© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MBD CHEMISTRY (ODIA

ENGLISH)

STATES OF MATTER (GASES AND
 LIQUIDS)

Question Bank

1. 500 ml oxygen at a pressure of $700 \mathrm{~mm}, 300$ ml hydrogen at a pressure of 750 mm and 700 ml of nitrogen at a pressure of 600 mm are enclosed in a vessel of 1 litre capacity at $25^{\circ} \mathrm{C}$.

Calculated the total pressure of the gas mixture.

- Watch Video Solution

2. If the ratio of rates of diffusion of gases are

6:4, then find the ratio of their molecular
mass.

D Watch Video Solution

3. In an experiment 300 ml of a gas was collected at $22^{\circ} \mathrm{C}$ and 720 mm pressure. What will be the volume of the gas at NTP?

D Watch Video Solution

4. A gas occupies a volume of 23.29 L ar NTP,

What will be the pressure so that the volume
of the same gas becomes 5 L at $22^{\circ} \mathrm{C}$?

D Watch Video Solution

5. A gas occupies a volume of 400 mL at 800 mm pressure and at $27^{\circ} \mathrm{C}$. Calculate the volume occupied by the same gas at 600 mm pressure and at $127^{\circ} \mathrm{C}$.

- Watch Video Solution

6. Calculate the weight in g of 1270 mLCO at $37^{\circ} \mathrm{C}$ and at 700 mm pressure. Given: Molecular weight of $\mathrm{CO}_{2}=44$.

- Watch Video Solution

7. Calculate the volume in mL occupied by 3.5 g nitrogen (mol.wt.28) at $30^{\circ} \mathrm{C}$ and 70.7 cm pressure.
8. Find out the temperature in ${ }^{\circ} C$ at which 0.225 mole of oxygen will occupy a volume of 6000 mL at 560 mm pressure.Given : $\mathrm{R}=0.082$ lit. atm $(\text { mole }-k)^{-}$.

- Watch Video Solution

9. In Victor Meyor's method, 0.2 g of a substance displaced 63 mL of air at $16^{\circ} \mathrm{C}$ and

771 mm pressure. Calculated the molecular weight of the substance. At $16^{\circ} C$ aqueous tension $=13.5 \mathrm{~mm}$.

- Watch Video Solution

10. A certain quality of a gas occuipes 100 Ml when collected over water at $15^{\circ} \mathrm{C}$ and 750 mm pressure. It occupies 91.9 mL in the dry state at NTP. Find the vapour pressure of water (aqueous tension) at $15^{\circ} \mathrm{C}$.

- Watch Video Solution

11. A sperical balloon of 21 cm diameter is to be
filled up with hydrogen at NTP from a cylinder containing the gas at 20 atm and $27^{\circ} \mathrm{C}$. If the cylinder can hold 2.82 liters of water, calculate the no. of balloons that can be filled up ?

- Watch Video Solution

12. In an experiment, 100 mL of H_{2} takes 2.5
seconds and 100 mL of an unknown gas take
20seconds to penetrate through a porous
surface. What is the density of unknown gas with respect to hydrogen?

D Watch Video Solution

13. In 100 seconds, 300 mL of nitrogen diffuse through a porous partition. How long will 400 mL of CO_{2} take to diffuse through the same partition under similar conditions ?
14. A hydrocarbon with a molecular formula
$C_{n} H_{2 n+2}$ diffuse twice as first as sulphur dioxide at the same temperature.Find the molecular mass of the hydrocarbon. (Atomoc mass of $S=32$)

D Watch Video Solution

15. Calculate the root mean square velocity and average velocity of nitrogen molecules at $127^{\circ} \mathrm{C}$.
16. Calculate the root mean square velocity of

Argon at N.T.P Atomic wt. of Argon is 40.

D Watch Video Solution

17. The density of $H_{2} a t 0^{\circ} \mathrm{C}$ and 760 mm pressure is $0.00009 \mathrm{~g} / \mathrm{cc}$. Find te R.M.S velocity of H_{2} molecules.

18. Calculate the temperature at which oxygen

 gas at one atmospheric pressure has the same R.M.S velocity as that of Nitrogen at N.T.P.
- Watch Video Solution

19. Convert the following celsius temperature into kelvin temperature : $216^{\circ} \mathrm{C}$.

- Watch Video Solution

20. Convert the following celsius temperature into kelvin temperature : $376^{\circ} \mathrm{C}$

D Watch Video Solution

21. Convert the following celsius temperature
into kelvin temperature : $-125.2^{\circ} \mathrm{C}$

- Watch Video Solution

22. Convert the following absolute
temperatures into ${ }^{\wedge} o C, 400 \mathrm{~K}$

D Watch Video Solution
23. Convert the following absolute
temperatures into ${ }^{\wedge} \circ C .0 \mathrm{k}$

D Watch Video Solution
24. Convert the following absolute temperatures into.$^{\circ} C .137 \mathrm{k}$.

D Watch Video Solution

25. A given mass of hydrogen has a volume of

510 mL at 60 cm pressure. If the volume is
reduced to 402.6 mL at a constant temperature what pressure is applied ?

- Watch Video Solution

26. At constant temperature and 740 mm pressure a given sample of air had a volume of 1 litre Find the volume at 760 mm .

- Watch Video Solution

27. A gas has a volume 250 mL at $27^{\circ} \mathrm{C}$. The
volume is doubled by heating the gas at constant pressure. What will be the new temperature ?
28. 200 Ml of a gas had a temperature $27^{\circ} \mathrm{C}$
and pressure 750 mm . Find the pressure at which the gas will have a volume 175 mL if the temperature is $77^{\circ} \mathrm{C}$.

D Watch Video Solution

29. 300 mL of a gas at $27^{\circ} \mathrm{C}$ and 700 mm pressure was brought under the conditions of $327^{\circ} \mathrm{C}$ temperature and 140 mm pressure. What will be the volume ?
30. In an experiment, 35 mL of a gas was collected at $23^{\circ} \mathrm{C}$ and 720 mm pressure. Find its volume at NTP.

- Watch Video Solution

31. Under certain conditions 6.7 mL of sulphur dioxide diffuse in 5.5 minutes. Under the same conditions 66.8 Ml of another gas diffuse in 4
minutes. Calculate the molecular weight of the other gas if that of sulphur dioxide is 64 .

D Watch Video Solution

32. Speeds of diffusion of carbon dioxide and unknown gas under identical conditions were
0.29 and 0.271 mL (minute) ${ }^{-}$respectively.

Calculate the density of the gas if that of carbon dioxide is $1.964 g L^{-1}$.

D Watch Video Solution

33. Through a given partition 7.5 liters of carbon dioxide diffuse in certain time.

Calculate the volume of oxygen that diffuse through the same partition under the same conditions. (Atomic weight of $\mathrm{C}=12, \mathrm{O}=16$)

D Watch Video Solution

34. Calculate the volume occupied by 1.25 g methane (mol.wt. 16) at $18^{\circ} \mathrm{C}$ and 746 mm pressure (use general gas equation).
35. At 720 mm pressure and at $27^{\circ} \mathrm{C}, 200 \mathrm{~mL}$ of gas weight 1.653 g . Calculate its molecular weight using general gas equation.

- Watch Video Solution

36. Vapour density of a gas is 32 . Find the volume of 0.64 g gas at $27^{\circ} \mathrm{C}$ and 684 mm pressure.
37. 0.170 g of a volatile liquid displaced 69.1 mL air in Victor Meyor's method. The atmospheric temperature was $15^{\circ} \mathrm{C}$ and pressure was 755 mm. (Aqueous tension at $15^{\circ} C=12.7 \mathrm{~mm}$).

Find the molecular weight of the liquid.

- Watch Video Solution

38. On heating 2.701 g of mercuric oxide, 1.95
mL of dry oxygen at $37^{\circ} \mathrm{C}$ and 620 mm
pressure were collected. The residue weighed
2.499 g. From this data calculate the molecular weight of oxygen.

D Watch Video Solution

39. 2.5 g of pure calcium carbonate, when strongly heated left a residue of 1.400 g . The evolved gas was found to occupy 624 mL at $27^{\circ} \mathrm{C}$ and 755 mm pressure. Calculate the molecular weight of the gas.

- Watch Video Solution

40. Ammonia chloride when heated with caustic soda gives ammonia gas. What weight of $\mathrm{NH}_{4} \mathrm{Cl}$ should be used to get 2460 Ml .
NH_{3} at 1 atm pressure $827^{\circ} \mathrm{C}$.

D Watch Video Solution

41. Between NH_{3} and PH_{3} gases which will diffuse at a faster rate at a given temp. and pressure?
42. A hydrogen baloon expands as it goes up in the air. Give reasons in one sentence.

D Watch Video Solution

43. Between ammonia and nitrogen gases
which is lighter?

- Watch Video Solution

44. What is the absolute temperature ?

- Watch Video Solution

45. Between rate of diffusion of SO_{2} and CH_{4} which is higher?

- Watch Video Solution

46. Pressure remaining constant, what
happens to the volume of a certain mass of gas when the absolute temperature is doubled?
47. What si the value of R, when the pressure
is expressed in atmosphere and volume in litres?

D Watch Video Solution

48. Between oxygen and ammonia which gas will diffuse faster at NTP ?
49. What is the relationship between the average K.E. of the gas molecules with the temperature ?

D Watch Video Solution

50. Name the measureable properties that describe the behaviour of gases.

D Watch Video Solution

51. Define Boyle's law.

D Watch Video Solution

52. Define Charles's law.

D Watch Video Solution
53. Between SO_{2} and NH_{3} which gas will diffuse faster at S.T.P ?

D Watch Video Solution
54. Write van der Waal's equation for one mole of a gas.

- Watch Video Solution

55. What is the value of ' R ' in gas equation, when volume is expressed in litres and pressure in atmosphere ?
56. Real gas will approach the behaviour of ideal gas at

- Watch Video Solution

57. At constant temperature the product of pressure and volume of a given mass of gas is constant. What is this law called?

D Watch Video Solution

58. The temperature beyond which a gas cannot be liquified even by increase in pressure is called

D Watch Video Solution

59. What is the value ' R ' in gas equation in calories ?

- Watch Video Solution

60. How is the K.E. of a gas molecule related to
the temperature?

D Watch Video Solution
61. Under what conditions of temperature and pressure a real gas behaves like an ideak gas ?

D Watch Video Solution

62. Write van der Waal's equation for n moles of gas?

D Watch Video Solution
63. How is kinetic energy of a gas molecule related to the temperature?

- Watch Video Solution

64. State Dalton's law of partial pressure.
65. Define Graham's law of diffusion.

- Watch Video Solution

66. A gas cylinder cotaining gas at 5 atm.

Pressure is stored in a romm at $27^{\circ} \mathrm{C}$. The
value of the cylinder can with stand pressure upto 10 atm. The room catches fire. At which temperature wil the value brust ?
67. Derive an equation for n moles of an ideal gas.

D Watch Video Solution

68. At what conditions, real gas will behave as
an ideal gas. Explain in 8 sentences.

- Watch Video Solution

69. What are the two reasons for relating the gas volumes to the temperature in kelvin scale rather than Celcius scale?

D Watch Video Solution

70. State Dalton's law of partial pressure.

D Watch Video Solution

71. Which of the two graphs will be a straight
line at constant temperature ? P versus V or P
versus $1 / \mathrm{V}$? Explain.

- Watch Video Solution

72. Distinguish between ideal gas and real gas.

Write an equation for one mole of a real gas.

D Watch Video Solution

73. State and explain boyle's law.

D Watch Video Solution
74. What would be the volume of 44 grams of carbon dioxide at NTP ?

D Watch Video Solution

75. Describe the kinetic modal of gas and derive Boyle's and Charle's lw on this basis .

- Watch Video Solution

76. State and explain boyle's and Charles's law.

Derive gas equation from these laws.

- Watch Video Solution

77. Derive the equation of state for an ideal gas. What volume will be occupied by 4 grams of CO_{2} at $27^{\circ} \mathrm{C}$ and 650 mm pressure ?

- Watch Video Solution

78. Define Boyle's law and Charle's law. Derive
the combined gas equation from the two laws
Find out the value of gas constant 'R'.

D Watch Video Solution

79. Define and explain Boyle's law and Charle's
law.

Calculate the volume of gram molecule of hydrogen gas at $25^{\circ} \mathrm{C}$ temperature and 700 mm pressure.
80. State and explain the equation of state for an ideal gas. Why real gases deviate from the ideal behaviour ? What is van der Waal's modification of the gas equations ?

D Watch Video Solution

81. Define Boyle's and charle's law. Derive gas equation from these laws.

What will be the volume of 3.2 g of oxygen gas at $0^{\circ} C$ and 760 mm pressure ?

D Watch Video Solution

82. What are the main postulates of kinetic
theory of gases ? How does it explain the effect of temperature on the volume of a gas ?

D Watch Video Solution
83. State and deduce Dalton's law of partial pressure. What are its application in chemistry ?

- Watch Video Solution

84. State and explain Boyle's law and Charles's
law.

A gas occupies a volume of 200 mL at $27^{\circ} \mathrm{C}$
and 700 mm pressure. What volume will it occupy at $47^{\circ} \mathrm{C}$ and 800 mm pressure ?
85. Define Boyle's law and Charle's law. Define the combined gas equation from the two laws.

Temperature remaining constant, 100 mL of oxygen at 100 mm pressure is transferred to a container of 25 mL capacity. What is the pressure of oxygen in the new container.

- Watch Video Solution

86. What are the postulates of kinetic theory of gases ? How Boyle's law and Charle's law can be explained in the light of kinetic model of gas?

- Watch Video Solution

87. State and Explain Boyle's law and Charle's
law.A gas occupies a volume of 800 mL at
$27^{\circ} \mathrm{C}$ and 600 mm pressure. What volume will
it occupy ar $37^{\circ} \mathrm{C}$ and 800 mm pressure ?
88. The rms velocity of an ideal gas at $27^{\circ} C$ is
$0.3 \mathrm{~ms}^{-1}$. Its rms velocity at $927^{\circ} \mathrm{C}$ (in ms^{-1})
is :
A. 3
B. 2.4
C. 0.9
D. 0.6
89. A gas is said to behave like an ideal gas when the relation $\frac{P V}{T}=$ constant. When do you expect a real gas to behave like an ideal gas ?
A. when the temperature is ow
B. when the temperature and pressure are
low
C. when both the temperature and pressure is high
D. when te temperature is high and pressure is low

Answer: D

D Watch Video Solution

90. Which of the following statement is wrong
for gases ?
A. Gases do not have a definite shape and
volume
B. Volume of the gas is equal to the volume
of container confining the gas
C. Confined gas exerts uniform pressure on
the walls of its container in all
directions.
D. Mass of gas cannot be determined by
weighing a container in which it is enclosed.

Answer: D

D Watch Video Solution

91. The temperature at which real gases obey
the ideal gas laws over a wide range of pressure is called :
A. critical temperature
B. Boyle's temperature
C. inversion temperature
D. reduced temperature

Answer: B

- Watch Video Solution

92. The van der Walls' equation explains the behaviour of :
A. ideal gases
B. real gases
C. vapours
D. non-real gases

Answer: B

D Watch Video Solution

93. In van der Walls equation of state for a non-ideal gas the term that accounts for inter molecular forces is :
A. (V-b)
B. RT
C. $\left(P+\frac{a}{V^{2}}\right)$
D. $(R T)^{-1}$

Answer: C

D Watch Video Solution

94. When there is more deviation in the behaviour of a gas from the ideal gas equation PV = nRT ?
A. at high temperature and low pressure
B. at low temperature and high pressure
C. at high temperature and high pressure
D. at low temperature and low pressure

Answer: B

- Watch Video Solution

95. A container contains 1 mole of a gas at 1 atm pressure and $27^{\circ} \mathrm{C}$ and its volume is 24.6
liters. If pressure is 10 atm and temperature $327^{\circ} \mathrm{C}$ then the new volume is approximately:
A. 2 liters
B. 48 liters
C. 10 liters
D. 4.92 liters

Answer: D

D Watch Video Solution

96. Density of methane at $250^{\circ} \mathrm{C}$ and 6 atm pressure is ($\mathrm{R}=0.821 \mathrm{~atm}$) :
A. $2.236 \mathrm{~g} / \mathrm{L}$
B. $8 \mathrm{~g} / \mathrm{L}$
C. $12 \mathrm{~g} / \mathrm{L}$

D. $16 \mathrm{~g} / \mathrm{L}$

Answer: A

- Watch Video Solution

97. Desnsity ratio of O_{2} and H_{2} is 16:1. The ratio of its $V_{r m s}$ is :
A. $4: 1$
B. 16:1
C. 1:4
D. 1:16

Answer: C

D Watch Video Solution

98. The compressibility factor of an ideal gas is

A. 0
B. 1
C. 2
D. 4

Answer: B

D Watch Video Solution

99. The ratio between the root mean square speed of H_{2} at 50k and that of O_{2} at 800 k is :
A. 4
B. 2
C. 1

D. $1 / 4$

Answer: C

D Watch Video Solution

100. One mole of $N_{2} O_{4}(\mathrm{~g})$ at 300k is kept in a
closed container under one atmospheric pressure. It is heated to 600 k when 20% by mass of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ decomposes to $\mathrm{NO}_{2}(\mathrm{~g})$.

The resultant pressure is :
A. 1.2 atm
B. 2.4 atm
C. 2.0 atm
D. 1.0 atm

Answer: B

D Watch Video Solution
101. 3.2 g oxygen is diffused in 10 minutes. In
similar condition 2.8 g nitrogen will diffuse in :
A. 9.3 minutes
B. 8.2 minutes
C. 7.6 minutes
D. 11.8 minutes

Answer: A

D Watch Video Solution
102. The compressibility of a gas is less than unity at S.T.P. Therefore :
A. V_{m} gt 22.4 litres
B. V_{m} It 22.4 litres
C. $V_{m}=22.4$ litre
D. $V_{m}=44.8$ litres

Answer: B

D Watch Video Solution

103. The rms speed of hydrogen is $\sqrt{7}$ times
the rms speed of nitrogen. If T is the temperature of the gas, then :
A. $T\left(H_{2}\right)=T\left(N_{2}\right)$
B. $T\left(H_{2}\right)>T\left(N_{2}\right)$
C. $T\left(H_{2}\right)<T\left(N_{2}\right)$
D. $T\left(H_{2}\right)=\sqrt{7} T\left(N_{2}\right)$

Answer: C

D Watch Video Solution
104. The relationship which describes the variation of vapour pressure with temperature is called :
A. Hess law
B. Arrhenius equation
C. Kirchoff's law
D. Claussius-Clapeyron equation

Answer: C

D Watch Video Solution
105. Gas equation $P V=n R T$ is obeyed by:
A. Only isothermal process
B. Only adiabatic process
C. BOTH (A) AND (B)
D. None of these

Answer: C

D Watch Video Solution

106. When pressure of a given mass of gas is
tripled, its volume becomes one third at constant temperature. What is this law called
107. What is the order of ideality of the following gases ?
$\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{O}_{2}$

- Watch Video Solution

108. What is the relation between pressure and temperature of a gas at constant volume

Watch Video Solution

109. Give the relationship between r.m.s velocity, average velocity and most probable velocity.

D Watch Video Solution

110. How is kinetic energy of a gas molecule related to the temperature?
111. Write van der Waal's equation for n moles of gas?

D Watch Video Solution
112. Define Boyle's law.

D Watch Video Solution

113. What si the relationship between pressure and density of a gas ?

D Watch Video Solution

114. What is absolute zero temperature?

D Watch Video Solution
115. Between $S O_{2}$ and NH_{3} which gas will diffuse faster at S.T.P ?

- Watch Video Solution

116. How is kinetic energy of a gas molecule related to the temperature?

D Watch Video Solution
117. Under what conditions of temperature and pressure a real gas behaves like an ideak gas ?

D Watch Video Solution

118. What is the value ' R ' in gas equation in calories ?

D Watch Video Solution
119. Write van der Waal's equation for n moles of gas?

D Watch Video Solution
120. At constant temperature the product of pressure and volume of a given mass of gas is constant. What is this law called?

D Watch Video Solution

121. Real gas will approach the behaviour of ideal gas at

D Watch Video Solution

122. The temperature beyond which a gas cannot be liquified even by increase in pressure is called

D Watch Video Solution

123. What is the value of ' R ' in gas equation, when volume is expressed in litres and pressure in atmosphere?
124. Between SO_{2} and NH_{3} which gas will diffuse faster at S.T.P ?

D Watch Video Solution

125. Define Charles's law.

D Watch Video Solution
126. Name the measureable properties that describe the behaviour of gases.
127. Between nitrogen and oxygen which one has higher vapour density?

D Watch Video Solution

128. Arrange the gases, $\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$ in the increasing order of their rate of diffusion.
129. The average K.E. of one mole of any gas is equal to

- Watch Video Solution

130. At what pressure 1 mole of any gas occupies 1 litre volume at 273k.

D Watch Video Solution

131. What is the relation between most probable, average and root mean square
velocity?

- Watch Video Solution

132. Arrange the gases, $\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$ in the decreasing order ..

D Watch Video Solution

133. What is the unit of van der Waal's gas constant 'a' ?

D Watch Video Solution
134. The value universal gas constant R in joule is \qquad
(Watch Video Solution
135. Which of the following has the highest rate of diffusion
$\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{~N}_{2}$

D Watch Video Solution
136. What is the value of a gas constant R in S.I. unit?

- Watch Video Solution

137. Write van der Wall's equation for n moles of a real gas .
138. How does the vapour pressure of a liquid change with intermolecular force of attraction
?

D Watch Video Solution

139. What is the effect of pressure on the
boiling point of a liquid?

D Watch Video Solution
140. How does the boiling point of a liquid change with decrease in atmospheric pressure ?

D Watch Video Solution

141. The vapour pressure of liquid __ with rise of temperature.

D Watch Video Solution
142. With increase of altitude, the boiling point of water
(increase,decreases,remains same)

D Watch Video Solution
143. Define viscosity.

D Watch Video Solution

144. What is root mean square velocity?

- Watch Video Solution

145. State and explain boyle's law.

D Watch Video Solution

146. Which of the two graphs will be a straight
line at constant temperature P versus V or P
versus 1/V Explain.

D Watch Video Solution
147. Distinguish between ideal gas and real gas. Write an equation for one mole of an ideal gas.

- Watch Video Solution

148. Calculate the volume of gas evolved with 7
gm of nitrogen gas at 2 atm Pressure and
273.15K .
149. Calculate the volume of 4 gm molecule of hydrogen at $27^{\circ} C$ and 750 mm pressure.

D Watch Video Solution

150. What are the causes of deviation of the real gases from ideal gas behaviour ?

D Watch Video Solution

151. What are the limitations of van der Waal's equation?
152. How is pressure of a given mass of gas is
related to absolute temperature at constant volume?

D Watch Video Solution
153. A hydrogen baloon expands as it goes up
in the air. Give reasons in one sentence.

D Watch Video Solution
154. Define Boyle's and charle's law. Derive gas equation from these laws.

What will be the volume of 3.2 g of oxygen gas
at $0^{\circ} C$ and 760 mm pressure?

- Watch Video Solution

155. What is absolute zero?
156. What volume will be occuiped by 4 grams of $C O_{2}$ at $27^{\circ} \mathrm{C}$ and 650 mm pressure ?

D Watch Video Solution

157. 7 gms of a gas at $300^{\circ} C$ and 1 atm occupies a volume of 4.1 litre. What is the molar mass of the gas ?

D Watch Video Solution
158. 300 cc of a gas are heated from $27^{\circ} C$ to
$127^{\circ} \mathrm{C}$. What will be the new volume at constant pressure?

D Watch Video Solution

159. Calculate the r.m.s. velocity of oxygen at
$47^{\circ} C$ in cm^{-1}.

- Watch Video Solution

160. In van der Waal's equation what do the constant a and b represent ?

D Watch Video Solution
161. Why are small drops of a liquid spherical ?

- Watch Video Solution

162. What do you understand by viscosity of a
liquid?

- Watch Video Solution

163. Why surface tension of a liquid decreases
with increase of temperature?

D Watch Video Solution

164. Evaporation causes cooling. Explain.

- Watch Video Solution

165. Define surface tension.

- Watch Video Solution

166. The pressure of a real gas is less than the pressure of an ideal gas because of :
A. Increase in the number of collisions
B. Finite size of the molecules
C. Increase in the kinetic energy
D. Intermolecular forces

Answer: D

D Watch Video Solution

167. The compressibility factor for H_{2} and He is
usally :
A. gt 1
B. It 1
C. 1
D. Either of these

Answer: A

D Watch Video Solution

168. The relation between molecular weight
(M) and vapour density (VD) is :
A. $M=2.5 \times V D$
B. $M=2 \times V D$
C. $M=0.5 \times V D$
D. $M=V D$

Answer: B

D Watch Video Solution

169. Which pair of the gaseous species diffuse
through a small jet with the same rate of diffusio at same P and T :
A. NO, CO
B. $\mathrm{NO}, \mathrm{CO}_{2}$
C. $\mathrm{NH}_{3}, \mathrm{PH}_{3}$
D. NO, $C_{2} H_{6}$

Answer: D

D Watch Video Solution

170. The rms speed at NTP of the gas can be calculated from the expression :
A. $\sqrt{3 P-d}$
B. $\sqrt{3 P \frac{V}{M}}$
C. $\sqrt{3 R \frac{T}{M}}$
D. All are correct

Answer: D

D Watch Video Solution

171. If a gas is explained at constant temperature :
A. Number of molecules of the gas
decrease
B. The kinetic energy of the molecules
decrease
C. The kinetic energy of the molecules
remains the same
D. The kinetic energy of the molecules increases

Answer: C

- Watch Video Solution

172. At constant volume, for a fixed number of mole of a gas , the pressure of the gas increase with rise of temperature due to :
A. Increase in average molecular speed
B. Increase in number of mole
C. Increase in molecular attraction
D. Decrease in mean free path

Answer: A

D Watch Video Solution
173. Aclosed vessel contains equal number of nitrogen and oxygen molecules at a pressure
of $P \mathrm{~mm}$. If nitrogen is removed from the system, then the pressure will be :
A. P
B. 2 P
C. P/2
D. P^{2}

Answer: C

D Watch Video Solution

174. Four rubber tubes are respectively filled with H_{2}, O_{2}, N_{2} and he. The tube which will be reinflated forst is :
A. H_{2} filled tube
B. O_{2} filled tube
C. N_{2} filled tube
D. He filled tube

Answer: A

D Watch Video Solution
175. Boyle's law may be expressed as :

$$
\begin{aligned}
& \text { А. }\left(\frac{d P}{d V}\right)_{T}=\frac{K}{V} \\
& \text { В. }\left(\frac{d P}{d V}\right)_{T}=-\frac{K}{V^{2}} \\
& \text { С. }\left(\frac{d P}{d V}\right)_{T}=-\frac{K}{V}
\end{aligned}
$$

D. None of these

Answer: B
176. The vapour density of a gas is 11.2 The volume occupied by11.2 g of rhe gas at NTP is :
A. 1 litre
B. 11.2 litre
C. 22.4 litre
D. 4.8 litre

Answer: B
(Watch Video Solution
177. If air contains N_{2} and O_{2} in volume ratio 4:1, the average vapour density of air is :
A. 14.5
B. 16.5
C. 14.4
D. 29

Answer: C

D Watch Video Solution
178. The equation of State corresponding to 8

g of O_{2} is :

A. $P V=8 R T$
B. $\mathrm{PV}=\frac{R T}{4}$
C. $P V=R T$
D. $\mathrm{PV}=\frac{R T}{2}$

Answer: B
(Watch Video Solution
179. The ratio between the root mean square speed of H_{2} at 50k and that of O_{2} at 800 k is:
A. 4
B. 2
C. 1
D. 1/4

Answer: C

D Watch Video Solution
180. Which contains the same number of molecules as 16 g of oxygen :
A. $16 g O_{3}$
B. $32 g S O_{2}$
C. $32 g \mathrm{SO}_{3}$
D. All of the above

Answer: C
(Watch Video Solution
181. A gaseous mixture contains oxygen and nitrogen in the ration of $1: 4$ by weight therefore, the ratio of their number of molecules is:
A. 1:4
B. 1:8
C. 7:32
D. 3:16

Answer: C
182. Which has more weight at NTP :
A. one litre of oxygen
B. One litre of hydrogen
C. One litre of nitrogen

D. One litre of chlorine

Answer: D

D Watch Video Solution
183. The density of $C C l_{4}$ vapour at $0^{\circ} C$ and 76 cm Hg in g / litre is :
A. 11.2
B. 77
C. 6.88
D. None

Answer: C

D Watch Video Solution
184. The mole percentage of hydrogen in a mixture of 6 g of hydrogen and 28 g of nitrogen is:
A. 25
B. 50
C. 75
D. 100

Answer: C
185. The approximate density of CO_{2} gas at STP is :
A. $1 \mathrm{~mol} / \mathrm{litre}$
B. $2 \mathrm{~g} / \mathrm{litre}$
C. $2 \mathrm{~g} / \mathrm{mL}$
D. $44 \mathrm{~g} / \mathrm{Ml}$

Answer: B

D Watch Video Solution
186. The circulation of blood in human body
supplies O_{2} and releases CO_{2} The
concentration of O_{2} and CO_{2} is variable but on the average, 100 mL blood contains 0.02 g of O_{2} and $0.08 \mathrm{~g} C O_{2}$. The volume of O_{2} and
CO_{2} at 1 atm and body temperature $37^{\circ} \mathrm{C}$, assuming 10 litre blood in human body is :
A. 2 litre, 4 litre
B. 1.5 litre, 4.5 litre
C. 1.59 litre, 4.62 litre

D. 3.82 litre, 4.62 litre

Answer: C

D Watch Video Solution

187. When an ideal diatomic has is heated at
constant pressure the fraction of the heat energy supplied which oncreases the internal energy of the gas is :
A. $2 / 5$
B. $3 / 5$
C. $3 / 7$
D. 5/7

Answer: D

D Watch Video Solution

188. The root mean square soeed of hydrogen
molecules at room temperature is $2400 \mathrm{~ms}^{-1}$
. At room temperature the root mean square
speed of oxygen molecules would be :
A. $400 \mathrm{~m} s^{-1}$
B. $300 m s^{-1}$
C. $600 m s^{-1}$
D. $1600 \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

189. The temperature at which H_{2} has same rms speed (at 1 atm) as that of O_{2} at NTP is :
A. 37 k
B. 17 k
C. 512 k
D. 27 k

Answer: B

D Watch Video Solution

190. 10 g of a gas at NTP occupies a volume of

2 litre. At what temperature will the volume of
2 litre. At what temperature will the volume be
double, pressure and amount of the gas remaining same:
A. 273 k
B. 546 k
C. $-273^{\circ} C$
D. $546^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution
191. The inversion temperature $\left(T_{i}\right)$ for a gas is given by :
A. a /Rb
B. $2 a / R b$
C. Rb/a
D. $\frac{2 R b}{a}$

Answer: B

D Watch Video Solution
192. Which gas can be most readily liquefied :
A. NH_{3}
B. Cl_{2}
C. SO_{2}
D. CO_{2}

Answer: C
(Watch Video Solution
193. Non reacting gases have a tendency to mix with each other. This property is known is :
A. Diffusion
B. Fusion
C. Mixig
D. None

Answer: A

D Watch Video Solution
194. Torr is unit of :
A. Temperature
B. Pressure
C. Volume
D. Density

Answer: B

D Watch Video Solution
195. The van der Walls' equation explains the behaviour of :
A. atm litre mol^{-1}
B. $a t m d m^{3} \mathrm{~mol}^{-1}$
C. dyne $\mathrm{cm} \mathrm{mol}{ }^{-1}$
D. all

Answer: D

D Watch Video Solution

196. An ideal gas obeys:

A. Boyle's law
B. Charle's law
C. Avogadro's law

D. All of these

Answer: D

- Watch Video Solution

197. The numerical value of 'a' the van der Waals' constant is maximum for :
A. NH_{3}
B. H_{2}
C. O_{2}
D. He

Answer: A

D Watch Video Solution
198. Which set of conditions represents easiest way to liquify a gas :
A. Low temperature and high pressure
B. High temperature and low pressure
C. Low temperature and low pressure
D. High temperature and high pressure

Answer: A

D Watch Video Solution
199. The van der Walls' equation explains the behaviour of :
A. Ideal gases
B. Real gases
C. BOTH (A) AND (B)
D. None

Answer: B

D Watch Video Solution
200. Gases deviate from ideal gas behaviour because their molecules:
A. Possess negligible volume
B. Have forces of attraction between them
C. Are polyatomic
D. All of these

Answer: B

D Watch Video Solution
201. The rms speed of hydrogen is $\sqrt{7}$ times
the rms speed of nitrogen. If T is the temperature of the gas, then :
A. $T_{H_{2}}=T_{N_{2}}$
B. $T_{H_{2}}>T_{N_{2}}$
C. $T_{H_{2}}<T_{N_{2}}$
D. $T\left(H_{2}\right)=\sqrt{7} T\left(N_{2}\right)$

Answer: C

- Watch Video Solution

202. At $100^{\circ} \mathrm{C}$ and 1 atm , if the density of liquid water is $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$, and that of water vapour is $0.0006 \mathrm{~g} \mathrm{~cm}^{-3}$, then the volume occupied by water molecules in one litre of stream at that temperature is :
A. $6 \mathrm{~cm}^{3}$
B. $60 \mathrm{~cm}^{3}$
C. $0.6 \mathrm{~cm}^{3}$
D. $0.06 \mathrm{~cm}^{3}$

Answer: C

203. The density of $\mathrm{CO}_{2} a t 100^{\circ} \mathrm{C}$ and 800 mm

 of Hg is :A. $1.51 \mathrm{~g} / \mathrm{L}$
B. 1.51 g. Ml
C. $1.51 \mathrm{~g} / \mathrm{cm}^{2}$
D. None

Answer: A
204. The gases are at absolute temperature 300 K and 350 K respetivily. The ratio of average kinetic energy of their molecules is :
A. 7:6
B. 6:7
C. 36:49
D. 49:36
205. A sample of gas is at $0^{\circ} C$ The temperature at which its rms speed of molecules will be doubled is:
A. $1103^{\circ} \mathrm{C}$
B. $273^{\circ} \mathrm{C}$
C. $723^{\circ} \mathrm{C}$
D. $819^{\circ} \mathrm{C}$
206. Under identical conditions of
temperature the density of a gas A is three
times that of gas B while molecular mass of gas B while molecular mass of gas B is twice that of A. The ratio of pressure of A and B will be :
A. 6
B. 1/6
C. $2 / 3$
D. $3 / 2$

Answer: A

D Watch Video Solution

207. The molecules of a gas A travel four times
faster than the molecules of gas B at the same
temperature. The ratio of molecular weights
$\left(\frac{M_{A}}{M_{B}}\right)$ will be :
A. 1/16
B. 4
C. 1/6
D. 16

Answer: A

- Watch Video Solution

208. 32 g of oxygen and 3 g of hydrogen are mixed and kept in a vessel of 760 mm pressure and $0^{\circ} C$. The total volume occupied by the maximum will be nearly :
A. 22.4 litre
B. 33.6 litre
C. 56 litre
D. 44.8 litre

Answer: C

D Watch Video Solution

209. Two g of hydrogen diffuse from a container in 10 minute. How many gram of oxygen would diffuse through the same

conditions:

A. 5 g
B. 4 g
C. 6 g
D. 8 g

Answer: D
(Watch Video Solution
210. A pre-weighed vessel was filled with oxygen at NTP and weighed, It was then evacuated, filled with $S O_{2}$ at the same temperature and pressure and again weighed.

The weight of oxygen is:
A. The same as that of SO_{2}
B. $1 / 2$ that of $S O_{2}$
C. Twice that of SO_{2}
D. $1 / 4$ that of SO_{2}
211. The ratio of rates of diffusion of CO_{2} and SO_{2} at the same P and T is :
A. $4: s q r t 11$
B. sqrt11:4
C. 1:4
D. 1:6

Answer: A
212. At what temperature will be rate of effusion of N_{2} be 1.625 times the rate of effusion of SO_{2} at $500^{\circ} \mathrm{C}$:
A. 273 K
B. 893 K
C. 110 K
D. 173 K
213. At what temperature will be total kinetic energy (KE) of 0.3 mole He be the same as the total KE of 0.40 mole of Ar at 400 K :
A. 400 K
B. 373 K
C. 533 k
D. 300 k
214. Density of ammonia is $0.77 \mathrm{~g} / \mathrm{litre}$ at NTP.

Its vapour density is :
A. 8.65
B. 86.5
C. 4.33
D. 43.3

Answer: A
215. The average molecular speed is greatest in case of a gas sample of :
A. 2.0 mole of He at 140 K
B. 0.05 mole of Ne at 500 K
C. 0.40 mole of O_{2} at 400 K
D. 1.0 mole of N_{2} at 560 K

Answer: A

- Watch Video Solution

216. Which of the following gases would have the highest RMS speed at $0^{\circ} C$:
A. O_{3}
B. CO_{2}
C. SO_{3}
D. CO

Answer: D

217. The density of neon will be highest at :
A. STP
B. $0^{\circ} C, 2 \mathrm{~atm}$
C. $273^{\circ} \mathrm{C}, 1 \mathrm{~atm}$
D. $273^{\circ} \mathrm{C}, 2 \mathrm{~atm}$

Answer: B
218. At NTP, 5.6 litre of a gas weight 8 g . The vapour density of the gas is:
A. 32
B. 40
C. 16
D. 8

Answer: C
(Watch Video Solution
219. At $27^{\circ} C$ the ratio of root square speeds of ozone to oxygen is :
A. $\sqrt{\frac{3}{5}}$
B. $\sqrt{\frac{4}{3}}$
C. $\sqrt{\frac{2}{3}}$
D. 0.25

Answer: C

D Watch Video Solution
220. 22 g solid CO_{2} or dry ice is enclosed in a
bottle of one litre properly closed. If temperature of bottle is raised to $25^{\circ} C$ to evaporate all the CO_{2}, the pressure in bottle is :
A. 13.23 atm
B. 12.23 atm
C. 11.23 atm
D. 14.23 atm
221. According to Charles's law :

> А. $\left(\frac{D V}{D T}\right)_{P}=K$
> B. $\left(\frac{D V}{D T}\right)_{P}=-K$
> с. $\left(\frac{D V}{D T}\right)_{P}=-\frac{K}{T}$
D. None of these

Answer: A
222. If a gas is heated at constant pressure, its density:
A. Will increase
B. Will decrease
C. Will remain unchanged

D. May increase or decrease

Answer: B

223. Longest mean free path under similar conditions of P and T stands for :
A. N_{2}
B. O_{2}
C. H_{2}
D. $C l_{2}$

Answer: C

- Watch Video Solution

224. Which represents the largest amount of

energy :

A. calorie
B. joule
C. erg
D. electron-volt

Answer: A
(Watch Video Solution
225. Which gas has the highest partial pressure in atmosphere :
A. CO_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. O_{2}
D. N_{2}

Answer: D
(Watch Video Solution
226. The compressibility of a gas is less than unity at S.T.P. Therefore :
A. V_{m} gt 22.4 litres
B. V_{m} It 22.4 litres
C. $V_{m}=22.4$ litres
D. $V_{m}=44.8$ litres

Answer: B

- Watch Video Solution

227. The van der Waals' equation for equal real

 gas is:$$
\begin{aligned}
& \text { A. }\left(P+\frac{a}{V^{2}}\right)(V-b)=R T \\
& \text { B. }\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \\
& \text { C. } P=\frac{n R T}{V-n b}-\frac{a n^{2}}{v^{2}}
\end{aligned}
$$

D. All of the above

Answer: D

D Watch Video Solution

228. With increase of pressure, the mean free path :
A. Decrease
B. Increase
C. Becomes zero
D. Remains same

Answer: A

D Watch Video Solution
229. The value of van der Waals' constant 'a' for gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NH}_{3}$ and CH_{4} re 1.360,1.390,4.170 and 2.253 litre 2 atm mol^{-2} respectively. The gas which can most easily be liquefied is :
A. O_{2}
B. N_{2}
C. NH_{3}
D. CH_{4}

Answer: C
230. A liquid is in equilibrium with its vapours at its boiling point. On the average the molecules in the two phases have equal:
A. Intermolecular forces
B. Potential energy
C. Total energy
D. Kinetic energy
231. Gay-Lussac's law of combining volume is applicable for those gases which on mixing:
A. Do not react
B. React with each other
C. Diffuse
D. All of the above

Answer: B
232. Boyle's law according to kinetic equation can be expressed as :
A. $P V=K T$
B. $P V=R T$
C. $P V=3 / 2 \mathrm{kT}$
D. $P V=2 / 3 k T$

Answer: D

- Watch Video Solution

233. The joule-Thomson coefficient for a gas is zero at :
A. Inversion temperature
B. Critical temperature
C. Absolute temperature
D. Below $0^{\circ} C$

Answer: A

234. A gas will approach ideal behaviour at :

A. Low T and high P
B. Low T and low P
C. High T and low P
D. High T and high P

Answer: C
235. Consider an ideal gas contained in a
vessel. It the intermolecular interaction
suddenly begains to act, which of the following will happen :
A. The pressure decrease
B. The presseure increase
C. The pressure remains unchanged
D. The gas collapses

Answer: A

236. A bottle of dry NH_{3} and bottle of dry HCl

 connected through a long tube are opened simultaneously at both ends, the white ($\mathrm{NH}_{4} \mathrm{Cl}$) ring first formed will be :A. At the centre of the tube
B. Near the HCl bottle
C. Near the ammonia bottle
D. Throughout the length of the tube

- Watch Video Solution

237. At lower temperature, all gases show:
A. Negative deviation
B. Positive deviation
C. Positive and negative deviation
D. None
238. Dalton's law of partial pressure is not applicable to :
A. H_{2} and N_{2} mixture
B. H_{2} and $C l_{2}$ mixture
C. H_{2} and CO_{2} mixture
D. None

Answer: B
239. A perfectiges of a given mass is heated first in a small vessel and then in a large vessel, The P-T curves are :
A. Parabolic with same curvature
B. Parabolic with different curvature
C. Linear with same slope
D. Linear with different slope

Answer: D

240. The numerical value RT/PV for a gas at

 critical conditions is Times of $\mathrm{RT} / \mathrm{PV}$ at normal conditions:A. 4
B. $3 / 8$
C. $8 / 3$
D. $1 / 4$
241. If a mixture of gas has a total pressure of

100 cm Hg and the partial pressure of nitrogen in the mixture is 25 mm Hg , then the per cent of nitrogen in the mixture is :
A. 4%
B. 40%
C. 400%
D. 2.5%

Answer: D

D Watch Video Solution

242. If the concentration of water vapour in
the air is 1% and the total atmospheric pressure equals 1 atm then the partial pressure of water vapour is:
A. 0.1 atm
B. 1 mm Hg
C. 7.6 mm Hg

D. 100 atm

Answer: C

D Watch Video Solution

243. The root mean square speed of the molecules of diatomic gas is u. When the temperature is doubled, the molecules dissociates into two atoms. The new rms speed of the atom is:
A. $\sqrt{2} u$
B. u
C. 2 u
D. 4 u

Answer: C

D Watch Video Solution

244. The rms speed of the molecules of a gas of density 4 kg m^{-3} and pressure $1.2 \times 10^{5} \mathrm{Nm}^{-2}$ is :
A. $120 m s^{-1}$
B. $300 m s^{-1}$
C. $600 m s^{-1}$
D. $900 \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

245. 380 mL of a gas at $27^{\circ} \mathrm{C}, 800 \mathrm{~mm}$ of Hg weight 0.455 g . The mol.wt. of gas is :
A. 27
B. 28
C. 29
D. 30

Answer: B

D Watch Video Solution

246. If the pressure and temperature of 2 litre of CO_{2} are doubled, the volume of CO_{2}
A. 5 litre
B. 4 litre
C. 8 litre
D. 2 litre

Answer: D

D Watch Video Solution

247. The rates of diffusion of O_{2} and H_{2} at same P and T are the ratio :
A. 1:4
B. 1:8
C. 1:16
D. 4:1

Answer: A

D Watch Video Solution
248. A vessel has nitrogen gas and water vapours at a total pressure of 1 atm. The partial pressure of water vapours is 0.3 atm.

The contents of this vessel are transferred to another vessel havig one third of the capacity of original volume, completely at the same temperature, the total pressure of the system in the new vessel is :
A. 3.0 atm
B. 1 atm
C. 3.33 atm
D. 2.4 atm

Answer: D
249.4.4 of CO_{2} and 2.24 litre of H_{2} at STP are mixed in a container. The total number of molecules present in the container will be :
A. 6.022×10^{23}
B. 1.2044×10^{23}
C. 2
D. 6.023×10^{24}

250. 5 g each of the following gases at $87^{\circ} C$

and 750 mm pressure are taken. Which of them will have the least volume :
A. HF
B. HCl
C. HBr
D. HI
251. Air cotains $79 \% N_{2}$ and $21 \% O_{2}$ by volume.lf the barometric pressure is 750 mm Hg the partial pressure of oxygen is :
A. 157.7 mm of Hg
B. 175.5 mm of Hg
C. 315.0 mm of Hg
D. None of the above
252. If the pressure is halved and absolute temperature doubled the volume of the gas will be :
A. 4
B. 2
C. Same
D. 8
253. The average speed of an ideal gas molecule at $27^{\circ} \mathrm{C}$ is $0.3 \mathrm{sec}^{-1}$. The average speed at $927^{\circ} C$ will be ...m ${ }^{\text {'sec }}{ }^{\wedge}(-1)$.
A. 0.6
B. 0.3
C. 0.9
D. 3
254. The rate of diffusion of SO_{2} and O_{2} at
the same P and T are in the ratio $(\mathrm{S}=32, \mathrm{O}=$
16):
A. 1:32
B. 1:4
C. 1:2
D. $1: \sqrt{2}$
255. 20 g of hydrogen is present in 5 litre vessel, The molar concentration of hydrogen is
A. 2
B. 4
C. 3
D. 1
256. Graham's law deals wih the relation between :
A. Pressure and volume
B. Density and rate of diffusion
C. Rate of diffusion and volume
D. Rate of diffusion and viscocity

Answer: B
257. The average kinetic energy of an ideal gas per molecule in SI units at $25^{\circ} \mathrm{C}$ will be :
A. $6.17 \times 10^{-21} K J$
B. $6.17 \times 10^{-21} J$
C. $6.17 \times 10^{-21} J$
D. $7.16 \times 10^{-20} J$

Answer: B

- Watch Video Solution

258. Joule-Thomson coefficient $\left(\mu_{\pi}\right)$ is given by
A. $\left(\left(\delta \frac{T}{\delta P}\right)_{H}\right.$
B. $\left(\left(\delta \frac{T}{\delta P}\right)_{E}\right.$
C. $\left(\left(\delta \frac{P}{\delta H}\right)_{H}\right.$
D. None of these

Answer: A
259. Joule-Thomson coefficient $\left(\left(\delta \frac{T}{\delta P}\right)_{H}\right.$ for an ideal gas is :
A. zero
B. +ve
C. -ve
D. None of these

Answer: A

D Watch Video Solution

260. The ratio of the average speed of an oxygen molecle to the rms speed of a nitrogen molecule at the same temperature is :
A. $\left(\frac{3 \pi}{7}\right)^{\frac{1}{2}}$
B. $\left(\frac{7}{3 \pi}\right)^{\frac{1}{2}}$
C. $\left(\frac{3}{7 \pi}\right)^{\frac{1}{2}}$
D. $\left(\frac{7 \pi}{3}\right)^{\frac{1}{2}}$

Answer: B
261. Boyle's law is applicable in :
A. Isobaric process

B. Isochoric process

C. Isothermal process

D. Adiabatic process

Answer: C

262. Charle's law is applicable under

A. Isobaric process

B. Isochoric process

C. Isothermal process

D. Adiabatic process

Answer: A
263. Which represents kinetic equation for gases ?

> A. $P V=m \nu^{2}$
> В. $P V=\frac{1}{2} m \nu^{2}$
> С. $P V=\frac{1}{3} m \nu^{2}$
D. None of these

Answer: C
(Watch Video Solution
264. A mixture of two gases, having partial pressure P_{1} and P_{2} has total pressure P , then according to Dalton's law :
A. $P=P_{1}+P_{2}$
B. $P=\sqrt{P_{1}+P_{2}}$
C. $P=P_{1} \times P_{2}$
D. $P=\frac{P_{1}+P_{2}}{2}$

Answer: A
265. The critical temperature of a gas is that temperature :
A. Above which it can no longer remain in
the gaseous state
B. Above which it cannot be liquefied by
pressure
C. At which it soldifies
D. At which volume of gas becomes zero

Answer: B

266. The term that accounts for intermolecular

force in van der Waals' equation for non ideal gas is :
A. RT
B. V-b
C. $\left(P+\frac{a}{V^{2}}\right)$
D. $[R T]^{-1}$
267. The mean free path (λ) of a gas sample is given by :
A. $\lambda=$ sqrt2pisigma^ $2 \mathrm{~N}{ }^{\wedge}$
B. $\lambda=1 /$ sqrt2pisigma^ $2 \mathrm{~N}^{\wedge}$
C. $\lambda=\sqrt{2} u \pi \sigma^{2} N$
D. None of these

Answer: B
268. Which does not change during compression of a gas at constant temperature ?
A. Density of a gas
B. The distance between molecules
C. Average speed of molecules
D. The number of collisions

Answer: C
269. As the speed of molecules increase, the number of collisions per second :
A. Decrease
B. Increase
C. Does not change
D. None of these

Answer: B
270. A real gas at high pressure occupies under identical conditions :
A. More volume than that of an ideal gas
B. Less volume than that of an ideal gas
C. Same volume as that of an ideal gas
D. More or less volume than that of an ideal gas depending upon the nature of the gas

D Watch Video Solution

271. The unit of van der Waals' constant 'a' is :

A. atm litre ${ }^{2}$ mol $^{-2}$
B. dyne $\mathrm{cm}^{4} \mathrm{~mol}^{-2}$
C. newton $m^{4} \mathrm{~mol}^{-2}$
D. All of the above
272. The temperature at which the second virial coefficient of a real gas is zero is called :
A. Critical pressure
B. Eutectic point
C. Boiling point
D. Boyle's temperature

Answer: D
273. The cooling caused by the adiabatic expansion of a compressed gas below its inversion temperature $\left(T_{i}\right)$ without doing external work is called :
A. Joule-Thomson effect
B. Adiabatic demagnetism
C. Tyndall effect
D. Compton effect

Answer: A

D Watch Video Solution

274. While 'He' is allowed to expland through a
small jet under adibatic condition heating effectt is observed. This is due to the fact that:
A. Helium is an inert gas
B. Helium is a noble gas
C. Helium is an ideal gas

D. The inversion temperature of helium is

very low.

Answer: D

D Watch Video Solution

275. The average speed of gas molecules is equal to :
A. Average speed
B. Most probable speed

C. RMS speed

D. None of these

Answer: B

D Watch Video Solution

276. The temperature of a sample of gas is
raised from $127^{\circ} \mathrm{C}$ to $527^{\circ} \mathrm{C}$. The average kinetic energy of the gas :
A. Does not change
B. Is doubled
C. Is halved
D. Cannot be calculated

Answer: B

D Watch Video Solution
277. One mole each of a monoatomic, diatomic
and triatomic gases are mixed, $\frac{C_{p}}{C_{v}}$ for the mixture is :
A. 1.4
B. 1.428
C. 1.67
D. None of these

Answer: B

D Watch Video Solution
278. One mole of an ideal monoatomic gas mixed with 1 mole of an ideal diatomic gas.

The molar specific heat of thr mixture at constant vlume is :
A. 3 cal
B. 4 cal
C. 8 cal
D. 9 cal

Answer: B
(Watch Video Solution
279. The average speed of O_{2} at 273 K is equal to that of H_{2} at :
A. Same T
B. Higher T
C. Lower T
D. None of these

Answer: C
(Watch Video Solution
280. Two sealed containers of the same capacity and at the same T are filled with 44 g of H_{2} gas in one and 44 g of CO_{2} in other. If the P of CO_{2} is 1 atm in other, the P of H_{2} in its container will be :
A. 1 atm
B. Zero
C. 22 atm
D. 44 atm

Answer: C
281. For hydrogen gas $C_{p}-C_{v}=a$, and for oxygen gas $C_{p}-C_{v}=b$, so the relation between a and b is :
A. $a=16 b$
B. $16 \mathrm{a}=\mathrm{b}$
C. $a=4 b$
D. $a=b$

- Watch Video Solution

282. For a gas $\left(\frac{R}{C_{v}}\right)=0.67$, the gas is made up of molecule which are:
A. Monoatomic
B. Diatomic
C. Polyatomic
D. Mixture of gases

Answer: A
283. The density of air would be maximum at :
A. 373 K and 1 atm
B. 273 K and 2 atm
C. 373 K and 2 atm
D. 273 K and 1 atm

Answer: B

- Watch Video Solution

284. At what temperature would the volume of
a given mass of a gas at constant pressure be twice to its volume at $0^{\circ} C$
A. $100^{\circ} \mathrm{C}$
B. $273^{\circ} \mathrm{C}$
C. $373^{\circ} \mathrm{C}$
D. $446^{\circ} \mathrm{C}$

Answer: B
(Watch Video Solution

285. A gas is heated from $0^{\circ} C$ to $100^{\circ} C$ at 1.0

atm pressure. If the initial volume of the gas is

10 litre, its final volume would be :
A. 7.32 litre
B. 10.0 litre
C. 13.66 litre
D. 20.2 litre

Answer: C

D Watch Video Solution

286. A certain gas diffuses from two different

vessels A and B The vessel A has a circular orifice while vessel B has square orifice of length equal t the radius of the orifice of vessel A. The ratio of the rates of diffusion of the gas from vessel A to vessel B, assuming same temperature and pressure is :
A. π
B. 7:22
C. 1:1

D. 2:1

Answer: A

- Watch Video Solution

287. Equal masses of nitrogen and ethylene are mixed in an empty container at $27^{\circ} \mathrm{C}$. The total pressure exerted by the gaseous mixture is 1 atm. The partial pressure exerted by ethylene gas is :
A. 0.67 atm
B. 0.33 atm
C. 0.50 atm
D. 0.20 atm

Answer: C

D Watch Video Solution

288. Which of the following pair of gases
contain the same number of molecules:
A. $16 g O_{2} 14 g N_{2}$
B. $8 g O_{2}, 22 g N_{2}$
C. $28 g N_{2}, 22 g C O_{2}$
D. $32 g O_{2}, 32 g N_{2}$

Answer: A

D Watch Video Solution

289. A mixture of helium and argon contains 3
mole of He for every 2 mole of Ar. The partial pressure of argon is :
A. 2/3 the total pressure
B. $1 / 3$ the total pressure
C. 2/5 the total pressure
D. $1 / 5$ the total pressure

Answer: C

D Watch Video Solution

290. One atomosphere is numerically equal to

A. 10^{6} dyne cm^{-2}
B. 10^{2} dynecm $^{-2}$
C. 10^{4} dyne cm^{-2}
D. 10^{8} dyne cm^{-2}

Answer: A

D Watch Video Solution
291. The pressure of a gas is due to :
A. The collision of gas molecules against each other
B. The random movement of gas molecules
C. The intermolecular forces of attraction
between the gas molecules
D. The collision of gas molecules against
the walls of the container

Answer: D

292. The kinetic energy of molecules at constant temperature in gaseous state is :
A. More than those in the liquid state
B. Less then those in the liquid state
C. Equal to those in the liquid state
D. None of these

Answer: C

- Watch Video Solution

293. A real gas most closely approaches the behaviour of an ideal gas at :
A. 15 atmosphere and 200 K
B. 1 atmosphere and 273 K
C. 0.5 atmosphere and 500 K
D. 15 atmosphere and 500 K

Answer: C

D Watch Video Solution
294. Pressure remaining the same, the volume
of a given mass of an ideal gas increase for every degree centigrade rise in temperature by a definite fraction of its volume at :
A. Zero degree centigrade
B. Its critical temperature
C. Absolute zero
D. Its Boyle's temperature

Answer: A

295. The numerical value of $C_{p}-C_{v}$ is equal to :
A. R
B. R / M
C. M / R

D. None

Answer: B
296. The gases showing heating and cooling effect during Joule-Thomson's experiment have Joule-Thomson coeffieient:
A. +ve and -ve respectively
B. -ve and +ve respectively
C. +ve
D. -ve

Answer: B

297. One poise is equal to :

A. 1 dyne $\sec ^{-2}$

B. 1 dyne $\sec c m^{-2}$
C. dyne $\sec ^{-1} \mathrm{~cm}^{-2}$
D. dyne $\mathrm{sec}^{-1} \mathrm{~cm}^{-1}$

Answer: B
298. At a given temperature ad pressure, the rate of diffusion of a gas is:
A. Directly proportional to the density of
the gas
B. Directly proportional to the square root
of its density of the gas
C. Inversely proportional to the square
root of its density.
D. Inversly proportional to the square root
of its density

Answer: D

- Watch Video Solution

299. At low pressure, van der Waals' equation is reduced to $\left[(P)+\frac{a}{V^{2}}\right] V=R T$. The compressibility factor can be given as :
A. $1-\frac{a}{R T V}$
B. $1-\frac{R T V}{a}$
C. $1+\frac{a}{R T V}$
D. $1+\frac{R T V}{a}$

Answer: A

D Watch Video Solution

300. The average speed of gas molecules is equal to :
A. $\left[\frac{2 R T}{M}\right]^{\frac{1}{2}}$
B. $\left[\frac{3 R T}{M}\right]^{\frac{1}{2}}$
C. $\left[\frac{8 R T}{\pi M}\right]^{\frac{1}{2}}$
D. $\left[\frac{4 R T}{\pi M}\right]^{\frac{1}{2}}$

Answer: C

D Watch Video Solution

301. Average speed is equal to :
A. 0.9813 rms speed
B. 0.9 rms speed
C. 0.9213 rms speed
D. 0.9602 rms speed

D Watch Video Solution

302. The strength of van der Waals' forces increase with :
A. Increase in molecular size
B. Increase in the number of electrons in
the molecule
C. Increase in molecular weight
D. All of these

Answer: D

D Watch Video Solution

303. Most probable speed, average speed and rms speed are related as :
A. 1:1.128:1.224
B. 1:1.128:1.424
C. 1:2.128:1.224

D. 1:1.428:1.442

Answer: A

D Watch Video Solution

304. Which shows combined relationship of Boyle's law and Charles' law :
A. $\frac{P_{1}}{P_{2}}=\frac{T_{1}}{T_{2}}$
B. $P V=K$
C. $\frac{P_{2}}{P_{1}}=\frac{V_{1}}{V_{2}}$

$$
\text { D. } \frac{V_{2}}{V_{1}}=\frac{P_{1}}{P_{2}} \times \frac{T_{2}}{T_{1}}
$$

Answer: D

D Watch Video Solution

305. The unit of van der Waals' constant ' b ' is:
A. $c m^{3} \mathrm{~mol}^{-1}$
B. litre mol^{-1}
C. $m^{3} \mathrm{~mol}^{\wedge}-1^{`}$
D. All of these

Answer: D

D Watch Video Solution

306. Which expression is valid for an ideal gas:

$$
\begin{aligned}
& \text { A. } P V=\frac{R T}{n} \\
& \text { B. } V_{1} T_{1}=V_{2} T_{2} \\
& \text { C. } P_{1} V_{2}=V_{1} P_{2} \\
& \text { D. } P_{1} T_{2} d_{2}=P_{2} T_{1} d_{1}
\end{aligned}
$$

307. According to the ideal gas laws, the molar volume of a gas is given by :
A. 22.4 litre
B. $\frac{R T}{P}$
C. $\frac{8 R T}{P V}$
D. $\frac{R T}{P V}$

Answer: B
308. At STP ,the order of root mean square speed of molecules H_{2}, N_{2}, O_{2} and HBr is:
A. $H_{2}>N_{2}>O_{2}>H B r$
B. $\mathrm{HBr}>\mathrm{O}_{2}>\mathrm{N}_{2}>\mathrm{H}_{2}$
C. $\mathrm{HBr}>\mathrm{H}_{2}>\mathrm{O}_{2}>\mathrm{N}_{2}$
D. $\mathrm{N}_{2}>\mathrm{O}_{2}>\mathrm{H}_{2}>\mathrm{HBr}$

Answer: A

D Watch Video Solution
309. Which will weigh more at STP:
A. One litre of 02
B. One litre of H ,
C. One litre of N2
D. One litre of Cl 2

Answer: D

- Watch Video Solution

310. Helium atom is two times heavier than a hydrogen molecule. At $15^{\circ} \mathrm{C}$ the average KE of helium atom is:
A. Twice that of hydrogen
B. Same as that of.hydrogen
C. Four times that of hydrogen
D. Half that of hydrogen

Answer: B

- Watch Video Solution

311. The rms speed of gas, molectfles at a temperature 27 K and pressure 1.5 bar is
$1 \times 10 \mathrm{~cm} / \mathrm{sec}:$ If both temperature and pressure are raised three times, the rms speed of the gas will be:
A. $9 \times 10^{4} c \frac{m}{\mathrm{sec}}$
B. $3 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$
C. $1 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$
D. $1 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$

Answer: D

- Watch Video Solution

312. Two gases A and B, having the mole ratio of 3:5 in a container, exert a pressure of 8 atm.

If A is removed, what would be the pressure due to B only, temperature remaining constant:
A. 1 atm
B. 2 atm
C. 4 atm
D. 5 atm

Answer: D

D Watch Video Solution

313. Volume occupied by molecules of one mole gas at NTP, each having radius of 10^{-8} cm is :
A. 22.0 litre
B. 22.4 litre
C. 10.09 mL
D. 10.09 litre

Answer: C

D Watch Video Solution

314. The ratio of the average molecular kinetic energy of $U F_{6}$ to that of H_{2}, both at 300 K is :
A. 1:1
B. 7:2
C. 176:1
D. 2:7

Answer: A

D Watch Video Solution

315. The kinetic energy of any gas molecule at $0^{\circ} C$ is :
A. $5.66 \times 10^{-21} J$
B. 3408 J
C. 2 cal
D. Zero

- Watch Video Solution

316. 24 g of CH_{4} at NTP occupy a volume of:
A. 33.6 litre
B. 22.4 litre
C. 11.2 litre
D. 44.8 litre
317. Total energy of one mole of an ideal gas
(monoatomic) at $27^{\circ} C$ is :
A. 600 cal
B. 900 cal
C. 800 cal
D. 300 cal

Answer: B
318. For 1 g molecule of an ideal gas:

$$
\begin{aligned}
& \text { A. } \frac{P V}{T}=2 \mathrm{cal} \\
& \text { B. } \frac{P V}{T}=3 / 2 \mathrm{cal} \\
& \text { C. } \frac{P V}{T}=8.31 \mathrm{cal} \\
& \text { D. } \frac{P V}{T}=0.831 \mathrm{cal}
\end{aligned}
$$

Answer: A
(Watch Video Solution
319. The molecular weight of a gas which diffuses through a porous plug of 1/6th of the speed of hydrogen under identical conditions is :
A. 27
B. 72
C. 36
D. 48

Answer: B
320. Four particals have speed $2,3,4$ and $5 \mathrm{~cm} / \mathrm{s}$ respectively .Their rms speed is :
A. $3.5 \mathrm{~cm} / \mathrm{s}$
B. $\frac{27}{2} \mathrm{~cm} / \mathrm{s}$
C. $\sqrt{54}$
D. $\frac{\sqrt{54}}{2} \mathrm{~cm} / \mathrm{s}$

Answer: D
321. A and B are two identical vessels. A contains 15 g of ethene at 298 K and 1 atm. The vessel B contains 75 g gas X_{2} at the same temperature and pressure. The vapour density of X_{2} is:
A. 75
B. 150
C. 37.5
D. 300

Answer: A

D Watch Video Solution

322. The temperature of an ideal gas is increased from 140 K to $560 \mathrm{~K} . \mathrm{If}$ at 140 K the root mean square velocity of the gas molecules is V , at 560 K it becomes:
A. 5 V
B. 2 V
C. $\mathrm{V} / 2$

D. $\mathrm{V} / 4$

Answer: B

D Watch Video Solution

323. 4.0 g of argonhas pressure P and temeperature T K in a vessel. On keeping the vessel at $50 \circ C$ higher temperature, 0.8 g of argon was given out to maintain the pressure P. The original temperature was :
A. 73 K

B. 100 K

C. 200 K

D. 510 K

Answer: C

D Watch Video Solution
324. Which of the following pairs of gases
contains same number of molecules ?
A. 11 g of CO_{2} and 7 g of N_{2}
B. 44 g of CO_{2} and 44 g of N_{2}
C. 22 g of CO_{2} and 28 g of N_{2}
D. None is correct

Answer: A

D Watch Video Solution

325. The rate of diffusion of methane at a given temperature is twice that of a gas X. The molecular weight of X is :
A. 64
B. 32
C. 4
D. 8

Answer: A

D Watch Video Solution

326. The ratio of Boyle's temperature and critical temperature for a gas is:
A. $8 / 27$
B. $27 / 8$
C. $1 / 2$
D. $2 / 1$

Answer: B

D Watch Video Solution

327. A flask of methane $\left(\mathrm{CH}_{4}\right)$ was weighed

Methane was then pushed out and the flask again weighed when filled with oxygen at the
same temperature and pressure. The mass of oxygen would be :
A. The same as the methane
B. Half of the methane
C. Double of the methane
D. Negligible in comparison to that of methane

Answer: C
328. In deriving the kinetic equation we make use of the root mean square speed of the molecules which is:
A. The average speed of molecules
B. The most probable speed of molecules
C. The square root of the average of the
square of the speed of the molecules
D. The most accurate form in which speed
can be used in the calculations

D Watch Video Solution

329. The rates of diffusion of
$S O_{2}, \mathrm{CO}_{2}, \mathrm{PCl}_{3}, \mathrm{SO}_{3}$ are in the following order :

> A. $P C l_{3}>S O_{3}>S O_{2}>C O_{2}$
> B. $C O_{2}>S O_{3}>P C l_{3}>S O_{3}$
> C. $S O_{2}>S O_{3}>P C l_{3}>C O_{2}$
> D. $C O_{2}>S O_{2}>S O_{3}>P C l_{3}$

Answer: D

D Watch Video Solution

330. Kinetic theory of gases assumes that tiny particles called molecules:
A. Contain average KE proportional to
absolute temperature
B. Exert no force during collisions
C. Exert attractive force on each other

D. Contain constant KE at all temperature

Answer: A

D Watch Video Solution

331. Graham's law of diffusion gives better results at :
A. High pressure
B. High temperature
C. Low pressure
D. at all conditions

Answer: C

D Watch Video Solution

332. The kinetic energy of any gas molecule at $0^{\circ} C$ is :
A. 819.0 cal
B. 84.43 cal
C. 8.143 cal
D. None

Answer: A

D Watch Video Solution

333. The concept of critical temperature for a
gas was given by :
A. Andrew
B. Boyle
C. Charles
D. None

Answer: A

D Watch Video Solution

334. The kinetic energy of molecule is zero at:
A. $0^{\circ} C$
B. $273^{\circ} C$
C. $-273^{\circ} C$
D. $116^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

335. The word 'molecule' was first introduced by :
A. Dalton
B. Bohr
C. Avogadro
D. Rutherford

Answer: C

- Watch Video Solution

336. In case of hydrogen and helium the van der Waals' forces are :
A. Strong
B. Very strong
C. Weak
D. None

Answer: C

D Watch Video Solution

337. If for two gases of molecular weight M_{A}
and M_{B} at temperature T_{A} and
$T_{B}, T_{A} M_{B}=T_{B} M_{A}$, then which property has the same magnitude for both the gases:
A. Density
B. Pressure
C. KE per mole

D. rms speed

Answer: D

D Watch Video Solution

338. Solubility of a gas in water:
A. Increases with temperature
B. Decreases with pressure
C. Decreases with temperature
D. None

Answer: C

D Watch Video Solution

339. Which gas has the same rate of diffusion as that of CO_{2} at same P and T ?
A. $N_{2} O$
B. NO_{2}
C. N_{2}
D. CO

D Watch Video Solution

340. The compressibility factor of a gas is defined as $Z=\frac{P V}{N} r t$. The compressibility factor of an ideal gas is :
A. zero
B. Infinite
C. 1
D. -1

D Watch Video Solution

341. The number of collision depends on:
A. Mean free path

B. Pressure

C. Temperature
D. All of these
342. The density of a gas is equal to ($P=$ pressure , $\mathrm{V}=$ volume, $\mathrm{T}=$ temperature, $\mathrm{R}=\mathrm{gas}$ constant, $\mathrm{n}=$ number of mole and $\mathrm{M}=$ molecular weight) :
A. Np
B. $\frac{P M}{R T}$
c. $\frac{P}{R T}$
D. M / V

Answer: B

D Watch Video Solution

343. Molecular attraction and size of the molecules in a gas are negligible at :
A. Critical point
B. High pressure
C. High temperature and low pressure
D. Low temperature and high pressure

D Watch Video Solution

344. For a real gas, deviations from ideal gas behaviour are maximum at :
A. $-10^{\circ} C$ and 5.0 atm
B. $0^{\circ} \mathrm{C}$ and 2.0 atm
C. $0^{\circ} \mathrm{C}$ and 1.0 atm
D. $100^{\circ} \mathrm{C}$ and 2.0 atm

D Watch Video Solution

345. Vapour density of a substance is dependant of:
A. Volume
B. Temperature
C. Pressure
D. Mol. Weight

Answer: D

D Watch Video Solution

