©゙’doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MBD CHEMISTRY (ODIA ENGLISH)

THERMODYNAMICS

Question Bank

1. In what type of reaction, heat is absorbed ?

0
 Watch Video Solution

2. Fill up the gap:

For exothermic reaction, $\triangle H$ is

Watch Video Solution
3. In the reaction, $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}$ at constant T and P which one of the following is correct?
(i) $\triangle H=\triangle E$
(ii) $\triangle H>\triangle E$
(iii) $\triangle H<\triangle E$

- Watch Video Solution

4. In an endothermic reaction, $\triangle H$ is always \qquad

- Watch Video Solution

5. The enthalpy of combustion is always \qquad .
(i) negative, (ii) positive, (iii) zero
6. Fill up the gap: When ice melts to liquid water, its entropy \qquad .

(D) Watch Video Solution

7. In which reaction, the reactants have less energy than the products

D Watch Video Solution

8. What is the relationship between enthalpy (H) and internal energy
(E) ?

D Watch Video Solution

9. In which of the following changes, there is increase in entropy ?
(i) $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})$
(ii) Ice \rightarrow Water`

D Watch Video Solution

10. When a reaction at constant temperature and pressure is at equilibrium the value of $\triangle G$ \qquad

D Watch Video Solution

11. In which of the following changes, there is increase in entropy?
(i) $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g)$
(ii) Ice \rightarrow Water`

(D) Watch Video Solution

12. In which reaction, the reactants have less energy than the products?
13. What is the relationship between enthalpy (H) and internal energy
(E) ?

D Watch Video Solution

14. In an endothermic reaction, $\triangle H$ is always \qquad

D Watch Video Solution

15. The enthalpy of combustion is always \qquad .
(i) negative, (ii) positive, (iii) zero
16. Fill up the gap:

For exothermic reaction, $\triangle H$ is \qquad

Watch Video Solution
17. The enthalpy of combustion is always \qquad .
(i) negative, (ii) positive, (iii) zero

D Watch Video Solution

18. What is exothermic reaction?

-
 Watch Video Solution

19. In an endothermic reaction, $\triangle H$ is always \qquad
20. In the reaction, $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}$ at constant T and P which one of the following is correct?
(i) $\triangle H=\triangle E$
(ii) $\triangle H>\triangle E$
(iii) $\triangle H<\triangle E$
(Watch Video Solution
21. Define Hess's law.

D Watch Video Solution

22. In what type of reaction, heat is absorbed ?
23. What is heat of reaction?

D Watch Video Solution

24. The dissociation energy of CH_{4} is $360 \mathrm{kcals} / \mathrm{mole}$. What is the energy associated with C-H bond ?

- Watch Video Solution

25. What is bond energy?

- Watch Video Solution

26. Define heat of combustion.
27. Write the equation relating free energy, entropy and enthalpy.

D Watch Video Solution

28. Fill up the gap: When ice melts to liquid water, its entropy \qquad .

D Watch Video Solution

29. What is the free energy change at equilibrium state?

D Watch Video Solution

30. Define Hess's law.
31. What is exothermic reaction ?

D Watch Video Solution

32. What is exothermic reaction ?

D Watch Video Solution

33. What is bond energy ?

D Watch Video Solution

34. When a reaction at constant temperature and pressure is at equilibrium the value of $\triangle G$
35. What is bond energy ?

D Watch Video Solution

36. State and explain Hess's law.

(D) Watch Video Solution

37. State Hess's law.

- Watch Video Solution

38. What is bond energy ?
39. What do you understand by exothermic and endothermic reaction ? Give one example of each.

D Watch Video Solution

40. What is endothermic reaction. Give example.

D Watch Video Solution

41. When a reaction at constant temperature and pressure is at equilibrium the value of $\triangle G$

D Watch Video Solution

42. Define enthalpy of combustion. Give an example.
43. Predict whether $\triangle S$ is +ve or -ve for the following reaction.) $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

(D) Watch Video Solution

44. Predict whether $\Delta \mathrm{S}$ is +ve or -ve for the following reaction.
$\mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{CaO}_{2(\mathrm{~s})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

D Watch Video Solution

45. If $\triangle H$ of the reaction $\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{C}_{2} H_{4(\mathrm{~g})} \mathrm{C}_{3} H_{8(\mathrm{~g})}$ is -19.4 kcals, what will be the $\triangle H$ of the reaction $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})} \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})} ?$
46. How does the free energy change show the feasibility of chemical reaction ?

D Watch Video Solution

47. At constant temperature and pressure, which of the following
statement is true for the reaction. $\mathrm{CO}[g]+\frac{1}{2} \mathrm{O}_{2}[g]-\rightarrow \mathrm{CO}_{2}[g]$
A. $\triangle H=\triangle E$
B. $\triangle H<\triangle E$
C. $\triangle H>\triangle E$
D. $⿳ / \ \mathrm{H}$ is independent to physical state.

Answer: B
48. Tne relation between internal energy change, $\triangle E$ and enthalpy change' $\triangle H$ and work W is
A. $\triangle H=\triangle E+W$
B. $\triangle E=\triangle H-W$
C. $\triangle E=W-\triangle H$
D. $\triangle H=\triangle E-W$

Answer: A

D Watch Video Solution

49. Which of the following is an intensive property ?
A. Temprature
B. Molarity
C. Density
D. All are correct

Answer: D

D Watch Video Solution

50. The value of enthalpy, H in term of R and T for a monoatomic gas
is
A. 3RT
B. $\frac{3}{2} R T$
C. 5RT
D. $\frac{5}{2} R T$

Answer: D

51. In a spontaneouse process, the system suffers
A. increase in internal energy
B. lowering in free energy
C. no energy change
D. decrease in entropy

Answer: B

D Watch Video Solution

52. 1st law of thermodynamic is represented by the equation.
A. $\triangle E=Q+W$
B. $\triangle E=Q-W$
C. $W=Q+\triangle E$
D. None of these
53. Thermodynamic equilibrium involes
A. Chemical equilibrium
B. Thermal equilibrium
C. Mechanical equilibrium
D. All the three

Answer: D

- Watch Video Solution

54. 'Heat of neutralisation of a strong dibasic acid in dilute solution
A. ' $-27.4 \mathrm{cal} / \mathrm{equ}$
B. ' $-13.7 \mathrm{cal} / \mathrm{equ}$
C. ${ }^{`}+13.7 \mathrm{cal} / \mathrm{equ}$

D. | $-13.7 \mathrm{cal} / \mathrm{mol}$ |
| :---: |

Answer: B

D Watch Video Solution

55. $\triangle H$ and $\triangle E$ for the reaction
$S[s]+\frac{2}{3} \mathrm{O}_{2}[g] \rightarrow \mathrm{SO}_{3}[g]$ are related as
A. $\triangle H=\triangle E+0.33 R T$
B. $\triangle H=\triangle E-1.5 R T$
C. $\triangle H=\triangle E+R T$
D. $\triangle H=\triangle E+1.5 R T$

- Watch Video Solution

56. One mole of an ideal at 300 K is expanded isothermaly from an initial volume of 1 liter to 10 liters. The $\triangle E$ for this process is [$\mathrm{R}=2$
cal $k^{-1} \mathrm{~mol}^{-1}$]
A. 163.7 cal
B. 1381.1 cal
C. 91 H-atm
D. zero

Answer: B
57. A well stopped thermosflask contains some ice Cubes. This is an example of a
A. Closed system
B. Open system
C. Isolated system
D. Non-thermodynamic system

Answer: C

- Watch Video Solution

58. For the reaction
$N_{2}+3 H_{2}=2 \mathrm{NH}_{3}, \triangle H=?$
A. $\triangle E=2 R T$
B. $\triangle E-2 R T$
C. $\triangle E+R T$
D. $\triangle E+2 R T$

Answer: B

59. For an ideal gas, the relation between the enthalpy change and internal energy at constant temperature is given by
A. $\triangle H=\triangle E+P V$
B. $\triangle H=\triangle E+\triangle n R T$
C. $\triangle H=\triangle E+P \triangle V$
D. $\triangle H=\triangle G+T \triangle S$

Answer: B
60. If $C(s)+O_{2}(g) \rightarrow C O_{2}(g), \triangle H=X \quad$ and
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \quad \triangle H=Y \quad$ then the heat of formation of CO is
A. $X+Y$
B. $X-Y$
C. $Y-X$
D. XY

Answer: B

- Watch Video Solution

61. Enthalpies of elements in their standard states are taken as zero.

Hence the enthalpy of formation of a compound
A. shuold always be negative
B. shuold always be positive
C. will be equal to twice the energy of combustion
D. may be +ve or -ve

Answer: D

- Watch Video Solution

62. Which of the following values of heat of formation indicates that the product is least stable?
A. $-94 k c a l$
B. -231 kcals
C. $+21.4 k c a l$
D. +64.8 kcal

Answer: D

Watch Video Solution

63. For an adiabatic process, which of the following is correct.
A. $\mathrm{P} \triangle V=0$
B. $q=+w$
C. $\triangle E=\mathrm{q}$
D. $q=0$

Answer: D

(D) Watch Video Solution

64. Identify the intensive quantity from the following
A. Enthalpy and temperature
B. Volume and temperature
C. Enthalpy and volume
D. Temperature and refractive index

Answer: D

Watch Video Solution

65. An exothermic reaction is one which
A. takes place on heating
B. is accompanied by flame
C. is accompanied by absorption of heat
D. is accompanied by evolution of heat

Answer: D

66. An endothermic reaction is one in which
A. heat is converted into electicity
B. heat is absorbed
C. heat is evolved
D. heat is converted to machanical work

Answer: B

D Watch Video Solution

67. Which of the following reaction is exothermic ?
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{Fe}+S \rightarrow F e S$
C. $\mathrm{NaOH}+\mathrm{HCI} \rightarrow \mathrm{NaCI}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

68. Which of the following is an endothermic reaction
A. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
C. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

69. In exothermic reaction
A. $\triangle E$ is zero
B. $\triangle H$ is -ve
C. $\triangle S$ is zero` D. \(\triangle H\) is +ve`

Answer: B

- Watch Video Solution

70. For an endothermic reaction
A. $\triangle H$ is -ve
B. $\triangle H$ is +ve` C. \(\triangle E\) is -ve \({ }^{`}\)
D. $\triangle H=0^{`}$

Answer: B
71. Enthalpy for the reaction
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ is:
A. $=v e$
B. -ve
C. zero
D. none

Answer: B

72. Enthalpy of a compound is equal to its
A. heat of comustion
B. heat of formation
C. heat of reaction
D. heat of solution

Answer: B

- Watch Video Solution

73. During isothermal expansion of an ideal gas its
A. internal energy increase
B. enthalpy increase
C. enthalpy remains unaffected
D. enthalpy reduces to zero

Answer: C
74. Heat of neutralisation of a strong acid and strong base is always.
A. $13.7 \mathrm{kcal} / \mathrm{mole}$
B. $9.6 \mathrm{kacl} / \mathrm{mole}$
C. $6 \mathrm{kcal} / \mathrm{mole}$
D. $11.4 \mathrm{kacl} / \mathrm{mole}$

Answer: A

- Watch Video Solution

75. The mutual heat of neutralisation of 40 grams NaOH and 60 grams $\mathrm{CH}_{3} \mathrm{COOH}$ will be
A. 56.1 kJ
B. less than 56.1 kJ
C. more than 56.1 kJ
D. 13.7 kJ

Answer: B

76. In which of the following neutralisation reaction, the heat of neutralisation is the highest
A. $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. HCl and NaOH
C. $\mathrm{CH}_{3} \mathrm{COOH}$ and KOH
D. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NH}_{4} \mathrm{OH}$

Answer: B
77. Hess's law deals with
A. change in heat of reaction
B. rate of reaction
C. equilibrium constant
D. influence of pressure on volume of a gas

Answer: A

- Watch Video Solution

78. Hesss law of heat of summation includes
A. initial reactants only
B. initial reactants and final products
C. final products only
D. intermediates only

Answer: B

D Watch Video Solution

79. $H_{2}(g)+I_{2}(g) \rightarrow 2 H I(g), \triangle H=-12.40 k c a l s$, Heat of formation of HI will be
A. 12.4 kcals
B. -12.4 kcals
C. -6.20 kacls
D. 6.20 kcals

Answer: C

80. Combustion of methane
A. is an exothermic process
B. is an endothermic process
C. requires catalyst
D. give H_{2}

Answer: A

(D) Watch Video Solution

81. For which reaction, $\Delta \mathrm{S}$ will be maximum ?
A. $\mathrm{Ca}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CaO}(s)$
B. $\mathrm{CaCO}_{3}(\mathrm{~S}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(g)$
C. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
D. $N_{2}(g)+O_{2}(g) \rightarrow 2 \mathrm{NO}(g)$

D Watch Video Solution

82. The total entropy change for a system and its surrounding increases, if the process is
A. reversible
B. irreversible
C. exothermic
D. endothermic

Answer: B

A. becomes zero
B. decreases
C. increases
D. remains same

Answer: C

(D) Watch Video Solution

84. Heat of combustion is always
A. $=v e$
B. -ve
C. neutral
D. all of the above
85. Energy required to dissociate 4 gms of gaseous hydrogen into free gaseous atoms is 208 kcals at $25^{\circ} \mathrm{C}$. The bond energy of $\mathrm{H}-\mathrm{H}$ bond will be
A. 104 kcals
B. 10.4 kcals
C. 1040 kcals
D. 104 cals

Answer: A

- Watch Video Solution

86. If a refrigerator door is opend then we get
A. room heated
B. room cooled
C. more heat is passed out
D. no effect on room

Answer: A

- Watch Video Solution

87. When 1 mole of $\mathrm{NH}_{4} \mathrm{OH}$ is neutralised by 1 mole of HCl , heat evolved is:
A. 57.2 kJ
B. greater than 57.2 kJ
C. less than 57.2 kJ
D. None of these

D Watch Video Solution

88. For the reaction :
$2 C l(g)-. C l_{2}(g)$.
A. $\triangle H=+v e$ and $\triangle S=-v e$
B. $\triangle H=-v e$ and $\triangle S=+v e$
C. ${ }^{\prime} / \backslash \mathrm{H}=-\mathrm{ve}$ and $/ _$S $=$-ve
D. $\fallingdotseq / _\mathrm{H}=-\mathrm{ve}$ and $/ _\backslash \mathrm{S}=+\mathrm{ve}$

Answer: C

A. Thomson
B. Faraday
C. Blotzman
D. Gibb's-Helmholtz

Answer: D

(D) Watch Video Solution

90. For the formation of NH_{3} from N_{2} and $\mathrm{H}_{2},(\triangle E-\triangle H)$ is:
A. RT
B. -2 RT
C. 2RT
D. $\mathrm{RT} / 2$

Answer: C
91. For $H_{2}(g)+I_{2}(g) \rightleftharpoons 2 H I(g), \Delta H=12.4 K$ cal. The enthalpy of formation of HI is:
A. 12.4 K cal
B. -12.4 K cal
C. 6.2 K cal
D. -6.2 K cal

Answer: C

D Watch Video Solution

92. For the reaction :
$\mathrm{C}_{2} \mathrm{H}_{4}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l) \quad$ at constant temperature. $\triangle \mathrm{H}-\triangle \mathrm{U}$ is:
A. RT
B. -3RT
C. $=3 R T$
D. -RT

Answer: B

- Watch Video Solution

93. The bond energies of C-C, C=C, $\mathrm{H}-\mathrm{H}$ and C-H linkages arev350, 600, 400 and 410 kJ per mol respectively. The heat of hydrogenation of ethylene is:
A. $-170 \mathrm{kJmol}^{-1}$
B. $-260 \mathrm{kJmol}^{-1}$
C. $-400 \mathrm{kJmol}^{-1}$
D. $-450 \mathrm{kJmol}^{-1}$

D Watch Video Solution

94. Considering entropy (S) as a thermodynamic parameter the criterion for the spontaneity of any process is:
A. $\triangle S_{\text {system }}-\triangle S_{\text {surroundings }}>0$
B. $\triangle S>$ 0only
C. $\triangle S_{\text {surroundings }}>0$ only
D. $\triangle S_{\text {system }}+\triangle S_{\text {surround } \in \text { gs }}>0$

Answer: D

- Watch Video Solution

95. A reaction occurs spontaneously if :
A. $T \triangle S>\triangle H$ and $\triangle H$ is +ve and $\triangle S i s-v e$
B. $T \triangle S=\triangle H$ and both $\triangle H$ and $\triangle S$ are +ve
C. $T \triangle S<\triangle H$ and both $\triangle H$ and $\triangle S$ is +ve
D. $T \triangle S>\triangle H$ and both $\triangle H$ and $\triangle S$ are is +ve

Answer: D

- Watch Video Solution

96. For a phase change $\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(s)$
$0^{\circ} C, 1$ bar
A. $\triangle G=0$
B. $\triangle S=0$
C. $\triangle H=0$
D. $\triangle U=0$

- Watch Video Solution

97. In which condition entropy change is not zero ?

D Watch Video Solution

98. What is the relationship between free energy change and enthalpy change a reaction?

- Watch Video Solution

99. Give two examples of extensive property.

Watch Video Solution
100. Give examples of macroscopic properties.

D Watch Video Solution

101. what are the units of work and energy and how they are related ?

- Watch Video Solution

102. Write the factors which affect the enthalpy change of a reaction.

(D) Watch Video Solution

103. Explain enthalpy.

D Watch Video Solution

104. Define enthalpy of neutralization.

D Watch Video Solution

105. State Hess's law of constant heat summation.

(D) Watch Video Solution

106. Write the relation between heat of sublimation, heat of fusion, heat of vapourisation.

D Watch Video Solution

107. Write the sign of $\triangle S$ for the following changes.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(s)$
108. Write the sign of $\triangle S$ for the following changes $\mathrm{SolidCO}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

D Watch Video Solution

109. Write the sign of $\triangle S$ for the following changes

Steam \rightarrow Water

- Watch Video Solution

110. What is the sign of $\triangle H$ in exothermic and endothermic reaction?
111. Explain "free energy".

D Watch Video Solution

112. Explain why entropies of all pure substances at aboslute zero are zero.

D Watch Video Solution
113. Explain the state of chemical reation.

$$
\triangle G=0
$$

D Watch Video Solution
114. Explain the state of chemical reation.

$$
\triangle G<0
$$

115. Explain the state of chemical reation.

$$
\triangle G>0
$$

D Watch Video Solution

116. Write down the expressions for standard free energy change in terms of equilibrium constant.

-
 Watch Video Solution

117. What is the relationship between enthalpy (H) and internal energy (E) ?
118. Define Hess's law.

D Watch Video Solution

119. For a spontaneous process how T $\triangle S$ and $\triangle H$ are related?

D Watch Video Solution

120. What are the factors on which internal energy depends ?

- Watch Video Solution

121. What is the value of $\triangle G$, when a reaction takes place at constant temperature and pressure?
122. Calculate the entropy of vaporisation for liquid boiling at 300 K having enthalpy of vapourisation, $27 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

D Watch Video Solution

123. Write Gibb's Helmholtz equation ?

(D) Watch Video Solution

124. Why $\triangle G<0$ is alwasys true for a spontaneous reaction?

D Watch Video Solution

125. The heat of combustion of $C_{10} H_{8}(s)$ at constant volume is $-5133 \mathrm{~kJ} \mathrm{~mol}_{-1}$ at 298 K . Calculate the value of enthalpy change. $\left(R=8.314 J_{-1} \mathrm{~mol}_{-1}\right)$
126. Calculate the entropy of vaporisation for liquid boiling at 300 K having enthalpy of vapourisation, $27 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

(D) Watch Video Solution

127. The equilibrium constant for the reaction is 10 at 300 K . What will be the value of $\triangle G^{\circ}$?

D Watch Video Solution

128. Explain the latest sign conventions regarding work and heat as per IUPAC recommendation.
129. What would be the heat released when 0.5 mole of HCl is neutralised by 0.5 mole of NaOH in aqueous solution.

D Watch Video Solution

130. The enthalpy of combustion of $C H_{4}$ at $25^{\circ} \mathrm{C}$ is 890 kJ . How much heat liberated when 3.2 g of methane is burnt in air ?

D Watch Video Solution

131. Define Hess's law.

D Watch Video Solution

132. Calculate the entropy change when 1 gram of ice is converted to water. Given $\triangle H=6025 \mathrm{~J} /$ mole
133. Calculate the heat of formation of benzene from the following data.

$$
C(s)+O_{2}(g) \rightarrow C O_{2}(g) \triangle H=-393.5 k J
$$

$$
C_{6} H_{6}(l)+\frac{15}{2} O_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) \triangle H=-3267.7 k J
$$

$$
H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l) \triangle H=-286.2 k J
$$

D Watch Video Solution

134. The enthalpy of combustion of glucose is -2840 kJ . What is the energy evolved for the combustion of 5.2 gm of glucose ?

D Watch Video Solution

135. What do you mean by internal energy ?
136. Explain the significance of change of enthalpy.

D Watch Video Solution

137. Calculate the enthalpy change($\triangle H$) for the following reaction.
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$
Given: Average bond energies of varisous bonds $\mathrm{C}-\mathrm{H}, C \equiv C, \mathrm{O}=\mathrm{O}$, $\mathrm{C}=\mathrm{O}, \mathrm{O}-\mathrm{H}$ are $414,814,499,724,640 \mathrm{~kJ} \mathrm{~mol}^{-}$respectively.

- Watch Video Solution

138. The standard free energy change for a reaction is $-212.3 \mathrm{kJmol}_{-1}$. If the enthalpy of the reaction is $216.7 \mathrm{kJmol}_{-1}$,
calculate the change in entropy in the reaction at 298 K .
139. Prove that $\triangle H=\triangle U+\triangle n R T$.

D Watch Video Solution

140. What are the required thermodyanmic criteria for a reaction to be spontaneous?

(D) Watch Video Solution

141. Under what condition, enthalpy change is equal to heat of reaction ?
142. The standard heat of formation of diamond, although an elementary substance, is not taken as zero. Explain why?

D Watch Video Solution

143. Are the bond energies of all the four $\mathrm{C}-\mathrm{H}$ bonds in methane molecule equal ? Justify your answer.

D Watch Video Solution

144. Why is entropy of substance taken as zero at absolute zero temperature?

Watch Video Solution
145. What is the value of change in entropy at equilibrium ?
146. Neither q nor w is a state function but ($q+w$) is a state function. Explain why?

D Watch Video Solution

147. Arrange water vapour, liquid water and ice in the order of increasing entropy.

D Watch Video Solution

148. Why does a real crystal has more entropy than an ideal crystal ?
149. How does entropy change with increase in temperature,

D Watch Video Solution

150. How does entropy change with decrease in pressure?

- Watch Video Solution

151. Do you expect $\triangle S \rightarrow b e+v e,-v e$ or zerof or reaction:
$\mathrm{H}_{-} 2(\mathrm{~g})+\mathrm{I}$ _ $2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})^{\prime}$

D Watch Video Solution

152. Is the entropy of the universe constant ?

D Watch Video Solution

153. What is mean by macroscopic properties in thermodynamics ?

D Watch Video Solution

154. Define intensive properties and give few examples.

- Watch Video Solution

155. How can you convert an extensive property to an intensive property?

D Watch Video Solution

156. Give relation betwween internal energy change and enthalpy change.
157. What are the standard states for various form of matter?

Watch Video Solution

158. Define and illustrate standard enthalpy of reaction.

Watch Video Solution

159. Define and illustrate standard enthalpy of formation.

Watch Video Solution

160. What is enthalpy of solution?
161. What is bond energy ?

D Watch Video Solution

162. Define and illustrate bond dissociation energy.

D Watch Video Solution

163. How can bond enthalpy data can be used to calculate enthalpy of reaction ?

D Watch Video Solution

164. State Zeroth law of thermodynamics.
165. Give four statements of first law of thermodynamics.

D Watch Video Solution

166. Give four limitations of first law of thermodynamics.

- Watch Video Solution

167. Define heat capacity of a system and give relationship between C_{p} and C_{v}.

D Watch Video Solution

168. Give relation between C_{p} and C_{v}.
169. Give Kirchhoff's equation at constant pressure and contant temperature.

D Watch Video Solution

170. Show that maximum work is done in isothermal reversible expansion.

D Watch Video Solution

171. Give an expression for work done in a reversible isothermal expression of an ideal gas.

D Watch Video Solution

172. How much work is done in an irreversible isothermal free expansion of an ideal gas in vacuum ?
173. For reversible adiabatic expansion of an ideal gas, give an expression for work done.

- Watch Video Solution

174. what is Joule Thomson Coefficient ? How does it account for the heating and cooling effect on J.T. expansion ?

D Watch Video Solution

175. Define intensive property and show its importance.
176. What is the efficiency of a heat engine?

(D) Watch Video Solution

177. How is entropy change measured in a reversible isothermal process?

D Watch Video Solution

178. Give four different ststements of second law of thermodynamics.

D Watch Video Solution

179. Explain why the enthalpy of formation and the entropy of formation of an element in its standard state at 298 K and 1 bar pressure are not equal ?
180. State third law of thermodynamics with few exceptius.

(D) Watch Video Solution

181. Give relationship between entropy and probability.

D Watch Video Solution

182. What is integral enthalpy solution ?

- Watch Video Solution

183. What is molar integral enthalpy of solution?
184. Define molar differential enthalpy of solution.

(D) Watch Video Solution

185. Explain the significance of molar enthalpy of solution at infinite dilution.

- Watch Video Solution

186. What is integral enthalpy of dilution ?

- Watch Video Solution

187. Explain molar integral enthalpy of dilution.
188. Define molar differential enthalpy of dilution.

- Watch Video Solution

189. State and explain Nernst heat theorem.

- Watch Video Solution

190. State third law of thermodynamics, what is the importance of this law?

D Watch Video Solution

191. When water is converted to ice, its entropy \qquad .
192. Heat of combustion is also known as \qquad .

(D) Watch Video Solution

193. In endothermic reaction \triangle is \qquad and in exothermic reaction $\triangle H$ is \qquad

- Watch Video Solution

194. What is the relationship between enthalpy (H) and internal energy (E) ?

D Watch Video Solution

195. Measurement of disorderness or randommess of the system is
196. The enthalpy change during chemical reaction remains the same whether the reaction takes place in one step or in several steps is known as \qquad .

Watch Video Solution

197. Gibb's Helmholtz equation is \qquad .

- Watch Video Solution

198. What is the free energy change at equilibrium state ?
199. The energy required to break down all the bonds in one compound is known as \qquad .

Watch Video Solution
200. Ice is converted to water, then entropy \qquad .

D Watch Video Solution

201. Entropy of ice is \qquad than entropy of water vapour.

D Watch Video Solution

202. For spontaneous process $\triangle S$ is \qquad and $\triangle G$ is \qquad .
203. The system in which exchange of both matter and energy with surroundings takes place is known as \qquad .

- Watch Video Solution

204. The properties which do not depend on the quantity of matter present in the system are called \qquad .

(D) Watch Video Solution

205. Number of moles, mass, volume, enthalpy, entropy and free energy are examples of \qquad properties.

D Watch Video Solution

206. All natural processes are \qquad process.
207. S.I. Unit of caloric value is given by \qquad .

D Watch Video Solution

208. Entropy is a measure of disoder. For perfect crystalline substance at 0 K , entropy becomes:
A. Minus
B. Zero
C. Constant
D. Very low

Answer: B
209. For the reversible vaporisation of water at $100^{\circ} \mathrm{C}$ and 1 atmospheric pressure, $\triangle G$ is equal to:
A. $\triangle H$
B. $\triangle S$
C. zero
D. $\triangle \frac{H}{T}$

Answer: C

D Watch Video Solution

210. The total amount of energy in the universe is fixed, but:
A. Matter is increasing
B. Gravitation is decreasing
C. Disorder is increasing
D. Lightening is increasing

Answer: C

(D) Watch Video Solution

211. Gibbs free energy G, enthalpy H and entropy S are related by:
A. $G=H+T S$
B. G=H-TS
C. G-TS=H
D. $\mathrm{S}=\mathrm{H}-\mathrm{G}$

Answer: B
212. For the precipiyation of AgCl by Ag^{+}ions and HCl :
A. $\triangle H=0$
B. $\triangle G=0$
C. $t r \in a g \leq G=-v e$
D. $\triangle H=\triangle G$

Answer: C

D Watch Video Solution

213. Least random state of water is:
A. Ice
B. Liquid water
C. Steam
D. All present in same random state

Answer: A

(D) Watch Video Solution

214. The matter has highest entropy in:
A. Solid state
B. Liquid state
C. Gaseous state
D. Equal in all

Answer: C

Watch Video Solution
215. In a reversible isothermal process the change in internal energy
is:
A. Zero
B. Positive
C. Negative
D. None

Answer: A

D Watch Video Solution

216. The total entropy change for a system and its surrounding increases, if the process is
A. reversible
B. irreversible
C. exothermic
D. endothermic

Answer: B

Watch Video Solution

217. When the value of entropy is greater, then the ability for work is:
A. Maximum
B. Minimum
C. Medium
D. None of these

Answer: A

218. A well stopped thermosflask contains some ice Cubes. This is an example of a
A. Closed system
B. Open system
C. Isolated system
D. None

Answer: C

- Watch Video Solution

219. Change in entropy is negative for:
A. Bro $\min e(l) \rightarrow$ Bro $\min e(g)$
B. $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
C. $N_{2}(g, 10 a t m) \rightarrow N_{2}(g, 1 a t m)$
D. $F e(1 \mathrm{~mol}, 400 \mathrm{~K}) \rightarrow F e(1 \mathrm{~mol}, 300 \mathrm{~K})$

Answer: D

(D) Watch Video Solution

220. At a certain temperature T , the endothermic reaction $A \rightarrow B$ proceeds almost to completion.

The entropy change is:
A. $\triangle S=0$
B. $\triangle S<0$
C. $\triangle S>0$
D. Cannot be predicted

Answer: C
221. The enthalpy change for the process $C(s) \rightarrow C(g)$ corresponds to enthalpy of:
A. Fusion
B. Vaporisation
C. Combustion
D. Sublimation

Answer: D

D Watch Video Solution

222. For the process, $\mathrm{CO}_{2}(s) \rightarrow \mathrm{CO}_{2}(g)$:
A. Both $\triangle H$ and $\triangle S$ are +ve
B. $\triangle H$ is negative and $\triangle S$ is +ve` C. \(\triangle H\) is +ve and \(\triangle S\) is -ve`
D. Both $\triangle H$ and $\triangle S$ are -ve`

Answer: A

- Watch Video Solution

223. Maximum work done by a system is given by:
A. Decrease in Helmholtz free energy ($\triangle A$)
B. Decrease in Gibb's free energy ($\triangle G$)
C. Decrease in internal energy
D. Decrease in heat energy

Answer: B

224. The final temperature in an adiabatic expansion is:
A. Greater than the initial temperature
B. Same as the initial temperature
C. Half of the initial temperature
D. Less than the initial temperature

Answer: D

D Watch Video Solution

225. In an adiabatic process:
A. The system exchanges heat with surrounding
B. Pressure is maintained constant
C. There is perfect heat insulation
D. The gas is isothermally expanded

Answer: C

- Watch Video Solution

226. The work done by a system in an expansion against a constant external pressure is :
A. $\triangle P . \triangle V$
B. $-P . \triangle V$
C. Q
D. $V . \triangle P$

Answer: B

227. An endothermic reaction is one in which
A. Heat is liberated
B. heat is absorbed
C. Temperature remains constant
D. None of these

Answer: B

D Watch Video Solution

228. The mathematical form of the first law of thermodynamics when heat(q) is supplied and W is work done by the system(+ve) is:
A. $\triangle U=q+W$
B. $\triangle U=q-W$
C. $\triangle U=-q+W$
D. $\triangle U=-q-W$

Answer: B

D Watch Video Solution

229. Which one is not a state function:
A. Internal energy(U)
B. Volume
C. Heat (q)
D. Enthalpy

Answer: C

Watch Video Solution
230. Thermodynamic is concerned with:
A. Total energy of a system
B. Energy changes in a system
C. Rate of chemical change
D. Mass change in nuclear reactions

Answer: B

- Watch Video Solution

231. When no heat energy is allowed to enter or leave the system it is called:
A. Isothermal process
B. Reversible process
C. Adiabatic process
D. Irreversible process

Answer: C

D Watch Video Solution

232. The $\triangle G$ in the process of melting of ice at $-156 \circ C$ is:
A. $\triangle G<0$
B. $\triangle G>0$
C. $\triangle G=0$
D. All

Answer: B
233. The entropy change for vaporisation of liquid water to steam at $100^{\circ} \mathrm{C}$ is __J $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, Given that heat of vapori-sation is $40.8 \mathrm{kJmol}^{-1}$.
A. 109.38
B. 100.38
C. 110.38
D. 120.38

Answer: A

D Watch Video Solution

234. The work done by 100 calorie of heat is:
A. 481.4 J
B. 4.184J
C. 41.84 J
D. None

Answer: A

235. The work done by a system is 8 J , when 40 J heat is supplied to it.

The change in internal energy of the system during the process:
A. 32 J
B. 40 J
C. 36 J
D. 44 J

Answer: A
236. The work done during the process when 1 mole of gas is allowed to expand freely into vacuum is:
A. Zero
B. $+v e$
C. $-v e$
D. Either of these

Answer: A

D Watch Video Solution

237. The maximum work done in expanding 16 g oxygen at 300 K and occupying a volume of $5 \mathrm{dm}^{3}$ isothermally until the volume become $25 \mathrm{dm}^{3}$ is:
A. $2.01 X 10^{3} \mathrm{~J}$
B. $+2.81 X 10^{3} J$
C. $2.01 X 10^{-3} J$
D. $+2.01 \mathrm{X} 10^{-6} \mathrm{~J}$

Answer: A

- Watch Video Solution

238. If temperature remains contant during a reaction the process is called:
A. Isothermal
B. Isochoric
C. Isobaric
D. Adiabatic

(Watch Video Solution

239. A gaseous system change form state A $\left(P_{1}, V_{1}, T_{1}\right) \rightarrow B\left(P_{2}, V_{2}, T_{2}\right), B \rightarrow C\left(P_{3}, V_{3}, T_{3}\right)$ and finally from C to A. The whole procoess may be called:
A. Reversible process
B. Cyclic process
C. Isobaric process
D. Spontaneous process

Answer: B

- Watch Video Solution

240. Work done by the system on surrounding is
A. Postive
B. Negative
C. Zero
D. None of these

Answer: B

- Watch Video Solution

241. During isothermal transformation of an ideal gas, internal energy:
A. Increase as the pressure increases
B. Decreases as the volume decreases
C. Decreases as the pressure decreases
D. remains fixed
242. When a solid is changed into liquid the entropy
A. Decrease
B. Increases
C. Remains constant
D. None of these

Answer: B

243. Write van't Hoffequation?
A. $\triangle G=R T \log _{g} K_{p}$
B. $-t r \in a g \leq G=R T \log _{g} K_{p}$
C. $\triangle G=R T^{2} \in K_{p}$
D. None of these

Answer: B

- Watch Video Solution

244. 1 litre - atmosphere is equal to:
A. 101.3 J
B. 24.206 cal
C. $101.3 x 10^{7} \mathrm{erg}$
D. All
245. Decrease in free energy of a reacting system indicates to:
A. Exothermic reaction
B. Equilibrim reaction
C. Spontaneous reaction
D. Slow reaction

Answer: C

D Watch Video Solution

246. An ideal gas undergoing expansion in vacuum shows:
A. $\triangle U=0$
B. $W=0$
C. $q=0$
D. All

Answer: D

247. It is impossible to attain the lowest temperature known as zero degree absolute. This is a simple statement of:
A. First law of thermodynamics
B. Second law of thermodynamics
C. Third law of thermodynamics
D. None

Answer: C
248. An example of extensive property is:
A. Temprature
B. Internal energy
C. Viscosity
D. Surface tension

Answer: B

D Watch Video Solution
249. It is a general principle that the less energy of a system then it is:
A. More stable
B. Less stable
C. Unstable
D. More unstable

Answer: A

- Watch Video Solution

250. $\triangle S$ for the reaction,
$\mathrm{MgCO}_{3}(s) \rightarrow \mathrm{MgO}(s)+\mathrm{CO}_{2}(g)$ will be
A. Zero
B. $-v e$
C. $+v e$
D. ∞

Answer: C

251. The intensive property is:
A. Freezing point
B. Temperature
C. Refractive index
D. All

Answer: D

Watch Video Solution

252. An isolated system is that system in which:
A. There is no exchange of energy with the surroundings
B. There is exchange of mass and energy with the surroundings
C. There is no exchange of mass or energy with the suroundings
D. There is exchanges of mass with the surroundings

Answer: C

- Watch Video Solution

253. For two mole of an ideal gas:
A. $\left(C_{p}-C_{v}\right)=R$
B. $\left(C_{p}-C_{v}\right)=\frac{R}{2}$
C. $\left(C_{v}-C_{p}\right)=-2 R$
D. $\left(C_{p}-C_{v}\right)=0$

Answer: A
254. When an ideal gas is compressed adiabatically and reversibly, the final temperature is:
A. Higher than the initial temperature
B. Lower than the initial temperature
C. The same as the initial temperature
D. Dependent on the rate of compression

Answer: C

D Watch Video Solution

255. Above the inversion temperature, μ (J.T. coefficient):
A. Is positive
B. Is zero
C. Is nagative
D. Depends on the gas

Answer: C

- Watch Video Solution

256. For the adiabatic expansion of an ideal gas:
A. $P V^{\gamma}=$ constant
B. $T V^{\gamma-1}=$ cons $\tan t$
C. $T^{\gamma} P^{1-\gamma}=$ cons $\tan t$
D. All

Answer: D

257. The inversion temperature for a van der Waals' gas is:
A. $T_{i}=2 \frac{a}{R b}$
B. $T_{i}=\frac{a}{R b}$
C. $T_{i}=\frac{a}{2}(R b)$
D. $T_{i}=0.5 \mathrm{~T}$ Boyle

Answer: A

D Watch Video Solution

258. Which is not a spontaneous process:
A. Expansion of a gas into vacum
B. Water flowing down hill
C. Heat flowing from colder body to a hotter body
D. Evaporation of water from clothes during drying

Answer: C

- Watch Video Solution

259. The equilibrium constant for the reaction is 10 at 300 K . What will be the value of $\triangle G^{\circ}$?
A. Standard free energy changetra $\in g \leq G^{\circ}$
B. temperature T
C. Heat enthalpy
D. None

Answer: A

260. When ice melts into water, entropy:
A. becomes zero
B. Decreases
C. increases
D. Remains the system

Answer: C

D Watch Video Solution

261. Human body is an example of:
A. Open system
B. Closed system
C. Isolated system
D. None

- Watch Video Solution

262. A closed flask contains water in all its three states, solids, liquid and vapour at $0 \circ C$. In this situation the average KE of the water molecule will be:
A. Maximum in vapour state
B. Maximum in solid state
C. Greater in the liquid than in vapour state
D. Same in all the three states

Answer: D
263. Which gas shows a heating effect when expanded into a region of low pressure:
A. O_{2}
B. NH_{3}
C. F_{2}
D. H_{2}

Answer: D

D Watch Video Solution

264. On dissolving NaCl in water there occurs:
A. becomes zero
B. Increases in entropy
C. Decrease in entropy
D. No change in entropy

Answer: B

- Watch Video Solution

265. When hydrogen and oxygen burn to from water in an oxyhydrogen torch, the entropy change is:
A. Negative
B. Positive
C. Zero
D. may be +ve or -ve

Answer: A

266. Joule Thomson co-efficient for ideal gas is:
A. Zero
B. Positive
C. Negative
D. Infinite

Answer: A

D Watch Video Solution

267. $\triangle S$ is postive for the change:
A. Mixing of two gases
B. Boiling of liquid
C. Melting of Solid
D. All

Answer: D

D Watch Video Solution

268. The heat change in a chemical reaction at constant pressure is:
A. $\triangle H$
B. $\triangle U$
C. $\triangle T$
D. $\triangle V$

Answer: A

D Watch Video Solution

269. A thermally isolated gaseous system can exchange energy with the surrounding. The mode of transference of energy can be:
A. Heat
B. Work
C. Heat and radiation
D. None of these

Answer: B

- Watch Video Solution

270. Which correctly represents the physical significance of free energy change:
A. $\triangle G=W_{\exp a}$ nsion
B. $\triangle G=W_{n} o \neq x p a n s i o n$
C. $\triangle G=-W_{C}$ ompression
D. $\triangle G=W_{c}$ ompression

D Watch Video Solution

271. A reaction taking palce with absorption of energy is:
A. Burning of a candle
B. Electrolysis of water
C. Digestion of food
D. Rusting or iron

Answer: B

- Watch Video Solution

272. All the naturally occuring process i.e., spontaneous proceed spontaneously in a direction which leads to:
A. Decrease of free energy
B. Increase of free energy
C. Decrease of entropy
D. Increase of entropy

Answer: A

(D) Watch Video Solution
273. Work done by the system in a cyclic process is equal to:
A. Zero
B. $\triangle U$
C. $\triangle H$
D. q
274. Internal energy of an ideal gas depends on:
A. Pressure
B. Temperature
C. Volume
D. None

Answer: B

- Watch Video Solution

275. A spontaneous change is one in which the system suffers:
A. An increase in internal energy
B. A lowering of entropy
C. A lowering of free energy
D. No energy

Answer: C

Watch Video Solution
276. Heat given to a system under isochoric process is equal to:
A. W
B. q_{p}
C. $\triangle E$
D. $\triangle H$

Answer: A
277. The apparatus generally used for measuring heat changes is:
A. Voltameter
B. Voltmeter
C. Calorimeter
D. Coulometer

Answer: C

D Watch Video Solution

278. In which of the following case entropy decreases:
A. Solid changing to liquid
B. Expansion of a gas
C. Crystals dissolve
D. Polymerisation

- Watch Video Solution

279. In which case, a spontaneous reaction is impossible at any temperature:
A. $\triangle H>0, \triangle S>0$
B. $\triangle H>0, \triangle S<0$
C. $\triangle H<0, \triangle S<0$
D. In all cases

Answer: B
280. In which case, a spontaneous reaction is possible at any temperature:
A. $\triangle H<0, \triangle S>0$
B. $\triangle H<0, \triangle S<0$
C. $\triangle H>0, \triangle S>0$
D. In none of the cases

Answer: A

D Watch Video Solution

281. In a reaction, $\triangle H$ and $\triangle S$ both are more than zero. In which of the following cases, the reaction would not be spontaneous:
A. $\triangle H>T \triangle S$
B. $\triangle S=\triangle \frac{H}{T}$
C. $\triangle H=T \triangle S$
D. All

Answer: D

(D) Watch Video Solution

282. In which reaction $\triangle S$ is positvive:
A. $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(s)$
B. $3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Answer: C
283. Change in entropy for a reaction is given by:
A. $2.303 \mathrm{nR} \frac{\log _{10}\left(v_{2}\right)}{v_{1}}$
B. $\mathrm{nR} \frac{\log _{e}\left(v_{2}\right)}{v_{1}}$
C. $\mathrm{nR} \frac{\log _{e}\left(P_{1}\right)}{P_{2}}$
D. All

Answer: D

(D) Watch Video Solution

284. The efficiency of heat engine is maximum when:
A. Temprature of source greater than temperature of sink
B. Temprature of sink greater than temperature of source
C. Temprature difference of source and sink is minimum
D. Temprature difference of source and sink is maximum

Answer: D

- Watch Video Solution

285. In a chemical reaction $\triangle H=150 \mathrm{~kJ}$ and $\triangle S=100 \mathrm{JK}^{\wedge}-1$ at 300 K . ThetriangleG ${ }^{\prime}$ for the reaction is :
A. Zero
B. 300 kJ
C. 330kJ
D. 120 kJ

Answer: D

286. A system is provided 50 joule of heat and work done on the system is 10 J . The change in internal energy during the process is:
A. 40 J
B. 60 J
C. 80 J
D. 50 J

Answer: B

D Watch Video Solution

287. Enthalpy of vaporisation for water is $186.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The entropy change during vaporisation is ___kJ $K^{-1} \mathrm{~mol}^{-1}$:
A. 0.5
B. 1
C. 1.5
D. 2

Answer: A

288. A system is changed from state A to state B by one path and from B to A by another path. If U and U_{2} are the corresponding change in internal energy, then:
A. $U_{1}+U_{2}=+v e$
B. $U_{1}+U_{2}=-v e$
C. $U_{1}+U_{2}=0$
D. None

Answer: C

289. The cooling in refrigerator is due to:
A. The work of compressor
B. The expansion of gas in the refrigerator
C. Expansion of ice
D. Reaction of the refrigerator

Answer: B
(D) Watch Video Solution
290. If $\Delta G^{\circ}>0$, for a reaction then:
A. $K_{p}>1$
B. $K_{p}<1$
C. The products predominate in the equilibrium mixture
D. None

Answer: B

291. Highest entropy at the same temperature is in:
A. Water
B. Hydrogen
C. Mercury
D. Graphite

Answer: B
292. During an adiabatic process:
A. Pressure is maintained constant
B. Gas is isothermally expanded
C. There is perfect heat insulation
D. The system change heat with surroundings

Answer: C

D Watch Video Solution

293. The process in which pressure remains constant throughout a change is:
A. Adiabatic
B. Isochoric
C. Isobaric
D. Isothermal

Answer: C

D Watch Video Solution

294. Which statements is/are correct:
A. $(\delta H / \delta T)_{p}-(\delta U / \delta T)_{v}=R$
B. $(\delta H / \delta T)_{p}>(\delta U / \delta T)_{v}$
C. $(\delta E / \delta V)_{T}$ for ideal gas is zero
D. All

Answer: D

295. In an irreversible process, the value of $\triangle S_{s} y s t e m+\triangle S_{s} u r r$
is :
A. greater than 0
B. less than 0
C. equal 0
D. All

Answer: A

D Watch Video Solution

296. The entropy change at a given temperature is expressed as:
A. $\triangle S=q-T$
B. $\triangle S=q / \triangle T$
C. $q=T \triangle S$
D. $\mathrm{S}=\mathrm{q} / \mathrm{T}$

Answer: C

D Watch Video Solution
297. The temperature of the system increases during an:
A. Isothermal expansion
B. Adiabtic compression
C. Adiabtic expansion
D. Isothermal compression

Answer: B

298. Enthalpy is same as:
A. Heat content
B. Entropy
C. Heat
D. Volume

Answer: A

D Watch Video Solution

299. The relation $\triangle G=\triangle H-T \triangle S$ was given by
A. Boltzmann
B. Faraday
C. Gibbs-Helmholtz
D. Thomson

Answer: C

D Watch Video Solution

300. Entropy decreases during:
A. Crystallisation of sucrose from solution
B. Rusting of iron
C. Melting of ice
D. Vaporisation of camphor

Answer: A

Watch Video Solution
301. The spontaneous nature of a reaction is impossible if:
A. $\triangle H i s+v e, \triangle S$ is also + ve
B. $\triangle H$ is -ve, $\triangle S$ is also -ve
C. $\triangle H$ is -ve, $\triangle S$ is +ve
D. $\triangle H$ is +ve, $\triangle S$ is -ve

Answer: D

D Watch Video Solution
302. For an adiabatic process :
A. $\mathrm{Q}=+\mathrm{w}$
B. $\mathrm{Q}=0$
C. $\triangle E=q$
D. $P \triangle V=0$

Answer: B

D Watch Video Solution

303. Energy equivalent to one erg, one joule and one calorie are in order:
A. 1 erggt 1 Jgt 1 cal
B. 1 erggt1 calgt1 J
C. 1 calgt 1 Jgt1 erg
D. 1 Jgt1 cal gt 1 erg

Answer: C

304. A boiled egg show a/an_in entropy:
A. Increase
B. Decreases
C. No change
D. None

Answer: A

D Watch Video Solution

305. Molar heat capacity at constant P for substance is equal to:
A. $(\delta E / \delta T)_{v}$
B. $(\delta H / \delta T)_{v}$
C. $(\delta E / \delta T)_{p}$
D. $(\delta H / \delta T)_{p}$

Answer: D

D Watch Video Solution

306. The work done by a weightless piston in causing an expansion $\triangle V$ (at constant temperature), when the opposing pressure, P is variable, is given by:
A. $W=-\int P \triangle V$
B. $W=0$
C. $W=-P \triangle V$
D. None

Answer: A
307. An adiabatic process is one in which:
A. The system is not closed to energy transfer
B. The system is not closed to heat transfer
C. There is no enthalpy change
D. There is no change in mass of the system

Answer: C

D Watch Video Solution

308. Which is the intensive property:
A. Temperature
B. Viscosity
C. Density
D. All

Answer: D

- Watch Video Solution

309. Warming ammonium chloride with sodium hydroxide in a test tube is an example of:
A. Closed system
B. Isolated system
C. Open system
D. None of these

Answer: C

310. The unit of entropy are:
A. $J K^{-1} \mathrm{~mol}^{-1}$
B. $\mathrm{kJ}^{-1} \mathrm{~mol}^{-1}$
C. $k \mathrm{Jmol}^{-1}$
D. $\mathrm{J}^{-1} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Answer: A

D Watch Video Solution

311. At absolute zero, the entropy of a perfect cyrstal is zero. This is which law of thermodynamics?
A. First law of thermodynamics
B. Second law
C. Third law
D. None

Answer: C

D Watch Video Solution

312. Net work done by a system is given by:
A. Decrease in Helmholtz free energy ($\triangle A$)
B. Decrease in Gibb's free energy ($\triangle G$)
C. Decrease in internal energy
D. Decrease in heat enthalpy

Answer: A

313. The process of evaporation of a liquid is accompanied by:
A. Increase in enthalpy
B. Decrease in free energy
C. Increase in entropy
D. All

Answer: D

D Watch Video Solution
314. $\triangle S^{\circ}$ will be highest for the reaction
A. $\mathrm{Ca}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CaO}(S)$
B. $\mathrm{CaCO}_{3}(\mathrm{~S}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(g)$
C. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
D. $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}(g)$

Answer: B

- Watch Video Solution

315. The free energy change for a reversible reaction at equilibrium
is:
A. Zero
B. Small positive
C. Small negative
D. Large positive

Answer: A

316. Which is not a state function:
A. Internal energy
B. Entropy
C. Work
D. Enthalpy

Answer: C

D Watch Video Solution

317. The temperature of the system decreases in an:
A. Adiabatic expansion
B. Isothermal compression
C. Isothermal expansion
D. Adiabatic compression
318. The second law of thermodynamic introduced the concept of:
A. Third law of thermodynamics
B. Work
C. Entropy
D. Internal energy

Answer: C

- Watch Video Solution

319. Select the correct limitations of III law of thermodynamics:
A. Glassy solids at zero Kelvin has entropy greater than zero
B. Solids having mixture of isotopes do not have entropy zero at Kelvin
C. Crystals of CO, $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{H}_{-} 2 \mathrm{O}$, etc., do not have zero entropy at zero Kelvin.
D. All

Answer: D

D Watch Video Solution

320. Which of the following have same units:
(i) Work, (ii) Heat, (iii) Energy (iv) Entropy
A. (i), (ii) and (iii)
B. (i), (ii) and (iv)
C. (ii), (iii) and (iv)
D. (iii) and (iv)

Answer: A

- Watch Video Solution

321. When two atoms of hydrogen combine to form a molecule of hydrogen gas, the energy of the molecule is:
A. Greater than that of separate atoms
B. Equal to that of separate atoms
C. Lower than that of separate atoms
D. Sometimes lower than sometimes higher

Answer: C
322. A gas on subjecting to adiabatic expansion gets cooled due to:
A. Fall in temperature
B. Loss of Kinetic energy
C. Decrease in velocity
D. Energy used in doing work

Answer: D

Watch Video Solution

323. In a spontaneouse irreversible process, the total entropy of the system and surroundings:
A. Remains constant
B. Increases
C. Decreases
D. Zero

Answer: B

324. If a refrigerator door is opend then we get
A. Room cooled
B. Room heated
C. more heat is passed out
D. no effect on room

Answer: B
325. During isothermal expansion of an ideal gas its
A. $Q=0$
B. $\triangle V=0$
C. $\mathrm{W}=0$
D. $\triangle U=0$

Answer: D

D Watch Video Solution

326. A gas expands isothermally and reversibly. The work done by the gas is:
A. Zero
B. Minimum
C. Maximum
D. Equal to work done

Answer: C

- Watch Video Solution

327. Temperature and heat are:
A. Extensive properties
B. Intensive properties
C. Intensive amd extensive properties respectively
D. Extensive and intensive properties respectively

Answer: C

328. Internal energy and pressure of a gas of unit volume are related
as:
A. $P=2 / 3 U$
B. $P=3 / 2 U$
C. $P=U / 2$
D. $P=2 U$

Answer: A

- Watch Video Solution

329. The internal energy of one mole of a gas is:
A. $3 / 2 R T$
B. $K T / 2$
C. $R T / 2$
330. The heat measured for a reaction in a bomd calorimeter is:
A. $\triangle G$
B. $\triangle H$
C. $\triangle U$
D. $P \triangle V$

Answer: C

Watch Video Solution
331. Give an expression for work done in a reversible isothermal expression of an ideal gas.
A. $2.303 R T \log \frac{V_{2}}{V_{1}}$
B. $\frac{n R}{(\gamma-1)}\left(T_{2}-T_{1}\right)$
C. $2.303 R T \log \frac{P_{2}}{P_{1}}$
D. None

Answer: A

D Watch Video Solution

332. Work done in reversible adiabatic process is given by:
A. $2.303 R T \log \frac{V_{2}}{V_{1}}$
B. $\frac{n R}{(\gamma-1)}\left(T_{2}-T_{1}\right)$
C. $2.303 R T \log \frac{V_{1}}{V_{2}}$
D. None

Answer: B

- Watch Video Solution

333. The bond dissociatin energy of C-H bond inCH from the equation,
$C(g)+4 H(g) \rightarrow \mathrm{CH}_{4}, \triangle H=-397.8 \mathrm{kcal}$ is:
A. +397.8 kcal
B. +198.9 kcal
C. +99.45 kcal
D. -99.45 kcal

Answer: D

334. The enthalpy of formation of water from hydrogen and oxygen is $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The enthalpy of decomposition of water into hydrogen and oxygen is:
A. $-286 \mathrm{kJmol}^{-1}$
B. $-143 \mathrm{kJmol}^{-1}$
C. $+286 \mathrm{kJmol}^{-1}$
D. $+143 \mathrm{kJmol}^{-1}$

Answer: C

D Watch Video Solution

335. For a gaseous reaction,
$A(g)+3 B(g) \rightarrow 3 C(g)+3 D(g)$
$\triangle U$ is 17 kcal at $27^{\circ} C$. Assuming $\mathrm{R}=2$ cal $^{\wedge}{ }^{\wedge}-1 \mathrm{~mol}^{\wedge}-1$, thevalueof triangleH' for the above reaction will be:
A. 15.8 kcal
B. 16.4 kcal
C. 18.2 kcal
D. 20.0 kcal

Answer: C

(D) Watch Video Solution

336. The heat of combustion of methane is, $-880 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If 3.2 g of methane is burnt:
A. 176 kJ of heat is evolved
B. 176 kJ of heat is absorbed
C. 88 kJ of heat is evolved
D. None of the above

D Watch Video Solution

337. If $\mathrm{H}_{2} 2(\mathrm{~g})+\mathrm{Cl}_{-} 2(\mathrm{~g}) \rightarrow \quad 2 \mathrm{HCl},{ }^{\wedge} @=-44 \quad \mathrm{kcal} 2 \mathrm{Na}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{g} \rightarrow$) $2 \mathrm{NaCl}(\mathrm{s})+\mathrm{H}_{-} 2(\mathrm{~g}), \triangle \mathrm{H}=-152$ kcalthen, $\mathrm{Na}(\mathrm{s})+0.5 \mathrm{Cl}$ 2 $2(\mathrm{~g}) \rightarrow \mathrm{NaCl}(\mathrm{s}), \triangle \mathrm{H}$ $=$?
A. 108 kcal
B. 196 kcal
C. -98 kcal
D. 54 kcal

Answer: B
338. The heat of formation of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are -26.4 kcal and -94.0 kcal respectively. Heat of combustion of carbon monoxide will be:
A. $+26.4 k c a l$
B. -67.6 kcal
C. -120.6 kcal
D. +52.8 kcal

Answer: B

D Watch Video Solution

339. The standard heat of formation of $\mathrm{NO}_{2}(\mathrm{~g})$ amd $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are 8.0
$2.0 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively. The heat of dimerization of NO_{2} in kcal is:
A. 10
B. -6.0
C. -12.0
D. -14.0

Answer: D

- Watch Video Solution

340. Given enthalpy of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{CaO}(\mathrm{s})$ are -94.0 kJ and -152 kJ respectively and the enthalpy of the reaction, $\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ is 42 kJ . The enthalpy of formation of $\mathrm{CaCO}_{3}(s)$ is:
A. $-42 k J$
B. $-202 k J$
C. $+202 k J$
D. $-288 k J$

Answer: D

- Watch Video Solution

341. The heat of combustion of rhombic and momoclinic sulphur are 70.96 and 71.03 kcal. The heat of transition of $S_{R \rightarrow M}$ is:
A. 70.96 kcal
B. 71.03 kcal
C. -70 cal
D. +70 cal

Answer: D

342. The heat of combustion for $\mathrm{C}, \mathrm{H}_{2}$ and CH_{4} are-349.0, -241.8 and -906.7 kJ respectively.The heat of formation CH_{4} is:
A. 174.1 kJ
B. 274 kJ
C. 374.1 KJ
D. 74.1 kJ

Answer: D

- Watch Video Solution

343. $\triangle n$, the change in the number of mole for the reaction, $C_{12} H_{22} O_{11}(s)+12 O_{2}(g) \rightarrow 12 \mathrm{CO}_{2}(g)+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ is
A. Zero
B. -1
C. 2
D. 4

Answer: A

344. The enthalpy change of a reaction does not depand on:
A. State of reactants and products
B. Nature of reactants and products
C. Different intermediate reaction
D. Initial and final enthalpy change of reaction

Answer: C

345. The $\triangle H$ for the process,
$\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$is:
A. Positive
B. Negative
C. Zero
D. Unpredicatable

Answer: A

- Watch Video Solution

346. The bond enerhies of $F_{2}, C l_{2}, B r_{2}$ and I_{2} are 155.4, 243.6, 193.2 and $151.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.The strongest bond is:
A. F-F
B. $\mathrm{Cl}-\mathrm{Cl}$
C. $\mathrm{Br}-\mathrm{Br}$
D. $\mathrm{I-}$

Answer: B

Watch Video Solution
347. For the reaction, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, which is true:
A. $\triangle H=\triangle U$
B. $\triangle H<\triangle U$
C. $\triangle H>\triangle U$
D. None

Answer: B
348. Hess's law is related to:
A. Change in heat during of reaction
B. Rates of reaction
C. equilibrium constant
D. influence of pressure on volume of a gas

Answer: A

D Watch Video Solution

349. The heat released during neutralisation is constant for the reaction of aqueous solutions of:
A. Strong acid and strong base
B. Strong acid and weak base
C. Strong base and weak acid
D. In all the cases

Answer: A

(D) Watch Video Solution

350. Evaporation of water is:
A. An exothermic change
B. An endothermic change
C. A process where no heat change occurs
D. A process accompanied by chemical change

Answer: B

351. At constant P and T which statement is correct for the reaction,
$\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g):$
A. $\triangle H=\triangle U$
B. $\triangle H<\triangle U$
C. $\triangle H>\triangle U$
D. $\triangle H$ is independent for physical state of reaction.

Answer: B

D Watch Video Solution

352. The difference between $\triangle H$ and $\triangle U$ is equal to:
A. R
B. $P \triangle V$
C. $V \triangle P$
D. $\frac{3}{2} R$

Answer: B

- Watch Video Solution

353. 1 mole of gas occupying 3 litre volume is expanded against a constant external pressure of 1 atm to a volume of 15 litre. The work done by the system is:
A. $1.215 x X 10^{3} \mathrm{~J}$
B. $12.15510^{3} \mathrm{~J}$
C. $1.215 \times 10^{3} \mathrm{~J}$
D. None

Answer: A

354. For a reaction at $25^{\circ} C$ enthalpy change ($\triangle H$) and entropy change $(\triangle S)$ are-11.7 $\times 10^{3} \mathrm{Jmol}^{-1}$ and $-105 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. The reaction is:
A. Spontaneous
B. Non-Spontaneous
C. Instantaneoous
D. None

Answer: B

- Watch Video Solution

355.1 mole of an ideal gas at $25^{\circ} \mathrm{C}$ is subjected to expand reversibly ten times of its intial volume. The change in entropy of expansion is:
A. $19.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $16.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $22.15 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. None

Answer: A

- Watch Video Solution

356. The entropy change for the reaction given below is:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is __ at 300K. Standard entropies of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are 126.6, 201.20 and $68.0 \mathrm{JK}^{-1} \mathrm{~mol}^{\wedge}-1^{`}$ respectively.
A. $-318.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $318.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $31.84 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. None

- Watch Video Solution

357. The temperature at which the reaction, $\mathrm{Ag}_{2} \mathrm{O}(s) \rightarrow 2 \mathrm{Ag}(s)+\mathrm{I} / 2 \mathrm{O}_{2}(g)$ is at equilibrium is........, Given $\triangle H=30.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\triangle S=0.066 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$:
A. 462.12 K
B. 362.12 K
C. 262.12 K
D. 562.12 K

Answer: A
358. The ionisation energy of solid NaCl is 180 kcal , per mol. The dissolution of the solid in water in the from of ions is endothermic to the extent of 1 kcal per mol, If the solvation energies of Na^{+}and Cl^{-}ions are in the rstio 6:5, what is the enthalpy of hydration of sodium ion:
A. $-85.6 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$
B. $-97.5 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$
C. $82.6 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$
D. $+100 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$

Answer: B

D Watch Video Solution

359. If the enthalpy change for the reaction $\mathrm{CH}_{4}(g)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g}), \quad \triangle \mathrm{H}=-25 \mathrm{kcal}$. Bond
energy of $\mathrm{C}-\mathrm{H}$ is 20kcal/mol greater than the bond energy of $\mathrm{C}-\mathrm{Cl}$ and bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{H}-\mathrm{Cl}$ are same in magnitude, then for the reaction: $1 / 2 H_{2}(g)+1 / 2 C l_{2}(g) \rightarrow H C l(g) \triangle H$ is
A. $-22.5 k c a \frac{l}{m} o l$
B. $-20.5 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$
C. $-32.5 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$
D. $-12.5 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$

Answer: A

- Watch Video Solution

360. The standard heat of formation of sodium ions in aqueous solution from the following data: Heat of formation of $\mathrm{NaOH}(\mathrm{aq})$ from NaOH (s) at $25^{\circ} \mathrm{C}=-470 \mathrm{~kJ}$

Heat of formation of OH -(aq) from $\mathrm{OH}-(\mathrm{s})$ at $25^{\circ} \mathrm{C}=-228.8 \mathrm{~kJ}$.
A. -251.9
B. 241.9 kJ
C. $-241.9 k J$
D. 151.9 kJ

Answer: C

- Watch Video Solution

361. For a diatomic molecule $A B$, the electronegativity difference between A and $\mathrm{B}=0.2028 \sqrt{\triangle}$ where $\triangle=[\mathrm{Bond}$ energy of AB Geometric mean of the bond energies of A_{2} and $\left.B_{2}\right]$. The electonegativities of fluorine and chlorine are 4.0 and 3.0 respectively and the bond energies are of F-F : $38 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ and $\mathrm{Cl}-\mathrm{Cl}: 58 \mathrm{kcal}$ mol $^{-1}$. The bond energy of Cl-F is:
B. $61 \mathrm{kcal} / \mathrm{mol}$
C. $48 \mathrm{kcal} / \mathrm{mol}$
D. $75 \mathrm{kcal} / \mathrm{mol}$

Answer: A

- Watch Video Solution

362. If heat of neutralisation is -13.7 k cal and $H_{f}^{\circ} H_{2} O=-68 \mathrm{k}$ cal , thenenthalpyof OH^{\wedge} - 'would be:
A. 54.3 k cal
B. -54.3 kcal
C. 71.3 k cal
D. None

(Watch Video Solution

363. The dissociation energy of $C H_{4}$ and $C_{2} H_{6}$ are respectively 360 and $620 \mathrm{kcal} / \mathrm{mole}$. The bond energy of C-C bond is:
A. $260 \mathrm{kcal} / \mathrm{mol}$
B. $180 \mathrm{kcal} / \mathrm{mol}$
C. $130 \mathrm{kcal} / \mathrm{mol}$
D. $80 \mathrm{kcal} / \mathrm{mol}$

Answer: D

- Watch Video Solution

364. 2.1 g of Fe combines with S evolving 3.77 kJ of heat. The heat of formation of FeS in $\mathrm{kJ} / \mathrm{mol}$ is:
A. -3.77
B. -1.79
C. -100.5
D.

Answer: C

D Watch Video Solution

365. The heat of neutralisation of HCl by NaOH is $-55.9 \mathrm{~kJ} / \mathrm{mol}$. If the heat of neutralisation of HCN by NaOH is $-12.1 \mathrm{~kJ} / \mathrm{mol}$. The energy of disso-ciation of HCN is:
A. $-43.8 k J$
B. 43.8 kJ
C. 68 kJ
D. $-68 k J$

- Watch Video Solution

366. When a certain amount of ethylene was burnt 6226 kJ heat was evolved. If heat of combustion of ethylene is 1411 kJ , the volume of O_{2} (at NTP) that entered into the reaction is:
A. 296.5 mL
B. 296.5 litre
C. 622×22.4 litre
D. 22.4 litre

Answer: B
367. The heat evolved during the combustion of 112 litre of water gas (mixture of equal volume of H_{2} and (CO) is: Given $\mathrm{H} 2(\mathrm{~g})+1 / 2 \mathrm{O} 2$
$(\mathrm{g})=\mathrm{H} 2 \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}=-241.8 \mathrm{~kJ} \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O} 2(\mathrm{~g})=\mathrm{CO} 2(\mathrm{~g}) ; \Delta \mathrm{H}=-283 \mathrm{~kJ}$
A. 241.8 kJ
B. 283 kJ
C. 1312 kJ
D. 1586 kJ

Answer: C

D Watch Video Solution

368. Heat of combustion of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ are-890, -1411 and $-1560 \mathrm{~kJ} / \mathrm{mol}$ respectively. Which has the lowest calorific fuel value in kJ/g:
A. CH_{4}
B. $C_{2} H_{4}$
C. $C_{2} H_{6}$
D. All same

Answer: B

(D) Watch Video Solution
369. $\triangle H$ for $\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$ is $176 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 1240 K . The \triangle Ufor the change is equal to:
A. 160 kJ
B. 165.6 kJ
C. 186.3 kJ
D. 180.0 kJ

D Watch Video Solution

370. Energy required to dissociate 4 gms of gaseous hydrogen into free gaseous atoms is 208 kcals at $25^{\circ} \mathrm{C}$. The bond energy of $\mathrm{H}-\mathrm{H}$ bond will be
A. 104 kcal
B. 10.4 kcal
C. 1040 kcal
D. 104 kcal

Answer: A
371. Energy change during neutralisation of $\mathrm{NH}_{4} \mathrm{OH}$ and HCl is :
A. $-1.5 k J$
B. +1.5 kJ
C. +3.0 kJ
D. -3.0 kJ

Answer: B

D Watch Video Solution

372. From the thermochemical reactions, $C_{g} r a \phi t e+1 / 2 \mathrm{O}_{2}=\mathrm{CO}$,

$$
\triangle H=-110.5 k J
$$

$\mathrm{CO}+1 / 2 \mathrm{O}_{2}=\mathrm{CO}_{2}, \quad \triangle H=-283.2 k J$
$\triangle H$ for the reaction, $C_{g} r a \phi t e+O_{2}=\mathrm{CO}_{2}$ is:
A. $-393.7 k J$
B. +393.7 kJ
C. -172.7 kJ
D. +172.7 kJ

Answer: A

(D) Watch Video Solution

373. Energy change during neutralisation of $\mathrm{NH}_{4} \mathrm{OH}$ and HCl is :
A. $13.7 \mathrm{kcal} / \mathrm{eq}$.
B. less than $13.7 \mathrm{kcal} / \mathrm{eq}$.
C. greater than $13.7 \mathrm{kcal} / \mathrm{eq}$.
D. Zero

Answer: B
374. $\triangle H$ for thermal decomposition process is:
A. Positive
B. Negative
C. Zero
D. Positive or negative

Answer: A

- Watch Video Solution

375. Hess's law of constant heat summation is an application of:
A. Kirchhoff's law
B. First law of thermodynamic
C. Second law of thermodynamics
D. Third law of thermodynamics

Answer: B

(D) Watch Video Solution

376. Bond energy of a molecule:
A. Is always negative
B. Is always positive
C. Either positive or negative
D. Depends upon the physical state of the system

Answer: B

377. For the reaction, $3 \mathrm{O}_{2} \rightarrow 2 \mathrm{O}_{3}, \Delta \mathrm{H}=+\mathrm{ve}$. We can say that:
A. Ozone is more stable than oxygen
B. Ozone is less stable than oxygen and ozone decomposes forming oxygen readily
C. Oxygen is less stable than ozone and oxygen readily forms ozone.
D. None

Answer: B

- Watch Video Solution

378. Which of the following is incorrect about the reaction,
A. Heat of combustion of $C_{D}=-94.3 \mathrm{kcal}$.
B. Heat of formation of $\mathrm{CO}_{2}=-94.3 \mathrm{kcal}$
C. $\triangle H=\triangle U$
D. Standard heat of formation of CO_{2}

Answer: D

- View Text Solution

379. The exchange of heat energy during chemical reaction at constant temperature and pressure occurs in from of:
A. Free energy
B. Internal energy
C. Enthalpy
D. Bond energy

Answer: C

(Watch Video Solution

380. Molar heat capacity of water in equilibrium with the ice at constant pressure is:
A. Zero
B. ∞
C. $40.45 \mathrm{kjK}^{-1} \mathrm{~mol}^{-1}$
D. $75.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: B

D Watch Video Solution

381. Heat energy change during the chemical reaction, $\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ is known as:
A. Heat of combustion of CO
B. Latent heat of CO_{2}
C. Latent heat of vaporisation
D. Heat of formation of CO_{2}

Answer: A

- Watch Video Solution

382. When an exothermic is reversed, it:
A. Becomes another exothermic reaction
B. Becomes an endothermic reaction
C. Shows no change at all
D. Attains equilibrium
383. Heat of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at 1 atm and $25^{\circ} \mathrm{C}$ is $-243 \mathrm{~kJ} . \triangle E$ for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g) a t 25^{\circ} \mathrm{C}$ is
A. 241.8 kJ
B. $-241.8 k J$
C. $-243 k J$
D. 243 kJ

Answer: B

- Watch Video Solution

384. The $\mathrm{H}-\mathrm{H}$ bond energy is $430 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\mathrm{Cl}-\mathrm{Cl}$ bond energy is $240 \mathrm{kJmol}^{-1}$. $\triangle H$ for HCl is -90 kJ . The $\mathrm{H}-\mathrm{Cl}$ bond energy is about:
A. $425 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $213 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $180 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

(D) Watch Video Solution

385. $\mathrm{S}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+2 x k \mathrm{cal}$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+y k c a l:$
The heat of formation of SO_{2} is :
A. $y-2 x$
B. $(2 x+y)$
C. $(x+y)$
D. $2 x-y$

D Watch Video Solution

386. Given , $\mathrm{NH}_{3}(g)+3 \mathrm{Cl}_{2}(g) \rightleftharpoons N \mathrm{Nl}_{3}(g)+3 \mathrm{HCl}(g),-\triangle H_{1}$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}), \triangle \mathrm{H}_{2}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g}),+\triangle \mathrm{H}_{3}$ The heat of formation of $\mathrm{NCl}_{3}(g)$ in the terms of $\triangle H_{1}, \triangle H_{2}$ and \triangle_{3} is:
A. $\triangle H_{f}=-\triangle H_{1}+\frac{\triangle_{2}}{2}-\frac{3}{2} \triangle H_{3}$
B. $\triangle H_{f}=\triangle h_{1}+\triangle \frac{H_{2}}{2}-\frac{3}{2} \triangle H_{3}$
C. $\triangle H_{f}=\triangle h_{1}+\triangle \frac{H_{2}}{2}-\frac{3}{2} \triangle H_{3}$
D. None

Answer: A

387. AB, A_{2} and B_{2} are diatomic molecules. If the bond enthalpies $A_{2} A B$ and B_{2} are in the ratio 1:1:0.5 and the enthalpy of formation of AB fron A_{2} and B_{2} is $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$, what is the bond enthalpy of A_{2} :
A. $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

D Watch Video Solution

388. $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g), \triangle \mathrm{H} 298 \mathrm{~K}=-22.06$ kcals, For this reaction, ${ }^{\prime} \triangle U$ is equal to:
A. $-22.06+2 \times 10^{-3} \times 298 \times 2 k c a l$
B. $-22.06-2 \times 298 \mathrm{kcal}$
C. $-22.06-2 \times 298 \times 4$ kcal
D. -22.06 kcl

Answer: D

D Watch Video Solution

389. For the reaction, $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$,
A. $7.63 \times(373-297)-68.3$
B. $7.63 \times 10^{-3} \times(373-298)-68.3$
C. $7.63 \times 10^{-3} \times(373-298)+68.3$
D. $7.63 \times(373-297)+68.3$

Answer: B

View Text Solution

390. According to the equation, $C_{6} H_{6}(l)+\frac{15}{2} \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(l)+6 C_{2}(g) \quad \triangle H=-3264.4 \mathrm{~kJ} / \mathrm{mol}$, the energy evolved when 7.8 g of benzene is burnt in air will be:
A. $163.22 \mathrm{~kJ} / \mathrm{mol}$
B. $326.4 \mathrm{~kJ} / \mathrm{mol}$
C. $32.64 \mathrm{~kJ} / \mathrm{mol}$
D. $3.264 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

391. Given that standard heat enthalpy of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ are -17.9, 12.5, -24.8 kcal/mol. The $\triangle H$ for $\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}$ is:
A. -55.2 kcal
B. $-30.2 k c a l$
C. 55.2 kcal
D. -19.4 kcal

Answer: D

D Watch Video Solution

392. Given, $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+94.2 \mathrm{kcal}$.
(i) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+68.3 \mathrm{kcal}$
(ii) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+210.8 \mathrm{kcal}$ The heat of formation of methane in kcal will be:
A. 45.9
B. 47.8
C. 20.0
D. 47.3

Answer: C

- Watch Video Solution

393. When 1 mole of carbon is converted into 1 mole of CO_{2} the heat liberated is same:
A. Irrespective of whether the volume is kept constant or pressure is kept constant
B. Irrespective of the temperature at which the reaction is carried out
C. Whether the carbon is in the form of diamond or garphite
D. None

(Watch Video Solution

394. Calorific value of carbohydrates is approximately:
A. $4.0 \mathrm{kcal} / \mathrm{g}$
B. $16.0 \mathrm{kcal} / \mathrm{g}$
C. $20 \mathrm{kcal} / \mathrm{g}$
D. $9.0 \mathrm{kcal} / \mathrm{g}$

Answer: B

- Watch Video Solution

395. If $\mathrm{H}^{+}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+13.7 \mathrm{kcal}$ then the heat of neutralisation for complete neutralisation of one mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ by a base will be:
A. 13.7 kcal
B. 27.4 kcal
C. 6.85 kcal
D. 3.425 kcal

Answer: B

- Watch Video Solution

396. $I f H_{2}(g)=2 H(g), \triangle H=104 \mathrm{cal}$, then heat of atomisation of hydrogen is:
A. 52 kcal
B. 104 kcal
C. 208 kcal
D. Nove of these

D Watch Video Solution

397. Given $N_{2}(g)+3 H_{2}(g)=2 \mathrm{NH}_{3}(g), \quad \triangle H^{\circ}=-22 \mathrm{kcal}$. The standard enthalpy of formation of NH_{3} gas is:
A. $-11 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$
B. $11 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$
C. $-22 k c a \frac{l}{m}$ ol
D. $22 \mathrm{kca} \frac{\mathrm{l}}{\mathrm{m}} \mathrm{ol}$

Answer: A

398. $\triangle H$ for the reaction, $H(g)+H(g) \rightarrow H_{2}(g)$ will be,
A. Zero
B. $+v e$
C. $-v e$
D. infinite

Answer: C

(D) Watch Video Solution

399. Which one of the following bonds has the highest average bond energy(kcal/mol):
A. $S=O$
B. $C=C$
C. $\mathrm{C}=\mathrm{C}$
D. $\mathrm{N}-=\mathrm{N}$

Answer: D

D Watch Video Solution

400. The Kirchhoff's equation given the effect of on heat of reactions:
A. Pressure
B. Temperature
C. Volume
D. Molecularity

Answer: B

A. Heat of recation
B. Heat of transition
C. Heat of formation
D. All of these

Answer: D

402. When ammonium chloride is dissolved in water, the solution becomes cold.The change is:
A. Endothermic
B. Exothermic
C. Super cooling
D. None

D Watch Video Solution

403. A cannot engine operates between temperature T and 400
$\mathrm{K}(\mathrm{T}>400 \mathrm{~K})$. If efficiency of engine is 25%, the temperature T is:
A. 400 K
B. 500 K
C. 533.3 K
D. 600 K

Answer: C
404. The work done in an open vessel at 300 K , when 112 g iron reacts with dil HCl is:
A. -1.2 kcal
B. 0.6 kcal
C. -0.3 kcal
D. 0.2 kcal

Answer: A

(Watch Video Solution

405. 16kg oxygen gas expands at STP to occupy double of its original volume. The work done during the process is:
A. 260 kcal
B. 187.6 kcal
C. 130 kcal
D. 272.8 kcal

Answer: D

406. Boiling point of a liquid is 50 K at 1 atm and $\triangle H_{v} a p=460.6$ cal mol^{-1} What will be its boiling point at 10 atm.
A. 150 K
B. 75 K
C. 100 K
D. 200 K

Answer: C
407. For which change $\triangle H \neq \triangle U$:
A. $H_{2}+I_{2} \rightleftharpoons 2 H I$
B. $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
C. $C(s)+O_{2}(g) \rightleftharpoons \mathrm{CO}_{2}(g)$
D. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Answer: D

- Watch Video Solution

408. The heat of combustion of ethanol determined by a bomb calorimeter is -670.48 kcalmol ${ }^{-1}$ at $25^{\circ} \mathrm{C}$. What is $\triangle U$ at $25^{\circ} \mathrm{C}$ for the reaction, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$ is:'
A. $-335.24 k c a l$
B. -669.28 kcal
C. -670.48 kcal
D. +670.48 kcal

Answer: C

- Watch Video Solution

409. A person requires 2870 kcal of energy to lead normal daily life. If heat of combustion of cane sugar is - 1349 kcal , then his daily consumption of sugar is:
A. 728 g
B. 0.728 g
C. 342 g
D. 0.342 g

- Watch Video Solution

410. The difference in $\triangle H$ and $\triangle E$ for the combustion of methane forming water in liquid state at $25^{\circ} \mathrm{C}$ would be:
A. Zero
B. $2 \times 298 \times(-2) c a l$
C. $2 \times 298 \times(-3) c a l$
D. $2 \times 25 \times(-3) \mathrm{cal}$

Answer: A

411. The heat change taking place during the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is ?[Given $\triangle \mathrm{H}_{1}=\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=-57 \mathrm{kal}$, $\left.\operatorname{Tr} i \angle H_{f}=H_{2} O(l)=-68.3 k c a l\right]:$
A. +11.3 kcal
B. -11.3 kcal
C. -115.3 kcal
D. +115.3 kcal

Answer: A

(D) Watch Video Solution

412. If, $\quad C(s)+O_{2}(g) \rightarrow C O_{2}(g), \quad \triangle H=R \quad$ and $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}(g) \rightarrow \mathrm{CO}_{2}(g), \triangle H=S, \quad$ then the heat of formation of CO is:
A. $\mathrm{R}+\mathrm{S}$
B. R-S
C. S-R
D. RXS

Answer: B

(D) Watch Video Solution

413. The enthalpies of formation of $\mathrm{N}_{2} \mathrm{O}$ and NO are 28 and $90 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of the reactioin, $2 \mathrm{~N}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)$ is equal to:
A. 8 kJ
B. 88 kJ
C. -16 kJ
D. 304 kJ

D Watch Video Solution

414. The enthalpy of formation of ammonia gas at 298 K is -46.11 kJ mol^{-1}. The equation to which this value related is:
A. $\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
B. $\mathrm{N}(\mathrm{g})+3 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \rightarrow N H_{3}(l)$

Answer: A
415. The heat of formation of methane $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ at constant is 18500 cal at $25^{\circ} \mathrm{C}$. The heat of reaction at constant volume would be:
A. 19096 cal
B. 18798 cal
C. 18202 cal
D. 17904 cal

Answer: A

D Watch Video Solution

416. $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H} 2 \mathrm{O}, \triangle \mathrm{H}=-68.39 \mathrm{kcal}$ (i)
$K+a q \rightarrow K O H(a q)+\frac{1}{2} H_{2}, \triangle H=-48 k c a l$
(ii) $\mathrm{KOH}+$ aqrarrKOH(aq):triangleH=-14 kcal `(iii) T he heat of formation(in kcal) of KOH is:
A. $-68.39+48-14$
B. $-68.39-48-14$
C. $68.39-48+14$
D. $68.39+48+14$

Answer: B

D Watch Video Solution

417. The enthalpy of formation of ammonia is $-46.0 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$. The enthalpy change for the reaction, $2 \mathrm{NH}_{3}(g) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$ is:
A. $46.0 \mathrm{kJmol}^{-1}$
B. $92.0 \mathrm{kJmol}^{-1}$
C. $-23.0 \mathrm{kJmol}^{-1}$
D. $-92.0 \mathrm{kJmol}^{-1}$

D Watch Video Solution

418. A positive change in enthalpy occurs in:
A. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C. $\mathrm{MgCO}_{3}(s) \rightarrow \mathrm{MgO}(s)+\mathrm{CO}_{2}(g)$
D. $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$

Answer: C

- Watch Video Solution

419. The amount of heat evolved when one mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with two mole of NaOH is:
A. 57.3 KJ
B. $2 \times 57.3 \mathrm{KJ}$
C. $57.3 / 2 \mathrm{KJ}$
D. None

Answer: C

D Watch Video Solution

420.

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{\equiv} \mathrm{CH}_{3} \mathrm{COO}^{-+} \mathrm{H}_{2} \mathrm{O}+q_{1}$ and $\mathrm{H}^{+} \mathrm{OH} \equiv \mathrm{H}_{2} \mathrm{O}+q_{2}$ then the enthalpy change for the reaction, $\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$, is equal to:
A. $q_{1}+q_{2}$
B. $q_{1}-q_{2}$
C. $q_{2}-q_{1}$
D. $-q_{1}-q_{2}$

Answer: B

(D) Watch Video Solution

421. The heats of neutralisation of four acids A, B, C, D are -13.7, -9.4,
-11.2 and -12.4 kcal respectively when they are neutralised by a common base. The acidic character obeys the order:
A. AgtBgtCgtD
B. AgtDgtCgtB
C. DgtCgtBgtA
D. DgtBgtCgtA

Answer: B
422. In a chemical reaction if all reactants and products are in liquid state then:
A. $\triangle H>\triangle U$
B. $\triangle H<\triangle U$
C. $\triangle H=\triangle U$
D. None

Answer: C

D Watch Video Solution

423. Standard molar enthalpy of formation of $\mathrm{CO}_{-} 2$ is equal to:
A. Zero
B. The standard molar enthalpy of combustion of gaseous carbon
C. The sum of standard molar enthalpies formation of CO and O_{2}
D. The standard molar enthalpy of combustion of carbon (graphite)

Answer: D

424. Which is correct about the heat of combustion:
A. The combustion be exothermic in some cases and endothermic in other cases.
B. Heat of combustion is always exothermic
C. Its value change with temperature
D. All

Answer: D
425. If $\quad C(s)+O_{2}(g) \rightarrow C O_{2}(g), \triangle H=X \quad$ and $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \quad \triangle H=Y \quad$ then the heat of formation of CO is
A. $C_{\text {grapte }}+\mathrm{O}_{2}(g)=\mathrm{CO}_{2}(g)$
B. $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g)=\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
C. $\mathrm{CO}(g)+\frac{1}{2} O_{2}(g)=C O(g)$
D. $C_{6} H_{6}(l)+7 \frac{1}{2} O_{2}(g)=6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} O(l)$

Answer: A

D Watch Video Solution

426. $\triangle H$ for the reaction given below represents:
$\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}, \triangle \mathrm{H}=40 \mathrm{~kJ}$
A. Enthalpy of formation
B. Enthalpy of combustion
C. Enthalpy of neutralisation
D. Enthalpy of reaction

Answer: D

(D) Watch Video Solution
427. Molar heat capacity of a gas at constant temperature and pressure is:
A. $(3 / 2) R$
B. $(5 / 2) R$
C. ∞
D. Depends upon atomicity of gas

- Watch Video Solution

428. If 50 calorie are added to a system and system does work of 30 calorie on surroundings, the change in internal energy of system is:
A. 20 cal
B. 50 cal
C. 40 cal
D. 30 cal

Answer: A
429. If S° for $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are $0.13,0.22$ and $0.19 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ respectively. The total change in standard entropy for the reaction, $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HClis}:$
A. $30 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $40 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $60 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

430. The enthalpy and entropy change for a chemical reaction are $-2.5 x 10^{3}$ cal and 7.4 cal K^{-1} respectively. Predict that nature of reaction at 298 K is:
A. Spontaneous
B. Reversible
C. Irreversible
D. None-spontaneous

Answer: A

(D) Watch Video Solution

431. One mole of an ideal at 300 K is expanded isothermaly from an initial volume of 1 liter to 10 liters. The $\triangle E$ for this process is [$\mathrm{R}=2$ cal $k^{-1} \mathrm{~mol}^{-1}$]
A. 163.7 cal
B. 1381.1 cal
C. 9 litre-atm
D. Zero

Answer: D

- Watch Video Solution

432. Latent heat of vaporisation of a liquid at 500 K and 1 atm pressure is $10.0 \mathrm{kcal} / \mathrm{mol}$. What will be the change in internal energy
($\triangle E$) of 3 mole of liquid at same temperature:
A. 13.0 kcal
B. -13.0 kcal
C. 27.0 kcal
D. -27.0 kcal

Answer: C
433. Give the bond energies of N equiv $\mathrm{N}, \mathrm{H}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds as 945 , 436 and $391 \mathrm{kJmol}^{-1}$ respectively, the enthalpy of the following reaction $\mathrm{N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g}) \rightarrow 2 \mathrm{NH} 3(\mathrm{~g})$ is:
A. $-93 k J$
B. 102 kJ
C. 90 kJ
D. 105 kJ

Answer: A

D Watch Video Solution

434. If heat of formation of $C \mathrm{Cl}_{4}$ is $316 \mathrm{kcal} \mathrm{mol}^{-1}$ the dissociation energy of $\mathrm{C}-\mathrm{Cl}$ is :
A. $79 \mathrm{kcalmol}^{-1}$
B. $316 \mathrm{kcalmol}^{-1}$
C. $97 \mathrm{kcalmol}^{-1}$
D. $158 \mathrm{kcalmol}^{-1}$

Answer: A

- Watch Video Solution

435. For
the
reaction,
$\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l), \triangle U=-1414 k J$.
Then \triangle Hat 27° Cis:
A. $-1410 k J$
B. -1420 kJ
C. +1420 kJ
D. +1410 kJ

Answer: B

D Watch Video Solution

436. $H_{2}(g)+I_{2}(g) \rightarrow 2 H I(g), \triangle H=-12.40 k c a l s$, Heat of formation of HI will be
A. 12.4 kcal
B. -12.4 kcal
C. -6.20 kcal
D. 6.20 kcal

Answer: D

437. Heat evolved in the reaction, $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ is 182 kJ . Bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{Cl}-\mathrm{Cl}$ are 430 and $242 \mathrm{~kJ} / \mathrm{mol}$ respectively. The $\mathrm{H}-\mathrm{Cl}$ bond energy is:
A. $245 \mathrm{kJmol}^{-1}$
B. $427 \mathrm{kJmol}^{-1}$
C. $336 \mathrm{kJmol}^{-1}$
D. $154 \mathrm{kJmol}^{-1}$

Answer: A

D Watch Video Solution

438. The heat of formation of $\mathrm{CO}(\mathrm{g})$ and $\mathrm{CO} 2(\mathrm{~g})$ are $\Delta \mathrm{H}=-110$ and $\Delta H=-393 \mathrm{kJmmol}-1$ respectively. What is the heat of reaction($\Delta \mathrm{H}$) (in $\mathrm{kJ} \mathrm{mol}-1$) for the following reaction? $\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{CO} 2(\mathrm{~g})$
A. -50
B. -283
C. -150
D. -300

Answer: D

- Watch Video Solution

439. If, $S+O_{2} \rightarrow S O_{2}, \triangle H=-298.2 k J$
(i) $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}, \triangle \mathrm{H}=-98.7 \mathrm{~kJ}$
(ii) $\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \triangle \mathrm{H}=-130.2 \mathrm{~kJ}$
(iii) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \triangle=-287.3 \mathrm{~kJ}$ The enthalpy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be:
A. $-754.4 k J$
B. $-814.4 k J$
C. $-650.3 k J$
D. -433.7 kJ

Answer: A

440. $H_{2}(g)+C l_{2}(g)=2 H C l(g), \quad \triangle H=-44.12$ kcal` The enthalpy of hydrogen cholride at 298 K is:
A. -44.12
B. -22.06
C. 44.12
D. 22.06

Answer: B
441. $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)=\mathrm{H}_{2} \mathrm{O}(l)$,
$\triangle H_{298} k=-68.32 \mathrm{kcal}$. Heat of vaporisation of water at 1 atm and $25^{\circ} C$ is 10.52 kcal . The standard heat of formation(in kcal) of 1 mole of water vapour at $25^{\circ} \mathrm{C}$ is:
A. -78.84
B. 78.84
C. +57.80
D. -57.80

Answer: D

- Watch Video Solution

442. Standard heat of formation of $\mathrm{CH}_{4}(\mathrm{~g}), \mathrm{CO}_{2}(\mathrm{~g})$ and water at $25^{\circ} \mathrm{C}$ are $-17.9,-94.1 \mathrm{~K}$ and $-68.3 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively. Calculate the
heat change (in kcal) in the following reaction at $25^{\circ} \mathrm{C}$:
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g)=\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
A. -144.5
B. -180.3
C. -248.6
D. -212.8

Answer: D

- Watch Video Solution

443. Molar heat capacity is given by:
A. $d Q / d T$
B. dqxdT
C. sumQ 1/dT
D. None

Answer: A

(D) Watch Video Solution

444. Heat of neutralisation of a strong acid and strong base is always.
A. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}$
B. $\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH}$
c. $\mathrm{HCOOH}+\mathrm{KOH}$
D. $\mathrm{HNO}_{3}+\mathrm{LiOH}$

Answer: D

445. Endothermic compounds are generally:
A. Less stable
B. Have weaker bonds
C. Have positive enthalpies of formation
D. All are correct

Answer: D

D Watch Video Solution

446. The heat evolved during neutralisation is maximum in the reaction of:
A. $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{NH}_{4} \mathrm{OH}$ and HCl
C. NaOH and $\mathrm{CH}_{3} \mathrm{COOH}$
D. NaOH and HCl

Answer: D

D Watch Video Solution
447. For the reaction, $\mathrm{CaCO}_{3}(s) \rightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
A. $\triangle H=\triangle U$
B. $\triangle H<\triangle U$
C. $\triangle H \neq \triangle U$
D. $\triangle H=0$

Answer: C

Watch Video Solution
448. $\triangle H$ for transition of cardon in the diamond from to carbon in the graphite form, is -453.5 cal. This suggests that:
A. Graphite is chemically different from diamond.
B. Graphite is as stable as diamond
C. Graphite is more stable than diamond
D. Diamond is more stable than graphit.

Answer: C

(Watch Video Solution

449. Which represents the largest amount of energy :
A. calorie
B. joule
C. erg
D. electron volt

Answer: A

- Watch Video Solution

450. In the combustion of hydrocarbons, $\triangle H$ is:
A. Negative
B. Zero
C. Positive
D. Undeterminate

Answer: A

Watch Video Solution
451. For an endothermic reaction
A. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
B. $\mathrm{Fe}+S \rightarrow \mathrm{Fe} S$
C. $\mathrm{NaOH}+\mathrm{HCI} \rightarrow \mathrm{NaCI}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

452. The enthalpies of formation of organic substances can be conveniently determined from:
A. Heats of combustion data
B. Boiling point
C. Melting point
D. A catalytic reaction

Answer: A

(D) Watch Video Solution

453. Entropy of vaporisation of water at $100^{\circ} \mathrm{C}$, if molar heat of vaporisation is $9710 \mathrm{cal}^{\mathrm{mol}}{ }^{-1}$ will be:
A. 20 cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$
B. $26.0{\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}, ~}_{\text {l }}$
C. 24 cal $^{\mathrm{mol}^{-1}} \mathrm{~K}^{-1}$
D. $28.0 \mathrm{cal}_{\mathrm{mol}^{-1} \mathrm{~K}^{-1}}$

Answer: B

454. One mole of ice is converted into water at 273 K . The entropies of $\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are 38.20 and $60.01 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. The enthalpy change for the conversion is:
A. $59.54 \mathrm{Jmol}^{-1}$
B. $5954 \mathrm{Jmol}^{-1}$
C. 595.4 Jmol^{-1}
D. $320.6 \mathrm{Jmol}^{-1}$

Answer: B

D Watch Video Solution

455. One mole of a gas absorbs 200 J of heat at constant volume. Its temperature rises from 298 K to 308 K . The change in internal energy is:
A. 200 J
B. -200 J
C. $200 \times 308 / 297 \mathrm{~J}$
D. $200 \times 298 / 308 \mathrm{~J}$

Answer: A

(D) Watch Video Solution

456. A system absorbs 10 kJ of heat at contant volume and its temperature riess from $27^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. The $\triangle U$ of reaction is:
A. 100 kJ
B. 10 kJ
C. Zero
D. 1 kJ

(Watch Video Solution

457. One mole of a gas occupying $3 \mathrm{dm}^{\wedge} 3$ expands against constant external pressure of 1 atm to a volume of $13 \mathrm{dm}^{\wedge} 3$. The work done is:
A. $-10 a t m d m^{3}$
B. $-20 a t m d m^{3}$
C. $-39 a t m d m^{3}$
D. $-48 a t m d m^{3}$

Answer: A

