©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MBD CHEMISTRY (ODIA

ENGLISH)

STRUCTURE OF ATOM

Question Type

1. Calculate the wavelength and energy of
radiation emitted for the electronic transition
from infinity (∞) to stationary state of one of hydrogen atom.

D Watch Video Solution

2. Calculate the momentum of a particle which has a de Brogile wavelength of 0.1m.

- Watch Video Solution

3. Two particles A and B are in motion. If the wavelength associated with the particle A is
$5 \times 10^{-5} \mathrm{~m}$, calculate the wavelength of particle B, if its momentum is half of A.

D Watch Video Solution

4. Calculate frequency and wave number of radiation having wavelength 600 nm .

- Watch Video Solution

5. The wave number of a beam of light is 400 $\mathrm{cm}^{\wedge}(-1)$. What is the wavelength of light in

nanometres?

- Watch Video Solution

6. Calculate the wavelength, frequency and wave number of a light whose period $2.0 \times 10^{-10} s$.

D Watch Video Solution

7. Calculate and compare the energies of two
radiations, one with a wavelength of 400 nm
and the other with 800 nm .

- Watch Video Solution

8. The minimum energy required for the photoemission of electron from the surface of a metal is $4.95 \times 10\left({ }^{\wedge}-19\right)$ joules. Calculate
the critical frequency and the corresponding wavelength of the photon required to eject the electron.

- Watch Video Solution

9. Calculate the wavelength of a body of mass

2 mg moving with a velocity of $10 \mathrm{~m} \mathrm{sec}(-1)$

- Watch Video Solution

10. Name an isotope of hydrogen.

- Watch Video Solution

11. Write the electronic configuration of the elements having atomic number 27.

Watch Video Solution

12. What is the difference between two isotopes of an element?

- Watch Video Solution

13. Draw the atomic structure of an element containing 11 protons, 11 electrons and 12 neutrons?
(Watch Video Solution
14. Write the electronic configuration of the elements having atomic number 26 .

- Watch Video Solution

15. Which elements has electronic configuration $1 s^{2} 2 s^{3} s^{2} 3 p^{6} 4 s^{2}$?

- Watch Video Solution

16. Write the electronic configuration of the elements having atomic number 24.

- Watch Video Solution

17. The atom of which element has no neutron in its nucleus?
(Watch Video Solution
18. Which atom has the electronic configuration $1 s^{2} 2 s^{2} 2 p^{3}$?

- Watch Video Solution

19. Write the electronic configuration of the elements having atomic number 25 .
(Watch Video Solution
20. Name three fundamental particles which make an atom.

- Watch Video Solution

21. What is the maximum number of electrons
that can remain in a d-subshell ?

D Watch Video Solution
22. An atom of an element has its K and L shells completely filled with electrons. What is
its atomic number?
(Watch Video Solution
23. What is the shape of the ' p ' orbital ?

D Watch Video Solution

24. Give the electronic configuration of the element.
having atomic number 24.
having atomic number 29.

D Watch Video Solution

25. Which quantum number specifies the
shape of an orbital in an atom?

D Watch Video Solution
26. Name the atoms indicated by the following
configuration.
$1 s^{2} 2 s^{2} p^{2}$
$1 s^{2} 2 s^{2} p^{6} 3 s^{1}$

D Watch Video Solution

27. Which rule explains the three unpaired electrons present in nitrogen atom?
28. How many number of electrons and neutrons are present in tritium ?

- Watch Video Solution

29. From amongst the following electronic configuration, find out the alkaline earth element.
$[A r] 4 s^{2}$
$[A r] 3 d^{5} 4 s^{2}$
$[A r] 3 d^{10} 4 s^{2}$
30. Give electronic configuration of chlorine atom.
(Watch Video Solution
31. Name three fundamental particles which make an atom.

D Watch Video Solution

32. The atom of which element has no neutron

 in its nucleus?D Watch Video Solution
33. What is the shape of the ' p ' orbital ?

- Watch Video Solution

34. Write the electronic configuration of the atom having atomic number 29 ?

- Watch Video Solution

35. State Pauli's exclusive principle.

- Watch Video Solution

36. What is the electronic configuration of the element of atomic number 22. To which group of the periodic table does it belong ?

37. State Aufbau's principle.

D Watch Video Solution

38. If the principal quantum number n has a
value of 3 , what are the permitted values of other quantum numbers?

D Watch Video Solution

39. State Pauli's exclusive principle.
40. What is the difference between two isotopes of an element ? Give one example.

D Watch Video Solution

41. Write a short note on Bohr's atomic model
?

- Watch Video Solution

42. What is uncertainty principle ?

D Watch Video Solution

43. State Hund's rule of maximum multiplicity.

- Watch Video Solution

44. Why three p-orbitals of each of the two atoms cannot form more than one sigma bond?
45. Which quantum number has different values for the two electrons of helium atom?

D Watch Video Solution

46. State the number of neutrons and protons
present in C^{12} and C^{14}.

D Watch Video Solution
47. Justify the position of carbon and lead in
the periodic table on the basis of electronic configuration.

- Watch Video Solution

48. The electronic configuration of an atom is
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$. Determine its atomic number.
How many neutrons are present in the nucleus if its atomic weight is 24 .
49. An atom has its K and L shells completely
filled and six electrons in the M shell. How many p-electron are there in the atom?

D Watch Video Solution

50. Give the quantum numbers of the electron present in hydrogen atom.
51. Why three p-orbitals of each of the two atoms can't form more than one sigma bond ?

D Watch Video Solution

52. Name an element, the atom of which
contains maximum number of unpaired electrons in the d orbital.

D Watch Video Solution
53. State the number of neutrons and protons present in C^{12} and C^{14}.

- Watch Video Solution

54. An atom has its K and L shells completely
filled and seven electrons in the M-shell. Find out the total number of p-electron in an atom ?

55. State and briefly explain Aufbau's principle.

- Watch Video Solution

56. Write the electronic configuration of an element atomic number 25 ?

- Watch Video Solution

57. Give the value of n and I for each of the subshell:
$2 p$

4s

4d

4f

- Watch Video Solution

58. Describe the essential postulates of Bohr's
theory of atom. How does Bohr's theory differ from that of Rutherford?
59. Write a note on Pauli's exclusion principle

(Watch Video Solution

60. State Hund's rule.

- Watch Video Solution

61. Derive de-Broglie's equation and state its
significance.

D Watch Video Solution
62. Give an account of Rutherford's model of
the atom. How did Bohr prove upon Rutherford's nuclear model of the atom.

D Watch Video Solution

63. What are quantum numbers ? Describe briefly four quantum numbers?

- Watch Video Solution

64. Give an account of Rutherford's model of
the atom. How did Bohr prove upon

Rutherford's nuclear model of the atom.

- Watch Video Solution

65. What are quantum numbers ? Describe briefly four quantum numbers?

D Watch Video Solution
66. Which is more stable configuration and why ? ${ }^{\wedge} 4 s^{\wedge} 23 d^{\wedge} 9$ and $4 S^{\wedge} 14 s^{\wedge} 10$

D Watch Video Solution

67. What is the order of increasing bond angle of the following ? What is the theory involved
? $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$

D Watch Video Solution
68. The atomic orbitals are progressively filled in order of increasing energy. This principle is called:
A. Hund's rule
B. Aufbau principle
C. Exclusion principle
D. de-Broglie rule

Answer: B

- Watch Video Solution

69．The orbital diagram in which both Pauli＇s exclusion principle and Hund＇s rule are violated is：

B．
c．四 リ／レ
D．四 1411

Answer：A
－Watch Video Solution

70. Who modified Bohr's theory by introducing

 elliptical orbits for electron path ?A. Hund
B. Thomson
C. Rutherford
D. Sommerfeld

Answer: D
(Watch Video Solution
71. The following quantum numbers are possible for how many orbitals?

$$
n=3, \mathrm{l}=2, \mathrm{~m}=+2
$$

A. 3
B. 2
C. 1
D. 4

Answer: C

72. The 19th electron of chromium has which

 of the following sets of quantum numbers?A. $n=3, \mathrm{l}=0, \mathrm{~m}=0, \mathrm{~s}=1 / 2$
B. $n=3, I=2, m=-2, s=1 / 2$
C. $n=4, \mathrm{l}=0, \mathrm{~m}=0, \mathrm{~s}=1 / 2$
D. $n=4, I=1, m=-1, s=1 / 2$

Answer: C

- Watch Video Solution

73. Which of the following sets of quantum

numbers is not possible?

A. $n=2, l=1, m=-1, s=-1 / 2$
B. $n=2, l=1, m=-1, s=+1 / 2$
C. $n=3, \mathrm{l}=0, \mathrm{~m}=-2, \mathrm{~s}=+1 / 2$
D. $n=3, l=2, m=-3, s=+1 / 2$

Answer: D

D Watch Video Solution

74. Which one of the following pairs of ions have the same electronic configuration ?

$$
\begin{aligned}
& \text { A. } \mathrm{Cr}^{3+}, \mathrm{Fe}^{3+} \\
& \text { B. } \mathrm{Fe}^{3+}, \mathrm{Co}^{3+} \\
& \text { C. } \mathrm{Fe}^{3+}, \mathrm{Mn}^{2+} \\
& \text { D. } \mathrm{Sc}^{3+}, \mathrm{Cr}^{3+}
\end{aligned}
$$

Answer: B

- Watch Video Solution

75. In a hydrogen atom if the energy of an electron in the ground state is 13.6 eV then that in the second excited state is:

A. -1.51 eV
B. -6.04 eV
C. -3.4 eV
D. -13.6 eV

Answer: A

- Watch Video Solution

76. Which of the following ions has the maximum magnetic moment ?
A. $M n^{2+}$
B. $T i^{2+}$
C. $F e^{2+}$
D. $C r^{2+}$

Answer: A

D Watch Video Solution
77. In hydrogen atom, energy of first excited state is -3.4 eV . Then find out the K.E. of the electron in the same orbit of hydrogen atom.
A. -1.51 eV
B. -6.04 eV
C. -3.4 eV
D. -13.6 eV

Answer: A

78. The wavelength associated with a golf ball

 weighing 200 g and moving at a speed of $5 \mathrm{~m} / \mathrm{h}$is of the order
A. $10^{-10} \mathrm{~m}$
B. $10^{-20} \mathrm{~m}$
C. $10^{-36} \mathrm{~m}$
D. $10^{-40} \mathrm{~m}$

Answer: C

D Watch Video Solution
79. The quantum numbers $+1 / 2$ and $-1 / 2$ for the electron spin represent :
A. rotation of the electron in clockwise and anticlockwise direction respectively.
B. rotation of the electron in anti clockwise
and anticlockwise direction respectively.
C. Magnetic moment of the electron pointing up and down respectively

D. two quantum mechanical spin states

which have no classical analogue

Answer: D

D Watch Video Solution

80. Identify the least stable among the following
A. $L i^{-}$
B. $B e^{-}$
C. B^{-}
D. C^{-}

Answer: B

D Watch Video Solution

81. If the nitrogen atom had electronic configuration is $1 s^{7}$, it would have energy
lower than that of the normal ground state configuration $1 s^{2} 2 s^{2} 2 p^{3}$ because the electrons
would be closer to the nucleus. Yet $1 s^{7}$ is not observed. It violates:
A. Hund's rule
B. Heisenberg's uncertainty principle
C. Pauli's exclusion principle
D. Bohr postulate of stationary orbits

Answer: C

D Watch Video Solution

82. List the quantum numbers (n and I) of electrons for 3d-orbital.

D Watch Video Solution
83. Which quantum number specifies the shape of an orbital in an atom?

D Watch Video Solution
84. What is the value of e / m for an electron ?

- Watch Video Solution

85. How many unpaired electrons are there in
$N i^{2+}$ ion ?

- Watch Video Solution

86. Differentiate between proton and photon.

- Watch Video Solution

87. State Pauli's exclusive principle.

D Watch Video Solution

88. What is the mass of proton in kilograms ?

- Watch Video Solution

89. Write the electronic configuration of $C u^{2+}$ ion.
90. Write the electronic configuration of the atom having atomic number 29 ?

- Watch Video Solution

91. How many protons and neutrons are present in $15^{P^{31}}$?

D Watch Video Solution
92. Write the electronic configuration of an element atomic number 24 ?

D Watch Video Solution
93. Calculate the total charge in a mole of electron.

- Watch Video Solution

94. Give the electronic configuration of an element of Gr IB of 4th period.

D Watch Video Solution
95. Write the quantum number of an electron present in 3p-orbital.

- Watch Video Solution

96. The atom of which element has no neutron

in its nucleus?

D Watch Video Solution
97. Give electronic configuration of chlorine atom.

D Watch Video Solution

98. Give the de Broglie equation.

- Watch Video Solution

99. Write the electronic configuration of an element atomic number 29 ?

- Watch Video Solution

100. Name the atoms indicated by the
following configuration.
$1 s^{2} 2 s^{2} 2 \mathrm{P}_{-} \mathrm{x}^{\wedge}(1)^{\prime} 2 \mathrm{P}^{\wedge} 1$
101. Name the atoms indicated by the
following configuration.
$1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{1}$

D Watch Video Solution

102. Which rule explains the three unpaired electrons present in nitrogen atom?
103. What is the maximum number of electrons that can remain in a d^{2} sub-shell ?

- Watch Video Solution

104. An atom of an element has its K and L
shells completely filled with electrons. What is
its atomic number?

D Watch Video Solution
105. Write the electronic configuration of an element atomic number 24 ?

D Watch Video Solution
106. Which atom has the electronic configuration $1 s^{2}, 2 s^{2}, p^{2}$?

D Watch Video Solution
107. Write the electronic configuration of the elements having atomic number 25.

D Watch Video Solution
108. Name three fundamental particles which make an atom.

D Watch Video Solution
109. Give the electronic configuration of the element.
having atomic number 24.
having atomic number 29.

D Watch Video Solution

110. Charge of one electron is___coulomb
and___esu.

D Watch Video Solution
111. Mass of one electron is___gm.

- Watch Video Solution

112. Mass of one proton is gm.

D Watch Video Solution
113. Energy of an electron in nth orbit of Bohr's

H -atom is given by the expression \qquad
114. Ionisation potential of H -atom is ev per atom and____kJ/ mole.

- Watch Video Solution

115. Radius of nth orbit of an atom with atomic number ' Z ' is given by the relation
(D) Watch Video Solution
116. Charge of 1 gm of electron is___coulomb and___esu.

D Watch Video Solution
117. Transition of electron in H -atom from N shell to L-shell produces line in___series.

D Watch Video Solution

118. Frequency associated with the photon of radiation having wavelength 5500

D Watch Video Solution
119. Write the electronic configuration of $Z n^{2+}$ ion ?
(Watch Video Solution
120. State Hund's rule.

- Watch Video Solution

121. Which is more stable configuration and why ? ` $4 s^{\wedge} 23 d^{\wedge} 9$ and $4 S^{\wedge} 14 s^{\wedge} 10$

- Watch Video Solution

122. Write the electronic configuration of an element atomic number 25 ?
123. Give the values of ' n ' and 'l' for each of the

subshell :

- Watch Video Solution

124. Write the quantum number of an electron present in 3d-orbital.

D Watch Video Solution

125. An atom has its K and L shells completely
filled and seven electrons in the M-shell. Find out the total number of p-electron in an atom ?

D Watch Video Solution
126. State and briefly explain Aufbau's principle.
127. Calculate the energy of photon having frequency of $1.0 \times 10^{15} \mathrm{sec}^{-1}$
(Planck's of $1.0 X X 10^{15} \mathrm{sec}^{-1}$)

- Watch Video Solution

128. Differentiate between orbit and orbital.

- Watch Video Solution

129. State the number of neutrons and protons present in C^{12} and C^{14}.

D Watch Video Solution

130. An atom has its K and L shells completely
filled and five electrons in M shell. Find out the total number of p electrons in the atom?

D Watch Video Solution

131. Name an element, the atom of which contains maximum number of unpaired electrons in the d orbital.

D Watch Video Solution

132. Give the quantum numbers of the electron present in hydrogen atom.

D Watch Video Solution
133. An atom has its K and L shells completely
filled and six electrons in the M shell. How many p-electron are there in the atom ?

D Watch Video Solution

134. The electronic configuration of an atom is
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$. Determine its atomic number.

How many neutrons are present in the nucleus
if its atomic weight is 24 .
135. The wavelength of blue light is $4800 \AA$, calculate the frequency and wave number of light.

- Watch Video Solution

136. The frequency of the strong yellow line in the spectrum of sodium is $5.09 \times 10^{14} \mathrm{sec}^{-1}$.

Calculate the wavelength of this light.
137. State Hund's rule of maximum multiplicity.

D Watch Video Solution

138. Give the shape of d-orbitals.

- Watch Video Solution

139. Write the possible values of I and m for an electron in 3rd orbital.
140. State Aufbau's principle.

D Watch Video Solution

141. A neutral atom has 2 k-electrons, 8lelectrons and 3m-electrons. Predict from this:

Its atomic number

Total number of s -electrons, total number of p electrons and d-electrons.
142. The observed electronic configuration of copper is not as per Aufbau principle. Explain.

- Watch Video Solution

143. State Pauli's exclusive principle.

- Watch Video Solution

144. How many protons and neutrons are present in the nuclei of C^{14} and N^{14} isotopes ?

- Watch Video Solution

145. The electronic configuration of an atom is
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$. Determine its atomic number.

How many neutrons are present in the nucleus if its atomic weight is 24.
146. Which quantum number has different values for the two electrons of helium atom ?

- Watch Video Solution

147. Mention the four quantum numbers of the last electron of sodium.

D Watch Video Solution

148. What is the difference between two isotopes of an element ? Give one example.

D Watch Video Solution

149. Calculate the number of electrons, protons and neutrons in the followings:
N^{-3}, S^{-2} and $N a^{+}$

D Watch Video Solution

150. What is uncertainty principle ?

D Watch Video Solution

151. Calculate the energy of the photon of wave-length 4500A. Given $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} \mathrm{sec}$.

- Watch Video Solution

152. Write the composition of the nucleus and
the electronic configuration of C^{-12} isotope

- Watch Video Solution

153. Calculate the momentum of wave-length
0.33 nm .

D Watch Video Solution

154. Calculate the energy of photon of radiations having $\mathrm{v}=$ frequency $5 \times 10^{14} s^{-1}$
(Planck's constant $\left.=3.9 \times 10^{14} s^{-1}\right)$

- Watch Video Solution

155. With what velocity must an electron travel so that its momentum is equal to that of a photon of wavelength $\lambda=5200 A$?

- Watch Video Solution

156. Why is the electronic configuration, $11 s^{\wedge} 2$,
$2 s^{\wedge} 2,2 p_{-} x^{\wedge}(2), 2 p_{-} y^{\wedge}(1), 2 p_{-} \wedge^{\wedge}(0)$ is not correct
for ground state of nitrogen ?

Watch Video Solution

157. Mass of neutron is.......times the mass of electron.
A. 1840
B. 1480
C. 2000
D. None

Answer: A
158. The maximum number of unpaired electrons present in 4f-energy level is:
A. 5
B. 7
C. 10
D. 6

Answer: B
159. Which is not deflected by magnetic field ?

A. Neutron

B. Positron

C. Proton

D. Electron

Answer: A
160. In the atomic spectrum of hydrogen the series of lines observed in the visible region is:
A. Balmer series
B. Paschen series
C. Bracket series
D. Lyman series

Answer: A

D Watch Video Solution
161. The maximum sum of the number of neutrons and protons in an isotope of hydrogen is:
A. 6
B. 5
C. 4
D. 3

Answer: D

162. Which of the subshell has double dumbbell shape ?
A. s
B. p
C. d
D. f

Answer: C

- Watch Video Solution

163. Which one of the following pairs of atoms/atom-ions have identical ground state configuration ?
A. Li^{+}and $\mathrm{He}{ }^{+}$
B. $C l^{- \text {and }} A r$
C. $N a$ and k
D. F^{+}and $N e$

Answer: B

D Watch Video Solution
164. The ratio of nucleons in O^{16} and O^{18} is:
A. $\frac{8}{9}$
B. $\frac{4}{5}$
C. $\frac{9}{8}$
D. 1

Answer: A

D Watch Video Solution
165. The number of unpaired electrons in $M n^{+}$is:
A. 3
B. 5
C. 4
D. 6

Answer: D

D Watch Video Solution
166. The $(n+1)$ value for $4 f$-electron is:
A. 6
B. 4
C. 7
D. 8

Answer: C

D Watch Video Solution
167. The ejection of electrons when the surface of metal is irradiated by light is called:
A. Zeeman effect
B. Stark effect
C. Photoelectric effect
D. Compton effect

Answer: C

D Watch Video Solution
168. The $n+1$ value for the 3-p energy level is:
A. 4
B. 7
C. 3
D. 1

Answer: A
(Watch Video Solution
169. If uncertainty in position of electron is
zero, the uncertainty in its momentum would
be:
A. Zero
B. $\frac{h}{2} \pi$
C. $\frac{h}{4} \pi$
D. Infinity

Answer: D

D Watch Video Solution
170. 1 fermi is equal to:

A. $10^{-13} \mathrm{~cm}$

B. $10^{-10} \mathrm{~cm}$
C. $10^{-4} \mathrm{~cm}$
D. $10^{-8} \mathrm{~cm}$

Answer: A
171. Nucleus model of the atom was proposed by:
A. Thomson
B. Neil Bohr
C. Mosley
D. Rutherford

Answer: D

D Watch Video Solution

172. Maximum number of electrons present in

" N " shell is:
A. 18
B. 32
C. 2
D. 8

Answer: B

- Watch Video Solution

173. The de Broglie wavelength associated with
a material particle is:
A. Inversely proportional to momentum
B. Inversely proportional to its energy
C. Directly proportional to momentum
D. Directly proportional to its energy

Answer: A

- Watch Video Solution

174. Compared to mass of lightest nucleus the mass of an electron is only:

> A. $\frac{1}{80}$
> B. $\frac{1}{360}$
> C. $\frac{1}{1800}$
> D. $\frac{1}{1000}$

Answer: C

D Watch Video Solution
175. For azimuthal quantum number $1=3$, the maximum number of electrons will be:
A. 2
B. 6
C. Zero
D. 14

Answer: D

D Watch Video Solution
176. In an atom no two electrons can have the same value for all the quantum numbers. This was proposed by:
A. Hund
B. Pauli
C. Dalton
D. Avogadro

Answer: B
177. Mass of an electron:

D Watch Video Solution

178. The magnetic quantum number for
valency electron of sodium is:
A. 3
B. 2
C. 1
D. Zero

Answer: D

- Watch Video Solution

179. The Heisenberg's uncertainty principle can be applied to:
A. A cricket ball
B. A football
C. A jet aeroplane
D. An electron

Answer: D

D Watch Video Solution

180. How many sets of four quantum number
are possible for the electrons present in
$H e^{2-}$:
A. 4
B. 3
C. 2
D. None of these

D Watch Video Solution

181. Maximum number of electrons which can
be accommodated in a g subshell is:
A. 14
B. 18
C. 12
D. 20

Answer: B

- Watch Video Solution

182. Assuming the velocity be same, which subatomic particle possesses smallest de Broglie wavelength:
A. An electron
B. A proton
C. An α-particle
D. All have same 'lambda`

- Watch Video Solution

183. The phenomena of photoelectric effect
was successfully explained by:
A. Bohr
B. Maxwell
C. Einstein
D. Planck

Answer: C

D Watch Video Solution

184. According to Bohr's theory the radius of
electron in an orbit described by principal
quantum number n and atomic number Z is
proportional to:
A. $Z^{2} n^{2}$
B. $\frac{Z^{2}}{n^{2}}$
C. $\frac{Z^{2}}{n}$
D. $\frac{n^{2}}{Z}$

Answer: D

D Watch Video Solution

185. Angular momentum of an electron in an orbital is given by:
A. $n \frac{h}{2 \pi}$
B. $\frac{h}{2 \pi} \times \sqrt{l(l+1)}$
C. $n \frac{h}{2 \pi}$

D. None

Answer: B

D Watch Video Solution

186. The angular momentum of electron in nth
orbit is given by:
A. nh
B. $\frac{h}{2 \pi n}$
C. $n \frac{h}{2 \pi}$
D. $n^{2} \frac{h}{2 \pi}$

Answer: C

D Watch Video Solution

187. The energy of the electron is second Bohr's orbit in the hydrogen atom is -3.41 eV .

The energy of the electron is second Bohr's
orbit of He^{+}ion would be:
A. -85 eV

$$
\text { B. }-13.62 \mathrm{eV}
$$

C. -1.70 eV
D. -6.82 eV

Answer: B

D Watch Video Solution

188. The ratio of the energy of a photon of
$2000 \stackrel{\circ}{A}$ wavelength radiation to that of 4000
$\stackrel{\circ}{A}$ radiation is:
A. 1/4
B. $1 / 2$
C. 2
D. 4

Answer: C

D Watch Video Solution
189. The velocity of electron in the hydrogen atom is $2.2 \times 10^{6} \frac{m}{s}$. The de Broglie wavelength for this electron is:
A. 33 nm
B. 45.6 nm
C. 23.3 nm
D. 0.33 nm

Answer: D

D Watch Video Solution
190. If the Planck's constant, $h=6.6 \times 10^{-34}$

Js, the de Broglie's wavelength of a particle
having momentum of $3.3 \times 10^{-24} \mathrm{kgms}(-1)$
will be:
A. $0.02 \stackrel{\circ}{A}$
B. $0.5{ }^{\circ}$
C. $2 \stackrel{\circ}{A}$
D. $500{ }^{\circ}$

Answer: C
(Watch Video Solution
191. The amount of energy required to remove
the electron from a $L i^{2+}$ ion in its ground
state is how many times greater than the amount of energy required to remove the electron from an H atom in its ground state:
A. 9
B. 2
C. 3
D. 5
192. Binding energy of hydrogen atom is 13.6 eV . The binding energy of a singly ionised helium atom is:
A. 13.6 eV
B. 27.2 eV
C. 54.4 eV
D. 3.4 eV
193. The wave number of radiation of wavelength 500 nm is:
A. $5 \times 10^{-7} m^{-1}$
B. $2 \times 10^{7} m^{-1}$
C. $2 \times 10^{6} \mathrm{~m}^{-1}$
D. $500 \times 10^{-9} m^{-1}$

Answer: C
194. A hydrogen atom is in its ground state absorbs a photon. The maximum energy of such a photon is:
A. 1.5 eV
B. 3.4 eV
C. 10.2 eV
D. 13.6 eV
195. The ratio of kinetic energy and potential energy of an electron in any orbit is equal to:
A. Zero
B. $-1 / 2$
C. -2

D. Infinity

Answer: B
196. The de Broglie wavelength of a particle with mass 1 g and velocity $100 \mathrm{~m} / \mathrm{s}$ is:
A. $6.63 \times 10^{-33} \mathrm{~m}$
B. $6.63 \times 10^{-34} \mathrm{~m}$
C. $6.63 \times 10^{-35} \mathrm{~m}$
D. $6.65 \times 10^{-35} \mathrm{~m}$

Answer: A
197. Which is not permissible subshell ?
A. 2d
B. 4 f
C. $6 p$
D. 3 s

Answer: A
(Watch Video Solution
198. Splitting of spectral lines when atoms are subjected to strong electric field is called :
A. Zeeman effect
B. Stark effect
C. Decay
D. Disintegration

Answer: B

D Watch Video Solution
199. Alpha particle is....times heavier than neutron:
A. 2
B. 4
C. 3
D. 25

Answer: B

- Watch Video Solution

200. Non-directional orbital is:

A. 3 s
B. 4 f
C. 4 d
D. $4 p$

Answer: A

D Watch Video Solution

201. The number of elliptical orbits, including

 circular orbits in the M shell of an atom is:A. 3
B. 4
C. 2
D. 1

Answer: A

D Watch Video Solution
202. The first use of quantum theory to explain the structure of atom was made by:
A. Heisenberg
B. Bohr
C. Planck
D. Einstein

Answer: B

D Watch Video Solution
203. When 3d-orbital is complete, the newly entering electron goes into:
A. 4 f
B. 4 s
C. $4 p$
D. 4 d

Answer: C

D Watch Video Solution

204. The ion that is isoelectronic with CO is:

A. $C N^{-}$
B. O_{2}^{+}
C. O_{2}^{-}
D. N_{2}^{+}

Answer: A
(Watch Video Solution

205. The last electron placed in the third $(\mathrm{n}=3)$

quantum shell for:

A. Kr
B. Zn
C. Cu
D. Ca

Answer: C

D Watch Video Solution
206. The number of unpaired electrons present in $C r^{3+}$ is:
A. 3
B. 1
C. 2
D. 5

Answer: A

- Watch Video Solution

207. Possible number of orientations of a subshell is:
A. I
B. n
C. $2 \mathrm{l}+1$
D. n^{2}

Answer: C
(Watch Video Solution
208. The correct set of quantum number for the unpaired electron of chlorine atom is:
A. $n=2, \mathrm{l}=1, \mathrm{~m}=0$
B. $n=2, \mathrm{l}=1, \mathrm{~m}=1$
C. $n=3, l=1, m=1$
D. $n=3, l=0, m=0$

Answer: C

D Watch Video Solution

209. One electron volt is:

A. $1.6 \times 10^{-19} \mathrm{erg}$
B. $1.6 \times 10^{-12} \mathrm{erg}$
C. $1.6 \times 10^{-8} \mathrm{erg}$
D. $1.6 \times 10^{8} \mathrm{erg}$

Answer: B
210. Which has minimum number of unpaired d-electrons?
A. $F e^{3+}$
B. $C o^{3+}$
C. Co^{2+}
D. $M n(+2)$

Answer: C

D Watch Video Solution
211. Which ion has the maximum magnetic moment ?
A. $M n^{3+}$
B. $C u^{2+}$
C. $F e^{+3}$
D. V^{+3}

Answer: C

D Watch Video Solution
212. What is the energy in joule of a photon of light with wavelength $4.0 \times 10^{3} \mathrm{~nm}$?
A. 7.5×10^{-20}
B. 5.0×10^{-20}
C. 2.0×10^{-10}
D. 2.5×10^{-10}

Answer: B
(Watch Video Solution
213. If the ionisation potential for hydrogen atom is 13.6 eV , then the wavelength of light required for the ionisation of hydrogen atom would be:
A. 1911 nm
B. 912 nm
C. 68 nm
D. 91.2 nm

Answer: D
214. The maximum wavelength of light that can excite an electron from first to third orbit of hydrogen atom is:
A. 487 nm
B. 170 nm
C. 103 nm
D. 17 nm

Answer: C

215. The work function for a metal is 4 eV . To emit a photo electron of zero velocity from the
surface of the metal, the wavelength of incident light should be:
A. $2700 \AA$
B. $1700{ }^{\circ}$
C. $5900{ }^{\circ}$
D. $3100 \AA$
216. Ultraviolet light of 6.2 eV falls on aluminium surface (work function $=4.2 \mathrm{eV}$).

The kinetic energy (in joule) of the fastest electron emitted is approximately:
A. 3×10^{-21}
B. 3×10^{-19}
C. 3×10^{-17}
D. 3×10^{-15}

Answer: B

D Watch Video Solution

217. The series limit for Balmer series of H spectra is.
A. 3664
B. 3800
C. 4000
D. 4200

Answer: A

D Watch Video Solution

218. The wavelength of radiation emitted when
electron falls from 4th Bohr's orbit to 2nd in H
atom is:
$\left.{ }^{`} \mathrm{R}_{-} H=1.09678 \times x 10^{\wedge}(-7) \mathrm{m}^{\wedge}(-1)\right)$
A. 972 nm
B. 486 nm
C. 243 nm

D. 182 nm

Answer: B

D Watch Video Solution

219. The energy of the electron is first orbit of
$H e^{+}$is ('R_H = -8712xx10^(-20) J). The energy of
the electron in the first orbit of H is:

$$
\begin{aligned}
& \text { A. }-871.6 \times 10^{-20} J \\
& \text { B. }-435.8 \times 10^{-20} J
\end{aligned}
$$

$$
\text { C. }-217.9 \times 10^{-20} J
$$

D. $-108.9 \times 10^{-20} J$

Answer: C

D Watch Video Solution

220. $E_{1} f$ or He^{+}is $-54.4 e V$. The E_{2} for $H e^{+}$would be:
A. -6.8 eV
B. -13.6 eV
C. -27.2 eV
D. -108.8 eV

Answer: B

- Watch Video Solution

221. The highest excited state that unexcited
hydrogen atom can reach when they are bombarded with 12.2 eV electron is:
A. $\mathrm{n}=1$
B. $n=2$
C. $n=3$
D. $\mathrm{n}=4$

Answer: C

D Watch Video Solution

222. An electron will have the highest energy
in the set:
A. $3,2,1,1 / 2$
B. $4,2,-1,1 / 2$
C. $4,1,0,-1 / 2$
D. $5,0,0,1 / 2$

Answer: B

D Watch Video Solution

223. The line spectrum observed when electron falls from the higher level into L level
is known as :
A. Balmer series
B. Paschen series
C. Bracket series
D. None of these

Answer: A

D Watch Video Solution
224. The total number of fundamental
particles in one atom of $6{ }^{14}$ is:
A. 6
B. 8
C. 14
D. 20

Answer: D

- Watch Video Solution

225. Which orbital is spherically symmetrical ?
A. $5 f$
B. 4 p
C. 3d
D. 3 s

Answer: D

D Watch Video Solution

226. Which transition metal cation has maximum unpaired electrons ?
A. $M n^{2+}$
B. $N i^{2+}$
C. $C o s^{2+}$
D. $F e^{2+}$

Answer: A

- Watch Video Solution

227. The equation $\lambda=\frac{h}{\mu}$ was deduced by:

A. Heisenberg
B. de Broglie

C. Einstein

D. Planck

Answer: B

- Watch Video Solution

228. The electronic transition from $n=2$ to $n=1$
will produce shortest wavelength in:
A. H atom
B. D atom
C. He^{+}ion
D. $L i^{2+}$

Answer: D

D Watch Video Solution

229. Which has highest e/m ratio ?

A. $H e^{2+}$
B. H^{+}
C. He^{+}
D. H

Answer: B

- Watch Video Solution

230. Transition from $n=4,5,6$ to $n=3$ in
hydrogen spectrum gives:
A. Lyman series
B. Paschen series
C. Balmer series

D. P-fund series

Answer: B

D Watch Video Solution

231. The mass of a neutron is of the order of:
A. $10^{-23} \mathrm{~kg}$
B. ${ }^{~} 10^{\wedge}(-24) \mathrm{kg}$
C. $10^{-26} \mathrm{~kg}$
D. $10^{-27} \mathrm{~kg}$

Answer: D

- Watch Video Solution

232. Electrons occupy the available sub-level which has lower $n+l$ value. This is called:
A. Hund's rule
B. Aufbau principle
C. Heisenberg's uncertainty principle
D. Pauli's principle

D Watch Video Solution

233. Which is not electromagnetic radiation ?
A. Infrared rays
B. X-rays
C. Cathode rays
D. $\gamma-$ rays
234. Which wave property is directly proportional to energy of electromagnetic radiation?
A. Velocity
B. Frequency
C. Wave number
D. All of these
235. The principle which gives a way to fill the electrons in the available energy level is:
A. Hund's rule
B. Pauli's exclusion principle
C. Aufbau principle
D. None of these

Answer: C
236. The relation between energy of a radiation and its frequency was given by:
A. de Broglie
B. Elinsten
C. Planck
D. Bohr

Answer: C

- Watch Video Solution

237. The angular momentum of electron of H atom is proportional to:
A. r^{2}
B. $1 / r$
C. \sqrt{r}
D. $\frac{1}{\sqrt{r}}$

Answer: C

238. The frequency of first line of Balmer series
in hydrogen atom is V_{0}. The frequency of corresponding line emitted by singly ionised helium atom is:
A. $2_{v_{0}}$
B. $4_{v_{0}}$
C. $\frac{V_{0}}{2}$
D. $\frac{V_{0}}{4}$

Answer: B
239. Which are isoelectronic with each other ?
A. $N a^{+}$and Ne
B. K^{+}and O
C. Ne and O
D. $N a^{+}$and K^{+}

Answer: A

240. Size of the nucleus is:

A. $10^{-15} \mathrm{~cm}$

B. $10^{-13} \mathrm{~cm}$
C. $10^{-10} \mathrm{~cm}$
D. $10^{-8} \mathrm{~cm}$

Answer: B

D Watch Video Solution

241. The orbital angular momentum of an electron in 2 s -orbital is:
A. $\frac{h}{4} \pi$
B. Zero
C. $\frac{h}{2} \pi$
D. sqrt2.h/(2pi)

Answer: B
(D) Watch Video Solution
242. The number of vacant orbitals of element with atomic number 14 is:
A. 2
B. 4
C. 8
D. 6

Answer: D

D Watch Video Solution

243. Which of the following has the maximum

number of unpaired electrons?

A. $M g^{2+}$
B. $T i^{2+}$
C. V^{2+}
D. $F e^{2+}$

Answer: D

D Watch Video Solution
244. For a 'd' electron, the orbital angular momentum is:
A. $\sqrt{(6) h}$
B. $\sqrt{(2) h}$
C. h
D. 2 h

Answer: A

- Watch Video Solution

245. The lightest particle is:

A. Electron

B. Proton

C. Neutron
D. β-particle

Answer: A

246. Which consists of particle of matter ?

A. Alpha rays
B. Beta rays
C. Cathode rays

D. All of the above

Answer: D

247. The energy of an electron in the first Bohr's orbit of H atom is -13.6 eV . The possible energy value (s) of the excited state (s) for electrons in Bohr's orbits of hydrogen is (are):
A. -3.4 eV
B. -4.2 eV
C. -6.8 eV
D. +6.8 eV

Answer: A
248. For an electron if the uncertainty in velocity is Δv, the uncertainty in its position ($\Delta x)$ is given by:
A. $\frac{h}{2} \pi m \Delta v$
B. $\frac{2 \pi}{h m \Delta v}$
C. $\frac{h}{4 \pi m \Delta v}$
D. $\frac{2 \pi}{h \Delta v}$

Answer: C
249. The quantum numbers for the last electron in an atom are $n=3, \mathrm{l}=1$ and $\mathrm{m}=-1$.

The atom is:
A. Al
B. Si
C. Mg
D. C
250. The radius of Bohr's first orbit in H atom
is 0.053 nm . The radius of second orbit in
$H e^{+}$would be:
A. 0.0265 nm
B. 0.0530 nm
C. 0.1060 nm
D. 0.2120 nm
251. The ionization potential of hydrogen atom
is 13.6 eV . The energy required to remove an
electron from the $n=2$ state of hydrogen atom
is:
A. 27.2 eV
B. 13.6 eV
C. 6.8 eV
D. 3.4 eV

Answer: D

- Watch Video Solution

252. The number of nodal planes is greatest

for the orbital:

A. 1 s
B. $2 p$
C. 3d
D. $3 p$

Answer: C

- Watch Video Solution

253. For which species, Bohr's theory does not apply:
A. H
B. Be
C. He^{+}
D. $L i^{2+}$

Answer: B

D Watch Video Solution

254. Number of unpaired electrons in the electronic configuration ${ }^{`} 1 s^{\wedge} 2,2 s^{\wedge} 2,2 p^{\wedge} 4$:
A. 2
B. 3
C. 4
D. 6

D Watch Video Solution

255. Which represents the correct set of four quantum number of a 4d-electron:
A. $4,3,2,+1 / 2$
B. $4,2,1,0$
C. $4,3,-2,+1 / 2$
D. $4,2,1,+1 / 2$

Answer: D

D Watch Video Solution

256. The value of bohr's radius for hydrogen atom is:
A. $0.529 \times 10(-8) \mathrm{cm}$
B. $0.529 \times 10(-10) m$
C. $0.529{ }^{\circ}$
D. All of these

Answer: D

D Watch Video Solution

257. The threshold wavelength for photoelectric effect on sodium is $5000 \stackrel{\circ}{A}$. Its work function is:
A. 4×10^{-19} J
B. 1 J
C. $2 \times 10^{-19} \mathrm{~J}$
D. $3 \times 10^{-10} J$

Answer: A

D Watch Video Solution

258. $\sqrt{2} \cdot \frac{h}{2 \pi}$
A. -6 V
B. -2.1 V
C. -3.9 V
D. -8.1 V

Answer: C
259. The total energy of the electron in the
hydrogen atom in the ground state is -13.6 eV .
The KE of this electron is:
A. 13.6 eV
B. Zero
C. -13.6 eV
D. 6.8 eV

Answer: A
260. If the series limit of wavelength of the

Lyman series for the hydrogen atom is $912 \AA$, then the series limit of wavelength for the Balmer series of the hydrogen atom is:
A. $912 \stackrel{\circ}{A}$
B. $912 \times 2 \AA$
C. $912 \times 4 \AA$
D. $\frac{912}{2} \stackrel{\circ}{A}$

Answer: C

- Watch Video Solution

261. The difference in angular momentum associated with the electron in two successive orbits of hydrogen atom is:

> A. $\frac{h}{\pi}$
> B. $\frac{h}{2 \pi}$
> C. $\frac{h}{2}$
D. $(n-1) \frac{h}{2 \pi}$

Answer: B

- Watch Video Solution

262. Ionisation potential of Hydrogen atom is
13.6 eV . Hydrogen atom in the ground state are excited by monochromatic light of energy
12.1 eV . The spectral lines emitted by hydrogen according to Bohr's theory will be:

A. One

B. Two
C. Three
D. Four

Answer: C

D Watch Video Solution

263. The energy per quantum associated with
light of wavelength $250 \times 10(-19)$ meter is:
A. $8.95 \times 10(-12)$ erg
B. $7.95 \times 10(-19)$ erg

C. $8.95 \times 10(-19)$ erg

D. None of these

Answer: B

D Watch Video Solution

264. The shortest λ for the Lyman series is....
(Given $R_{H}=109678 \mathrm{~cm}^{-1}$):
A. $991 \stackrel{\circ}{A}$
B. $700 \stackrel{\circ}{A}$
C. $600 \stackrel{\circ}{A}$
D. $811 \stackrel{\circ}{A}$

Answer: A
(Watch Video Solution
265. The longest λ for the Lyman series is....
(Given $R_{H}=109678 \mathrm{~cm}^{-1}$):
A. 1215
B. 1315
C. 1415
D. 1515

Answer: A

D Watch Video Solution

266. The λ for H_alpha line of Balmer series is
$6500 \stackrel{\circ}{A}$. Thus λ for H_{β} line of Balmer series is:
A. 4814
B. 4914

C. 5014

D. 4714

Answer: A

- Watch Video Solution

267. Mosley's name is connected with the discovery of:
A. Protons
B. Neutrons

C. Atomic number

D. Atomic weight

Answer: C

D Watch Video Solution

268. The ratio of specific charge (e/m) of an electron to that of a hydrogen ion is:
A. 1:1
B. $1840: 1$

C. $1: 1840$

D. 2:1

Answer: B

D Watch Video Solution

269. The mass of an electron is m, its charge e and it is accelerated from rest through a potential difference V . The Kinetic energy of the electron in joules will be:
A. V
B. eV
C. MeV
D. None

Answer: B

D Watch Video Solution
270. In the above question, the velocity acquired by the electron will be:
A. $\sqrt{\frac{V}{m}}$
B. $\sqrt{\frac{e V}{m}}$
C. $\sqrt{\frac{2 e V}{m}}$
D. None

Answer: C

D Watch Video Solution

271. The e/m is not constant for:
A. Cathode rays

B. Positive rays

C. $\alpha-$ rays
D. β-rays

Answer: B

D Watch Video Solution

