video Solution

438. How many times a solution of pH =2 has higher acidic nature than

the solution of pH=6 ?

A. 1000

B. 12

C. 400

D. 4

Answer: A

439. A monotropic acid in 1.00 M solution is 0.01% ionised. What is the dissociation constant of the acid ?

A. $1.0 imes10^{-3}$ B. $1.0 imes10^{3}$ C. $1.0 imes10^{-8}$

D. 1.0 \times 10 $^{-10}$

Answer: D

Watch Video Solution

440. one litre of water contains $10^{-7}mo \le H^+$ ions what is degree of ionisation of water ?

A. $1.8 imes10^{-7}$ %

B. $1.8 imes 10^{-9}$ %

 ${\rm C.}\,3.6\times10^{-7}\,\%$

D. $3.6 imes10^{-9}$ %

Answer: A

441. The hydrogen ion concentration of 0.001 N NaOH solution is:

A. $1.0 imes 10^{-2}$ M

- B. $1.0 imes 10^{-11}$ M
- $\mathrm{C.}\,1.0\times10^{-14}~\mathrm{M}$

 $\mathrm{D.}\, 1.0 \times 10^{-12} \ \mathrm{M}$

Answer: B

442. Hclo is a weak acid. What is the concentration of H^+ ions in 0.1 solution of Hclo '(K_a = 5 xx 10^-8)'?

A. $7.07 imes10^{-5}$ M

 ${\sf B}.5 imes10^{-7}~{\sf M}$

 ${
m C.}\,5 imes10^{-7}~{
m M}$

D. $7 imes 10^{-4}$ M

Answer: A

Watch Video Solution

443. The pH of simple sodium acetate and acetic acid buffer is given by, pH= pK_a + log [Salt]/[Acid] K_a of acetic acid = 1.8 \times 10^-5. If [Salt] = [Acid] = 0.1 M, the pH of the solution would be about:

A. 7

B. 4.7

C. 5.3

D. 1.4

Answer: B

Watch Video Solution

444. Find the pH of a 0.01 M solution of acetic acid having degree of dissociation 12.5%.

A. 4.509

B. 3.723

C. 2.903

D. 5.623

Answer: C

445. For weak acid strong base titration the indicator used is :

A. Methyl orange (3 to 4)

B. Methyl red (5 to 6)

C. Bromothymol blue (6 to 7.5)

D. Phenolphthalein (8 to 9.6)

Answer: D

Watch Video Solution

446. The pk_a of acetylsalicylic acid (aspirin) is 3.5. The PH of gastric juice in human stomach is about 2-3 and the pH in the small intestine is about 9. Aspirin wil be

A. unionized in the small intestine and in the stomach

B. Completely ionized in the small intestine and in the stomach

C. Ionized in the stomach and almost unionized in the small intestine

D. ionized in the small intestine and almost unionized in the stomach

Answer: D

447. The alkali not suitable for volumettric determination of HCl, using phenolphthalein as an indicator is:

A. NaOH

 $\mathsf{B.}\,Ba(OH)_2$

C. KOH

D. NH_4OH

Answer: D

448. The hydrolysis of the salt of weak acid and strong base is known as:

A. Anionic hydrolysis

B. Cationic hydrolysis

C. Neutral hydrolysis

D. Acid hydrolysis

Answer: A

Watch Video Solution

449. The hydrolysis of the salt of strong acid and weak base is called:

A. increases with concentration

B. decreases with concentration

C. Amphoteric hydrolysis

D. None of these

Answer: B

450. Degree of hydrolysis of a salt of weak acid and a seak base:

A. increases with concentration

B. decreases with concentration

C. Independent of concentration

D. None of these

Answer: C

Watch Video Solution

451. The hydrolysis constant of a salt of weak acid and weak base is inversely propertional to:

A. Dissociation constant of weak acid

B. Dissociation constant of weak base

C. Ionic product of water

D. Dissociation constant of both weak acid and weak base

Answer: D

Watch Video Solution

452. Ostwald dilution law is expressed as:

A.
$$K_a = rac{C\cdot lpha^2}{1-lpha}$$

B. $K_a = rac{C\cdot lpha}{1-lpha}$
C. $K_a = rac{1-lpha}{C\cdot lpha^2}$
D. $K_a = rac{C(1-lpha)}{lpha^2}$

Answer: A

453. Phenolphthalein is a:

A. Weak acid

B. Weak base

C. strong acid

D. Strong base

Answer: A

Watch Video Solution

454. Which on ehas maximum solubility in liquid Ccl_4 :

A. Cl_2

 $\mathsf{B}.\,I_2$

C. NaCl

D. Br_2

Answer: B

455. The pH of gastric juice is normally:

A. Greater than 1.5 and less than 1.2

B. less than 1.5

C. greater than 1 and less than 3

D. Less than 1 and greater than zero

Answer: C

456. Blood is:

A. Strong acidic

B. Strongly basic

C. Neutral

D. Slightly basic

Answer: D

Watch Video Solution

457. To a mixture of acetic acid and sodium acetate a further amount of sodium acetate is added. The pH of the mixture:

A. Increases

B. Decreases

C. Remains unchanged

D. Not predictable

Answer: A

458. pH for the solution of salt undergoing anionic hydrolysis (say CH_3COONa) is given by:

A. pH=
$$\frac{1}{2}[PK_w + PK_a + \log C]$$

B. pH= $\frac{1}{2}[PK_w + PK_a - \log C]$
C. pH= $\frac{1}{2}[PK_w + PK_b + \log C]$

D. None of these

Answer: A

Watch Video Solution

459. Solubility of BaF_2 in a solution of $Ba(NO_3)_2$ will be represented by

the concentration term:

A.
$$\left[Ba^{2\,+}
ight]$$

B.
$$\left[F^{\,-}
ight]$$

C. 1/2 $\left[F^{\,-}
ight]$

 $\mathsf{D.}\,2\big[NO_3^{\,-}\,\big]$

Answer: C

Watch Video Solution

460. The blood buffers are most often involed in stabilizing the pH in presence of metabolically produced:

A. Acids

B. bases

C. salts

D. None of these

Answer: A

461. Acidosis is diagnosed when blood pH:

A. falls below 7.35

B. Rises above 7.45

C. BOTH (A) AND (B)

D. None of the above

Answer: A

Watch Video Solution

462. The solution of AgCl is unsaturated if:

A.
$$\left[Ag^{\,+}
ight] \left[Cl^{\,-}
ight] < K_s p$$

$$\mathsf{B}.\left[Ag^{+}\right]\left[Cl^{-}\right] < K_{s}p$$

C.
$$\left[Ag^{\,+}
ight]\left[Cl^{\,-}
ight]=K_{s}p$$

D. none of these

Answer: A

463. Select the correct order for the strength of bases given below:

A.
$$C_2H_5^{
ightarrow} NH_2^{
ightarrow} C_2H_3^{
ightarrow} OH^{
ightarrow} C_2H^{\,-}$$

B.
$$OH \xrightarrow{
ightarrow} NH_2 \xrightarrow{
ightarrow} C_2H_3 \xrightarrow{
ightarrow} C_2H_5 \xrightarrow{
ightarrow} C_2H^-$$

C.
$$C_2H \,{}^{
ightarrow} C_2H_3^{
ightarrow} C_2H_5^{
ightarrow} NH_2^{
ightarrow} OH^{\,-}$$

D.
$$C_2H_5^{
ightarrow}C_2H_3^{
ightarrow}NH_2^{
ightarrow}C_2H^{
ightarrow}OH^{\,-}$$

Answer: D

464. In the precipitation of iron group in qualitative analysis, NH_4Cl is added before the addition of NH_4OH :

A. To prevent the interference of phosphate

B. To decrease ${NH_4^+}$ ions concentration

C. To increase OH^{-} ions concentration

D. To prevent the precipitation of subsequent groups

Answer: D

Watch Video Solution

465. What is the pH of 0.01 M NaOH assuming complete ionisation ?

A. 2

B. 14

C. 12

D. 0.01

Answer: C

466. The pH of the solution obtained by mixing 10 mL of 10^{-1} N HCl and 10 mL of 10^{-1} N NaOH is:

A. 8 B. 2 C. 7

D. None

Answer: C

Watch Video Solution

467. At $90^{\circ}C$ pure water has $[H_3O^+] = 10^{-6}$ mol/ litre. The value of K_w at $90^{\circ}C$ is:

A. 10^{-6}

B. 10^{-12}

 $C. 10^{-14}$

 $D.\,10^{-8}$

Answer: B

Watch Video Solution

468. 0.4 g of NaOH present in one litre solution shows the pH:

A. 12

B. 2

C. 6

D. 10

Answer: A

469. pH of `10^-8 M solution of HCl in water is:

A. 8

B. -8

C. Between 7 and 8

D. Between 6 and 7

Answer: D

Watch Video Solution

470. The hydrogen ion concentration in a given solution is `6 xx 10^-4. Its

pH will be:

A. 6

B.4

C. 3.22

D. 2

Answer: C

471. A certain buffer solution contains equal concentration of X^- and

HX. The K_b for X^- is 10^{-10} . What is the pH of the buffer?

A. 4

B. 7

C. 10

D. 14

Answer: A

D Watch Video Solution

472. 10^{-6} M HCl is diluted to 100 times. Find its pH value.

A. 6

B. 8

C. 6.95

D. 9.5

Answer: C

Watch Video Solution

473. An aqueous solution contains a substance which yields 4×10^{-3} mol *liter*⁻¹ ion of H_3O^+ . If log 2 = 0.3010 the pH of the solution is:

A. 1.5

B. 2.398

C. 3

D. 3.4

Answer: B

474. If the hydrogen ion concentration of a given solution is `5.5 xx 10^-3 M. Find the pH of the solution.

A. 2.26

B. 3.4

C. 3.75

D. 4.76

Answer: A

Watch Video Solution

475. What is the pH of a 1 M CH_3COONa solution? K_2 of acetic acid =

 $1.8 imes 10^{-5}$ and K_w = 10^{-14} mol^2 `litre^-2:

A. 2.4

B. 3.6

C. 4.8

D. 9.4

Answer: D

Watch Video Solution

476. A 0.01 M ammonia solution is 5% ionized. The concentration of `OH^-

ion is:

A. 0.005 M

B. 0.0001 M

C. 0.0005 M

D. 0.05 M

Answer: C

477. 0.04 g of pure NaOH is dissolved in 10 litof distilled water. The pH of

the solution is:

A. 9 B. 10 C. 11

D. 12

Answer: B

Watch Video Solution

478. The pH of the solution produced when an aqueous solution of strong acid pH 5 is mixed with equal volume of an aqueous solution of strong acid of pH 3 is:

B. 3.5

C. 4.5

D. 4

Answer: A

Watch Video Solution

479. 100 mL of 1 N NH_4OH '(K_b = 5 xx 10^-5) is neutralised to equivalence point by 1 NHCl. Calculate the pH of solution at equivalence point.

A. 2 B. 2.5 C. 3

D. 5

Answer: D

480. A certain weak acid has a dissociation constant `1.0 xx 10^-4. What is the equilibrium constant for its reaction with a strong base?

A. 1×10^{-4} B. 1×10^{-10} C. 1×10^{10} D. 1×10^{-14}

Answer: C

Watch Video Solution

481. If K_a for a weak acid is 10^{-5} . pK_b value of its conjugate base is:

A. 5

B. 6

C. 7

D. 9

Answer: D

Watch Video Solution

482. The buffer action of acidic buffer is maximum when its pH is equal to:

A. 5

B. 7

C. 10

D. $Pk_a = 1$

Answer: D

483. The pH of a solution is 2. Its pH is to be changed to 4. Then the H^+ concentration of original solution has to be:

A. Halved

B. doubled

C. increase by 100 times

D. decrease by 100 times

Answer: D

Watch Video Solution

484. A buffer mixture of acetic acid and potassium acetate has pH= 5.24. The ratio of $[CH_3COO^-]/[CH_3COOH]$ in this buffer is, $(pK_a = 4.740)$

A. 3:1

:

B. 1:3

C. 1:1

D. 1:2

Answer: A

485. The $[H_3O^+]$ in the rain water of pH = 4.35 is:

A. $4.5 imes 10^{-5}$ M

 $\mathrm{B.6.5}\times10^{-5}\mathrm{M}$

 $\mathrm{C.}\,9.5\times10^{-5}\mathrm{M}$

D. $12.5 imes 10^{-5}$ M

Answer: A

486. What is the pH of a 0.02 M ammonia solution which is 5% ionised?

A. 2 B. 5 C. 7

D. 11

Answer: D

Watch Video Solution

487. The hydrogen ion concentration of a solution is 3×10^{-6} g ion/litre.

Find its pH value

A. 5.523

B. 6.523

C. 6.477

D. 6.3

Answer: A

488. Find the `[OH^-] in 100 mL of 0.015 M HCl (aq.) solution.

A. $5 imes 10^{-12}$ M

 $\text{B.}~3\times10^{-10}~\text{M}$

 $\text{C.}\,6.7\times10^{-13}~\text{M}$

 ${\rm D.}\,2\times10^{-9}~{\rm M}$

Answer: C

489. A certain buffer solution contains equal concentration of X^- and HX. The K_a for HX is 10^{-8} . What is the pH of the buffer solution?

A. 3		
B. 8		
C. 11		
D. 14		

Answer: B

Watch Video Solution

490. The pH of a 10^{-10} M NaOH solution is nearest to:

A. 10

B. 7

C. 4

D. -10

Answer: B

491. The H⁺ ion concentration in 0.001 M acetic acid is 1.34×10^{-4} g ion/litre. What is the H^+ ion concentration of 0.164 g of CH_3COONa is added to a litre of 0.001 M CH 3 COOH will be ?

A. $9 imes 10^{-6}$ B. $18 imes 10^{-6}$ C. $4.5 imes 10^{-6}$ D. $5 imes 10^{-6}$

Answer: A

Watch Video Solution

492. K_a for HCN is 5×10^{-10} at $25^{\circ}C$. For maintaining a constant pH of 9. Find the volume of 5 M KCN solution required to be added to 10 mL of 2 M HCN solution.

A. 4 ml

B. 7.95 ml

C. 2 ml

D. 9.3 ml

Answer: C

Watch Video Solution

493. An aqueous solution of 0.1 M NH_4Cl will have a pH closer to:

A. 9.1

B. 8.1

C. 7.1

D. 5.1

Answer: D

494. Find the number of mole of hydroxide (OH^{-}) ion in 0.3 litre of 0.005 M solution of $Ba(OH)_2$.

A. 0.0075

B. 0.0015

C. 0.003

D. 0.005

Answer: C

Watch Video Solution

495. How many grams of NaOH must be present in one litre of the solution of give it a pH = 12?

A. 0.20 g/lit

B. 0.4 g/lit

C. 4 g/lit

D. 0,10 g/lit

Answer: B

D Watch Video Solution

497. The pH of a solution formed by mixing 40 mL of 0.10 M HCl and 10 mL

of 0.45 M NaOH is:

A. 5 B. 8 C. 12

D. 10

Answer: C

Watch Video Solution

498. The pH of a soft drink is 3.82. Its H^+ ion concentration will be:

A. $1.96 imes 10^{-2}$ mol/lit

B. $1.96 imes 10^{-3}$ mol/lit

 $\text{C.}\,1.5\times10^{-4}\text{ mol/lit}$

D. $1.96 imes 10^{-1}$ mol/lit

Answer: C

499. The solubility of $Al(OH)_3$ is 's' mol per litre, the solubility product of

Al(OH) 3 is :

A. *s*³

B. $27s^4$

 $\mathsf{C}.s^2$

D. $4s^2$

Answer: B

500. The equivalent conductance of 0.1N acetic acid is $5cm^2$ $ohm^{-1}geq^{-1}$ and at infinite dilution is $390cm^2ohm^{-1}geq^{-1}$. Calculate the degree of dissociation of acetic acid.

A. 0.0013

B. 0.013

C. 0.13

D. 0.5

Answer: B

Watch Video Solution

501. The dissociation constant of HCN is 1.3×10^{-9} . The value of hydrolysis constant of KCN will be:

A. 1.3×10^{-19} B. 10^{-14} C. 7.7×10^{-5} D. 0.77×10^{-5}

Answer: D

502. If the solubility of lithium sodium hexafluro-aluminate, $Li_3Na_3(AlF_6)_2$ is 'a' mol/litre, its solubility product is equal to:

A. a^2

 $\mathsf{B}.\,12a^2$

 $\mathsf{C}.\,18a^3$

D. $2916a^8$

Answer: D

503. The solubility of AgCl in water at $10^{\,\circ}C$ is $6.2 imes10^{-6}$ mol/litre. The

K_sp of AgCl is:

A.
$$rac{\left[6.2 imes10^{-6}
ight]^1}{2}$$

B. $6.2 imes10^{-6}$ ^ 2
C. $(6.2)^2 imes10^{-6}$
D. $\left[6.2 imes10^{-6}
ight]^2$

Answer: D

Watch Video Solution

504. $K_s p$ of AgCl at $18^{\circ} C$ is 1.8×10^{-10} . $If Ag^+ of solution is 4 xx 10^{-3}$ $mo \frac{l}{l} itre$. $The Cl^- t \widehat{\mu} stexceed bef$ or e AgCl is precipitated would be:

A. $4.5 imes 10^{-8}$ mol/lit

B. $7.2 imes 10^{-13}$ mol/lit

 $\text{C.}\,4\times10^{-3}\,\text{mol/lit}$

D. $4.5 imes 10^{-7}$ mol/lit

Answer: A

505. When equal volumes of the following solutions are mixed, precipitation of AgCl $(K_s p = 1.8 \times 10^{-10})$ will occur only with

A.
$$10^{-4}$$
 M (Ag^+) and 10^{-4} M (Cl^-)
B. 10^{-5} M (Ag^+) and 10^{-5} M (Cl^-)
C. 10^{-6} M (Ag^+) and 10^{-6} M (Cl^-)
D. 10^{-10} M (Ag^+) and 10^{-10} M (Cl^-)

Answer: A

O Watch Video Solution

506. Solubbility product of $PbCl_2$ at 298 K is 1.0×10^{-6} . Atthistemperatureso lub *ilityof* PbCL_2` in mol per litre is : A. $(1.0 \times 10^{-6})^{\frac{1}{2}}$

B.
$$\left(1.0 imes 10^{-6}
ight)^{rac{1}{3}}$$

C. $\left(0.25 imes 10^{-6}
ight)^{rac{1}{3}}$
D. $\left(0.25 imes 10^{-6}
ight)^{rac{1}{2}}$

Answer: C

Watch Video Solution

507. Solubility product of $Ba(OH)_2$ is $4 imes 10^{-9}$ its solubbility in water is

A.
$$1 imes 10^{-3}$$
 M
B. $1 imes 10^{-9}$ M
C. $4 imes 10^{-27}$ M

D. $1\times 10^{-27}~\text{M}$

Answer: A

508. The precipitate of $CaF_2ig(K_s=1.7 imes10^{-10}ig)$ is obtained when equal

volmes of the following are mixed:

A.
$$10^{-4}$$
 M Ca^{2+} + $10^{-4}MF^{-}$
B. 10^{-2} M Ca^{2+} + $10^{-3}MF^{-}$
C. 10^{-5} M Ca^{2+} + $10^{-3}MF^{-}$
D. 10^{-3} M Ca^{2+} + $10^{-5}MF^{-}$

Answer: B

Watch Video Solution

509. The solubility of $PbCl_2$ at $25^{\circ}C$ is $6.3 \times 10^{-3}mo\frac{l}{l}itre$. The solubility product of $PbCl_2$ at $25^{\circ}C$ is:

A.
$$(6.3 \times 10^{-3}) \times (6.3 \times 10^{-3})$$

B. $(6.3 \times 10^{-3}) \times (12.6 \times 10^{-3})$
C. $(6.3 \times 10^{-3}) \times (12.6 \times 10^{-3})^2$

D.
$$\left(12.6 imes10^{-3}
ight) imes\left(12.6 imes10^{-3}
ight)$$

Answer: C

510. A saturated solution of Ag_2SO_4 is $2.5 imes10^{-2}$ M. The value of its solubility product is:

A. $62.5 imes10^{-6}$ B. $6.25 imes10^{-4}$

C. $15.625 imes 10^{-6}$

D. $3.125 imes 10^{-6}$

Answer: A

511. The pK_a of an indicator is 4. Its working range lies in beetween pH:

A. 1-5

B. 3-5

C. 5-8

D. 8-12

Answer: B

Watch Video Solution

512. A saturated solution of $Mg(OH)_2$ in water at 25^oC contains 0.11 g

 $Mg(OH)_2$ per litre of solution. The solubility product of $Mg(OH)_2$ is :

A. $(0.11)^2$

 $B.(0.11)^3$

 $\mathsf{C.4} imes (0.11)^3$

$$\mathsf{D.4}\times\frac{\left(0.11\right)^3}{\left(58\right)^3}$$

Answer: D

513. Which is least soluble in H_2O .

A. $ZnCO_3$

B. $HgCL_2$

C. $PbBr_2$

D. AgI

Answer: B

514. The solubility porduct of $CaSO_4$ is 6.4×10^{-5} . The solubbility of $CaSO_4$ is:

A. $8 imes 10^{-3}$ M

 ${\sf B.8 imes 10^{-6} M}$

 ${\sf C}.\,8 imes10^{-10}{\sf M}$

 $\mathrm{D.}\, 1.6 \times 10^{-3} \mathrm{M}$

Answer: A

Watch Video Solution

515. What is the solubility of $Mg(OH)_2$ in mole per litre if $K_p = 1.0 imes 10^{-11}$?

A. 2. $.46 imes 10^{-14}$

B. 1.36×10^{-4}

 $\mathsf{C.}\,2.60 imes10^{-7}$

D. $1.2 imes 10^{-10}$

Answer: B

Watch Video Solution

516. If the solubility of $Ca(OH)_2$ is $\sqrt{3}$, the solubility product of $Ca(OH)_2$ is :

A. 3

B. 27

C. $\sqrt{3}$

D. $12\sqrt{3}$

Answer: D

517. The solubility product, K_f of a sparingly soluble salt MX at 25^oC is $2.5 imes 10^{-9}$. The solubility of the salt in mol `litre^-1 at this temperature is

A. 1.0×10^{-14} B. 5.0×10^{-8} C. 1.25×10^{-9} D. 5.0×10^{-5}

Answer: D

:

Watch Video Solution

518. What is the solubility product of CaF_2 , if its satuated solution contains 0.017 g of CaF_2 per litre ?

A. $1.44 imes 10^{-4}$

B. 4.14×10^{-11}

 $\text{C.}~4.14\times10^{-18}$

D. $41.4 imes 10^{-24}$

Answer: B

Watch Video Solution

519. $K_s p = 1.2 \times 10^{-5}$ of $M_2 SO_4$ (M^+ is monovalent metal ion) at 298 K find the maximum concentration of M^+ ions that could be attaiined in a saturated solution of this solid at 298 K.

A.
$$3.46 imes10^{-3}$$
 M

B. $7 imes 10^{-3}$ M

 $\mathrm{C.}\,2.88\times10^{-2}~\mathrm{M}$

D. 14.4 xx 10⁽⁻³⁾ M

Answer: C

520. To 100 mL of 0.1 M $AgNO_3$ solution solid K_2S_4 is added. Find the concentration of $K_2SO_4t\hat{s}howsthe \prec i\pi tation$. (K_sp for Ag_2SO_4 = 6.4 xx 10^-5 M)`

A. 0.1 M

 $\mathrm{B.\,6.4\times10^{-3}~M}$

 $\mathrm{C.}\,6.4\times10^{-7}~\mathrm{M}$

 $\mathrm{D.}\,6.4\times10^{-5}~\mathrm{M}$

Answer: B

Watch Video Solution

521. If the solubility of $Pb3(PO_4)_2$ is mol per litre, then the solubility product of $Pb_3(PO_4)_2$ will be :

A. $6s^2$

 $\mathsf{B.}\,6s^5$

 $\mathsf{C.}\,s^5$

 $\mathsf{D}.\,108s^5$

Answer: D

Watch Video Solution

522. How many grams of CaC_2O_4 saturation will dissolve in one litre of saturated solution ? (K_sp of CaC_2O_4 is $2.5 \times 10^{-9}mol^{-2}$ and its molecular weight is 128).

A. 0.0064g

B. 0.0128g

C. 0.0032 g

D. 0.0640 g

Answer: A

523. The $K_s p$ of $PbCO_3$ and $MgCO_3$ are 1.5×10^{-15} and 1×10^{-15} repectively at 298 K. What is the concentration of Pb^2 + ions in saturated solution containing $MgCO_3$ and $PbCO_3$?

A. $1.5 imes 10^{-4}$ M

 ${\rm B.3\times10^{-8}~M}$

 ${\sf C}.\,2 imes 10^{-8}~{\sf M}$

D. $2.5 imes10^{-8}$ M

Answer: B

Watch Video Solution

524. K_s for the acid HA is $1 imes 10^{-6}$. The value of K fo the reaction $A+H_3O^+ \rightleftharpoons HA+H_2O$ is:

A. $1 imes 10^{-6}$ B. $1 imes 10^{12}$ C. $1 imes 10^{-12}$ D. $1 imes 10^{6}$

Answer: D

525. The ph of a solution is 5.0 to this solution sufficient acid is added to

decreases the ph to 2.0 The increase in hydrogen ion concentration is :

A. Increases 1000 times

B. Decreases 1000 times

C. Increases 100 times

D. Decreases 100 times

Answer: A

526. Decinormal solution of CH_3COOH ionised to an extent of 1.3~% .

pH of the solution is, $(\log 1.3 = 0.11)$

A. 2.89

B. 1.945

C. 3.4

D. 4.98

Answer: A

Watch Video Solution

527. If 50 mL of 0.2 M KOH is added to 40 mL of 0.5 M HCOOH. Find the resulting solution. $\left(K_c=1.8 imes10^{-4}
ight)$:

B. 5.6

C. 7.5

D. 3.4

Answer: A

Watch Video Solution

528. In 100 mL of an aqueous HCl of pH 1.0, 900 mL of distilled water is added, the pH of the resultant becomes:

A. 1

B. 2

C. 4

D. 7

Answer: B

529. If $\left[OH^{\,-}
ight]$ is $1 imes 10^{-8}$ ion/litre.ls pH is:

A. 6 B. 7 C. 5 D. 8

Answer: A

Watch Video Solution

530. The weight of HCl present in one litre of solution, if pH of the solution is one :

A. 3.65 g

B. 36.5 g

C. 0.365 g

D. 0.0365 g

Answer: A

531. Solution prepared by dissolving equal number of mole of HOCl $\left(K_s=3.2 imes10^{-8}
ight)$ and NaOCl is a buffer of pH :

A. 8

B. 3.2

C. 7.5

D. 4.8

Answer: C

532. The pK_c of equimolecular sodium acetate and acetic acid mixtuare is 4.74. If pH is :

A. 1.4

B. 4.74

C. 9.2

D. 7

Answer: B

Watch Video Solution

533. The ionic product of warter at $60^{\,\circ} C$ is $9.61 imes 10^{-14}$. The pH of water

at `60^@C is :

A. 6.51

B. 6.7

C. 9.61

Answer: A

534. What is the pH of boiling water (373 K)? (K_w at 373 K = `10^-12):

A. 12

B. 8

C. 6

D. 2

Answer: C

535. The solubility of $PbCl_2$ in water is 0.01 M at $25^{\circ}C$ it maximum concentration in 0.1M NaCl will be :

A. $2 imes10^{-3}$ M B. $1 imes10^{-4}$ M C. $1.6 imes10^{-2}$ M D. $4 imes10^{-4}$ M

Answer: D

Watch Video Solution

536. if the solubility of product of lead iodide (PbI_2) is `3.2xx10^(-8) its solubility will be:

A. $2 imes 10^{-3}$ M

 $\mathrm{B.1}\times10^{-4}~\mathrm{M}$

 $\mathrm{C.}\,1.6\times10^{-5}~\mathrm{M}$

 $\mathrm{D.}\,1.8\times10^{-5}~\mathrm{M}$

Answer: A

537. The solubility product of salt AB_2 is $4 imes 10^{-9}$ at 373K . The solubility of AB_2 in boiling water will be :

A. $4 imes 10^{-3}$ M B. $4 imes 10^{-4}$ M C. $1 imes 10^{-10}$ M D. $1 imes 10^{-3}$ M

Answer: D

538. The solubility of is 0.0015 gm /lit. The solubility product of AgCl will be :

A. $2 imes 10^{-10}$

B. $1.1 imes 10^{-10}$

 $\text{C.}~3.1\times10^{-10}$

D. 4.1 \times 10 $^{-10}$

Answer: B

Watch Video Solution

539. A saturated solution of calcium fluoride contains 2×10^{-4} mole of the salt per litre of the solution its $K_s p$ is :

A. $8 imes 10^{-18}$

 $\texttt{B.}~3.2\times10^{-11}$

 $\text{C.}\,4\times10^{-6}$

D. $1.43 imes10^{-9}$

Answer: B

540. IF the concentration of CrO_4^{2-} ion in a saturated solution of silver chromate be $2 imes10^{-4}$ M solubility of sodium chloride is :

A. $4 imes 10^{-8}$ B. $8 imes 10^{-12}$ C. $32 imes 10^{-12}$ D. $6 imes 10^{-12}$

Answer: C

541. $K_s p$ for sodium chloride is 36 $mo \frac{l^2}{l} iter^2$. The solubility of sodium

chloride is :

A. 1/36 M

B. 1/6 M

C. 6 M

D. 3600 M

Answer: C

Watch Video Solution

542. The solubility of Agcl $\left(K_s p = 1.2 imes 10^{-10}
ight)$ in a 0.10 M NaCl solution

is :

A. 0.1 M

 $\mathrm{B.}\,1.2\times10^{-6}~\mathrm{M}$

 $\textrm{C.}~1.2\times10^{-9}~\textrm{M}$

 $\mathrm{D.}\, 1.2 \times 10^{-10} \ \mathrm{M}$

Answer: C

543. The solubility product of a sparingly soluble salt AB at room temperature is 1.21×10^{-6} its molar solubility is :

A. 1.21×10^{-6} B. 1.21×10^{-3} C. 1.1×10^{-4} D. 1.1×10^{-3}

Answer: D

544. If the concentration of lead iodide in its saturated solution at $25^{\circ}C$ be 2×10^{-3} mol per litre its solubility product is :

A. $4 imes 10^{-6}$ B. $8 imes 10^{-12}$ C. $6 imes 10^{-12}$

D. $32 imes10^{-9}$

Answer: D

Watch Video Solution

545. The dissociation constant of two weak acids are K_1 and K_2 their relative strength can given by:

A.
$$\sqrt{rac{K_1}{K_2}}$$

B. $K_1 + K_2$

 $\mathsf{C}.\,K_1-K_2$

D. sqrt(K_1xxK_2)

Answer: A

546. K_b for the hydrolysis reaction : $B^+ + H_2O \Leftrightarrow BOH + H^+$ is `1.0xx10^(-6) the hydrolysis constant of the salt is :

- A. 10^{-6}
- B. 10^{-7}
- $C. 10^{-8}$
- D. 10^{-9}

Answer: C

547. The dissociation constant of NH_4OH is $1.8 \times 10^{-5} predict the hydrolysis cons \tan to f NH_4Cl`$ A. 1.8×10^{-19} B. 1.8×10^{-5} C. 5.55×10^{-5} D. 5.55×10^{-10}

Answer: D

Watch Video Solution

548. The ph of 1 M aqueous solution of the weak acid HA is 6.0. Find its dissociation constant.

A. 10^{-6}

B. 10^{-12}

C. 1

Answer: B

549. A solution of ph 2.0 is more acidic than the one with ph 6.0 by a factor of

B.4

C. 3000

D. 10000

Answer: D

550. In a mixture of CH_3COOH and CH_3COONa the ratio of salt to acid concentration is increased by ten folds Thr ph of the solution will increase by :

A. zero B. 1 C. 2 D. 3

Answer: B

Watch Video Solution

551. 0.1 M acetic acid solution is titrated against 0.1M NaOH solution. What would be the difference in Ph between 1/4 and 3/4 stages of neutralisation of acid : B. 2log1/4

C. log1/3

D. 2log3

Answer: D

Watch Video Solution

552. The dissociation of water at $25^{\circ}C$ is 1.9×10^{-7} percent and the density of water is 1 $g \frac{m}{c} m_3$ the ionisation constant of water is :

A. $3.42 imes10^{-6}$

B. $3.42 imes 10^{-8}$

C. $1.0 imes 10^{-14}$

D. $2.0 imes10^{-16}$

Answer: D

553. If Pk_b for CN^- at $25^{\circ}C$ is 4.7. Find the pH of 0.5 M aqueous NaCN solution,

A. 12

B. 10

C. 11.5

D. 11

Answer: C

Watch Video Solution

554. 50 % neutralisation of a solution of formic acid ($K_a = 2 \times 106(-4)$) with NaOH would result in a solution having a hydrogen ion concentration of :

A. $2 imes 10^{-4}$

B. 3.7

C. 2.7

D. 1.85

Answer: A

Watch Video Solution

555. The pH of pure water at $25^{\circ}C$ and $35^{\circ}C$ are 7 and 6 respectively.

What is the heat of formation of water from H^+ and $OH^-~?$

A. 84.55 kcal/mol

B. 84.55 kcal/mol

C. 74.55 kcal/mol

D. None of these

Answer: B

556. What is the Ph of a solution obtained by mixing 10 ml of 0.1 M HCl and 40 ml of 0.2M H_2SO_4 ?

A. 1.4865

B. 0.4865

C. 0.4685

D. 3

Answer: C

Watch Video Solution

557. Calculate the ph of solution obtained by mixing 100 ml of 0.1 M HCl and 9.9 ml of 1.0m H_2SO_4 .

A. 3.0409

B. 3.4049

C. 2.0409

D. None

Answer: A

Watch Video Solution

558. What ids the resultant ph of solution of mixing 200 ml of an aqueous solution of HCl (ph=2.0) is mixed with 300 ml of an aqueous solution of NaOH (PH=12)?

A. 11.031

B. 11.301

C. 10

D. None

Answer: A

559. What volume of 1 M sodium formate solution should be added to 50 ml of 0.05 M formic acid to produce a buffer solution of $(ph=4)PK_a$ of formic acid =3.80)?

A. 39 ml

B. 39.62 ml

C. 40 ml

D. 40.62 ml

Answer: B

Watch Video Solution

560. How many mole of HCl are required to prepare one litre of buffer solution (conataining NaCN+HCl) of ph 8.5 using 0.01 g formula weight of NaCN(K_(HCN)=4.1xx10^(-10)?

A. $8.85 imes10^{-3}$

B. $8.75 imes10^{-2}$

 ${
m C.\,8.85 imes10^{-4}}$

D. $8.85 imes10^{-2}$

Answer: A

Watch Video Solution

561. Find the composition of an acidic buffer mixture made up of HA AND naA of total molarity 0.29 having ph 4.4 and $K_a = 1.8 \times 10^{-5}$ in terms of concentration of salt and acid respectively:

A. 0.09 M and 0.20 M

B. 0.20 M and 0.09 M

C. 0.1 M and 0.19 M

D. 0.19 M and 0.10 M

Answer: A

562. A weak acid HA after treatment with 12 ml of 0.1M strong base BOH has a PH of 5 . At the end point the volume of same base required is 26.6 ml .what is the value K_a acid ?

A. $1.8 imes10^{-5}$

B. $8.12 imes10^{-6}$

C. $1.8 imes 10^{-6}$

D. $8.2 imes 10^{-5}$

A. $1.677 imes10^{-22}$ g

B. $1.767 imes 10^{-22}$ g

 $\mathsf{C.}\,2.01\times10^{-23}\,\mathsf{g}$

D. None of these

Answer: A

Watch Video Solution

564. What is the PH at which $Mg(OH)_2$ begins precipitate from a solution containing 0.10 M $Mg^{2+}ions$. [K_sp of Mg(OH)_2 = 1xx10^(-11)]`

A. 5

B. 9

C. 4

D. 10

565. 18 ml of mixture of acetic acid and sodium acetate required 6 ml of 0.1 M NaOH For Neutrilisation of the acid and 12 ml of 0.1 M HCl for reaction with salt Seperately . If Pk_a of the acid is 4.75 What is the pH pf the mixture.

A. 5.05

B. 4.75

C. 4.5

D. 4.6

Answer: A

566. A certain ion B^- has an Arhenius constant of basic character (equ.

Constant $:2.8 \times 10^{-7}$) What is the equilibrium constant for lowry

bronstad character.

A. $2.8 imes10^{-7}$

B. $3.57 imes10^{-8}$

C. $3.57 imes10^8$

D. $2.8 imes10^7$

Answer: D

Watch Video Solution

567. Acetic acid and propionic acid have K_a value 1.75×10^{-5} and 1.3×10^{-5} respectively at a certain temperature. An equimolar solution of a mixture of the two acid is partially neutralised by NaOH. How is the ratio of the contents of acetate and proponate ions related to the K_a value and the molarity ?

A. ionisation fraction of acids

B. The ratio is unrelated to the K_a values

C. The ratio is unrelated to the molaity

D. The ratio is unrelated to the PH of the solution

Answer: A

Watch Video Solution

568. The ionisation constant of NH_4^+ in water is 5.6×10^{-10} at $25^{\circ}C$ the rate constant for the reaction of NH_4^+ and OH^- to form NH_3 and H_2O at $25^{\circ}C$ IS 3.4×10^{10} L mol/sec Find the rate constant for proton transfer from water to NH_3 ?

A.
$$6.07 imes10^5s^{-1}$$

B.
$$6.07 imes 10^{-10} s^{-1}$$

C.
$$6.07 imes10^{-5}s^{-1}$$

D. $6.07 imes10^{10}s^{-1}$

Answer: A

569. If PK_b for fluoride ion at $25^{\circ}C$ is 10.83. predict the ionisation constant of hydrofluoric acid in water at this temperature.

A. 1.74×10^{-5} B. 3.52×10^{-3} C. 6.75×10^{-4} D. 5.38×10^{-2}

Answer: C

Watch Video Solution

570. Approximate PH of 0.10 M aqueous H_2S solution having K_1 and K_2 for H_2S at $25^{\circ}C$ are 10^{-7} and $10^{\circ}(-13)$ respectively is :

C. 6

D. 8

Answer: A

Watch Video Solution

571. Which of the following species is more soluble in water ?

A.
$$M(OH)_3$$
 : $K_s p = 10^{-35}$

B.
$$M(OH)$$
 : $K_s p = 10^{-30}$

C.
$$M(OH)$$
 : $K_s p = 10^{-28}$

D.
$$MOH: K_s p = 10^{-26}$$

Answer: A

Watch Video Solution

572. The self ionisation constant for pure formic acid $K = [HCOOH_2^+]$ $[HCOO^-]$ has been estimated a $10^{-6}atr \propto mtemperature$. The density of f or micacidis $1.22 \frac{g}{-}$ cm^3 find the percentage of formic acid molecules in pure formic acid converted to formate ion.

A. 0.002~%

 $\mathrm{B.}\,0.004~\%$

 $\mathsf{C}.\,0.006~\%$

 $\mathsf{D}.\,0.008~\%$

Answer: B

573. Liquid ammonia ionises to a slight extent. At $-50^{\circ}C$ its self ionisation constant $K_{NH_3} = [NH_4^+] [NH_2^-] = 10^{-30}$ How many amide ions are present per cm^3 of pure liquid ammonia . (Assume N= 6.0×10^{23})?

A. $6 imes 10^6$ ions

B. $6 imes 10^5$ ions

C. $6 imes 10^{-5}$ ions

D. 6 imes 106(-6) ions

Answer: B

Watch Video Solution

574. What is the concentration of fluoracetic acid (K_a of acid = 2.6×10^{-3}) Which is required to get $[H^+]$ =1.50 $\times 10^{-3}$ M ?

A. 0.865 M

 $\mathrm{B.}\,2.37\times10^{-3}\mathrm{M}$

C. $2.37 imes10^{-4}$ M

 $\mathsf{D.}\, 2.37 \times 10^{-2} \mathsf{M}$

575. What molar concentration of NH_3 provides a $[OH^-]$ OF 1.5×10^{-3} ? (K_b = 1.8xx10^(-5)):

A. 0,125 M

- B. $\left(0.125+1.5 imes10^{-3}
 ight)$ M
- C. $(0.125 1.5 imes 10^{-3})$ M
- D. `1.5xx10^(-3) M

Answer: A

Watch Video Solution

576. 1 ml of 0.1 N Hcl is added to 999 ml solution of NaCl . The PH of the resulting solution will be :

Β.	4
----	---

C. 2

D. 1

Answer: B

Watch Video Solution

577. What is the volume of water needed to dissolve 1 g of $BaSO_4$

$$\left(K_s p = 1.1 imes 10^{-10}
ight)$$
 at $25^\circ C$?

A. 820 litre

B. 410 litre

C. 205 litre

D. None of these

Answer: B

Watch Video Solution

578. The solubility of $BaSO_4$ in water is 0.00233 g per litre at $30^{\circ}C$. The solubility of $BaSO_4$ in 0.1M $(NH_4)_2SO_4$ solution at the same temperature is :

A. 10^{-5} mol/lit B. 10^{-6} mol/lit C. 10^{-8} mol/lit D. 10^{-9} mol/lit

Answer: D

Watch Video Solution

579. Formic acid is $4.6\,\%$ dissociated in a 0.1 N solution at $20\,^\circ C$. The ionisation constant of formic acid is :

A. $21 imes10^{-4}$

B. 21

 ${
m C.}\,0.21 imes10^{-4}$

D. $2.1 imes 10^{-4}$

Answer: D

Watch Video Solution

580. The dissociation constants of two acid HA_1 and HA_2 are 2.9×10^{-4} and 1.8×10^{-5} respectively The relative strengths of the acid will be :

A. 1:4

B. 4:1

C. 1:16

D. 16:1

581. In the hydrolytic equilibrium

 $A^{-\,+}H_2O \Leftrightarrow HA + OH^{--}K_a = 1.0 imes 10^{-\,5}$. The degree of hysrolysis

of 0.001 M solution of the salt is :

A. 10^{-3}

B. 10^{-4}

 $C. 10^{-5}$

D. $10^{\,-\,6}$

Answer: A

582. For preparing a buffer solution of pH 6 BY mixing sodium acetate and acetic acid the ratio of concentration of salt and acid $(K_a = 10^{-5})$ Should be : A. 1:10

B. 10:1

C. 100:1

D. 1:100

Answer: B

Watch Video Solution

583. At $20^{\circ}C$ the $[Ag^+]$ in a saturated solution of Ag_2CrO_4 is $1.5 imes 10^{-4}$ M find the solubility product of Ag_2CrO_4 :

A. $3.375 imes 10^{-12}$

B. 1.6875 \times 10 $^{-10}$

C. 1.6875 imes 10 $^{-12}$

D. 1.6875 imes 10 $^{-11}$

Answer: C

584. Let the solubilities of AgCl in H_2O 0.01 M $CaCl_2$ 0.01 M NaCl and 0.05 M $AgNO_3$ be S_1, S_2, S_3, S_4 respectively. What is the correct relationship between the quantities?

A. $S_1 > S_2 > S_3 > S_4$ B. $S_1 > S_2 = S_3 > S_4$ C. $S_1 > S_3 > S_2 > S_4$ D. $S_4 > S_3 > S_2 > S_1$

Answer: C

Watch Video Solution