

CHEMISTRY

BOOKS - MBD CHEMISTRY (ODIA ENGLISH)

THERMODYNAMICS

Question Bank

1. In what type of reaction, heat is absorbed ?

Watch Video Solution

2. Fill up the gap:

For exothermic reaction, riangle H is _____

3. In the reaction, $CO(g)+rac{1}{2}O_2(g) o CO_2$ at constant T and P which one of the following is correct ? (i) riangle H= riangle E

- (ii) riangle H > riangle E
- (iii) riangle H < riangle E

Watch Video Solution

4. In an endothermic reaction, riangle H is always_____

Watch Video Solution

5. The enthalpy of combustion is always _____.

(i) negative, (ii) positive, (iii) zero

6. Fill up the gap: When ice melts to liquid water, its entropy
Watch Video Solution
7. In which reaction, the reactants have less energy than the products ?
Vatch Video Solution

8. What is the relationship between enthalpy (H) and internal energy

(E) ?

9. In which of the following changes, there is increase in entropy ?

(i)
$$S0_2(g)+rac{1}{2}O_2(g)
ightarrow SO_3(g)$$

(ii) Ice \rightarrow Water`
Vatch Video Solution
10. When a reaction at constant temperature and pressure is at
equilibrium the value of $\ riangle \ G_{____}$
Watch Video Solution

11. In which of the following changes, there is increase in entropy?

(i)
$$S0_2(g)+rac{1}{2}O_2(g)
ightarrow SO_3(g)$$

(ii) Ice \rightarrow Water`

12. In which reaction, the reactants have less energy than the

products ?

20. In the reaction, $CO(g) + rac{1}{2}O_2(g) o CO_2$ at constant T and P which one of the following is correct ?

- (i) $\triangle H = \triangle E$
- (ii) riangle H > riangle E
- (iii) riangle H < riangle E

Watch Video Solution

21. Define Hess's law.

Watch Video Solution

22. In what type of reaction, heat is absorbed ?

31. What is exothermic reaction ?

Watch Video Solution
32. What is exothermic reaction ?
Watch Video Solution
33. What is bond energy ?
Watch Video Solution
34. When a reaction at constant temperature and pressure is at
equilibrium the value of $\ riangle \ G_{____}$
Watch Video Solution

35. What is bond energy ?

D Watch Video Solution

36. State and explain Hess's law.

37. State Hess's law.

Watch Video Solution

38. What is bond energy ?

39. What do you understand by exothermic and endothermic reaction ? Give one example of each.

Vatch Video Solution
40. What is endothermic reaction. Give example.
Watch Video Solution
41. When a reaction at constant temperature and pressure is at equilibrium the value of $ riangle G_{____}$
Vatch Video Solution
42. Define enthalpy of combustion. Give an example.

43. Predict whether riangle S is +ve or -ve for the following reaction.)

$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$$

44. Predict whether ΔS is +ve or -ve for the following reaction. $CaCO_{3(s)}+CaO_{2(s)}
ightarrow 2H_2O_{(g)}$

Watch Video Solution

45. If $\triangle H$ of the reaction $CH_{4(g)} + C_2H_{4(g)}C_3H_{8(g)}$ is -19.4 kcals, what will be the $\triangle H$ of the reaction $C_3H_{8(g)}CH_{4(g)} + C_2H_{4(g)}$?

46. How does the free energy change show the feasibility of chemical

reaction ?

47. At constant temperature and pressure, which of the following statement is true for the reaction. $CO[g]+rac{1}{2}O_2[g]ightarrow CO_2[g]$

- A. riangle H = riangle E
- B. $\triangle H < \triangle E$
- C. $\triangle H > \ \triangle E$
- D. $/_H$ is independent to physical state.

Answer: B

48. The relation between internal energy change, riangle E and enthalpy

change' riangledown H and work W is

A.
$$riangle H = riangle E + W$$

B. $\triangle E = \triangle H - W$

$$\mathsf{C}. \ \bigtriangleup \ E = W - \ \bigtriangleup \ H$$

D. $\triangle H = \triangle E - W$

Answer: A

Watch Video Solution

49. Which of the following is an intensive property?

A. Temprature

B. Molarity

C. Density

D. All are correct

Answer: D

Watch Video Solution

50. The value of enthalpy, H in term of R and T for a monoatomic gas

is

A. 3RT

$$\mathsf{B.}\,\frac{3}{2}RT$$

C. 5RT

D.
$$\frac{5}{2}RT$$

Answer: D

51. In a spontaneouse process, the system suffers

A. increase in internal energy

B. lowering in free energy

C. no energy change

D. decrease in entropy

Answer: B

Watch Video Solution

52. 1st law of thermodynamic is represented by the equation.

A.
$$riangle E = Q + W$$

- B. $\triangle E = Q W$
- $\mathsf{C}.\,W=Q+\ \bigtriangleup \, E$

D. None of these

Answer: B

53. Thermodynamic equilibrium involes

A. Chemical equilibrium

B. Thermal equilibrium

C. Mechanical equilibrium

D. All the three

Answer: D

54. 'Heat of neutralisation of a strong dibasic acid in dilute solution

by NaOH is'

A. `-27.4 cal/equ

B. `-13.7 cal/equ

C. `+13.7 cal/equ

D. `-13.7 cal/mol

Answer: B

Watch Video Solution

55.
$$riangle H$$
 and $riangle E$ for the reaction $S[s]+rac{2}{3}O_2[g] o SO_3[g]$ are related as

A. riangle H = riangle E + 0.33 RT

B. $\triangle H = \triangle E - 1.5 RT$

 $\mathsf{C.}\ \bigtriangleup\ H=\ \bigtriangleup\ E+RT$

D. riangle H = riangle E + 1.5 RT

Answer: A

56. One mole of an ideal at 300 K is expanded isothermaly from an initial volume of 1 liter to 10 liters. The $\triangle E$ for this process is [R= 2 cal $k^{-1}mol^{-1}$]

A. 163.7 cal

B. 1381.1 cal

C. 91 H-atm

D. zero

Answer: B

57. A well stopped thermosflask contains some ice Cubes. This is an example of a

A. Closed system

B. Open system

C. Isolated system

D. Non-thermodynamic system

Answer: C

Watch Video Solution

58. For the reaction

 $N_2 + 3H_2 = 2NH_3, \ riangle H = ?$

A. riangle E = 2RT

B. $\triangle E - 2RT$

C. $\triangle E + RT$

D. $\triangle E + 2RT$

Answer: B

Watch Video Solution

59. For an ideal gas, the relation between the enthalpy change and internal energy at constant temperature is given by

A.
$$riangle H = riangle E + PV$$

- B. $\triangle H = \triangle E + \triangle nRT$
- $\mathsf{C}. \ \bigtriangleup \ H = \ \bigtriangleup \ E + P \ \bigtriangleup \ V$
- D. riangle H = riangle G + T riangle S

Answer: B

60. If $C(s) + O_2(g) \to CO_2(g)$, $\triangle H = X$ and $CO(g) + \frac{1}{2}O_2(g) \to CO_2(g)$, $\triangle H = Y$ then the heat of formation of CO is

A. X+Y

B. X-Y

C. Y-X

D. XY

Answer: B

> Watch Video Solution

61. Enthalpies of elements in their standard states are taken as zero.

Hence the enthalpy of formation of a compound

A. shuold always be negative

B. shuold always be positive

C. will be equal to twice the energy of combustion

D. may be +ve or -ve

Answer: D

Watch Video Solution

62. Which of the following values of heat of formation indicates that

the product is least stable ?

 ${\rm A.}-94 k cal$

 ${\rm B.}-231 k cals$

 ${\rm C.}+21.4 k cal$

 $\mathsf{D.}+64.8kcal$

Answer: D

63. For an adiabatic process, which of the following is correct.

A. P riangle V=0

B. q=+w

C. $\triangle E=q$

D. q=0

Answer: D

> Watch Video Solution

64. Identify the intensive quantity from the following

A. Enthalpy and temperature

B. Volume and temperature

- C. Enthalpy and volume
- D. Temperature and refractive index

Answer: D

Watch Video Solution

65. An exothermic reaction is one which

A. takes place on heating

B. is accompanied by flame

C. is accompanied by absorption of heat

D. is accompanied by evolution of heat

Answer: D

66. An endothermic reaction is one in which

A. heat is converted into electicity

B. heat is absorbed

C. heat is evolved

D. heat is converted to machanical work

Answer: B

Watch Video Solution

67. Which of the following reaction is exothermic ?

A. $CaCO_3
ightarrow CaO + CO_2$

 $\mathrm{B.}\,Fe+S \to FeS$

C. $NaOH + HCI \rightarrow NaCI + H_2O$

 $\mathsf{D.}\,CH_4+2O_2\to CO_2+2H_2O$

Answer: B Watch Video Solution

68. Which of the following is an endothermic reaction

A. $2H_2+O_2
ightarrow 2H_2O$

B. $N_2 + O_2
ightarrow 2NO$

C. $2NaOH + H_2SO_4
ightarrow Na_2SO_4 + 2H_2O$

D. $C_2H_5OH+3O_2
ightarrow 2CO_2+3H_2O$

Answer: B

Watch Video Solution

69. In exothermic reaction

A. riangle E is zero`

B. riangle H is -ve

C. riangle S is zero`

D. \triangle *H* is +ve`

Answer: B

Watch Video Solution

70. For an endothermic reaction

A. riangle His -ve

B. riangle H is +ve`

C. riangle E is -ve `

D. riangle H =0`

Answer: B

71. Enthalpy for the reaction

 $C+O_2
ightarrow CO_2$ is:

A. = ve

B.-ve

C. zero

D. none

Answer: B

72. Enthalpy of a compound is equal to its

A. heat of comustion

B. heat of formation

C. heat of reaction

D. heat of solution

Answer: B

Watch Video Solution

73. During isothermal expansion of an ideal gas its

A. internal energy increase

B. enthalpy increase

C. enthalpy remains unaffected

D. enthalpy reduces to zero

Answer: C

74. Heat of neutralisation of a strong acid and strong base is always.

A. 13.7 kcal/mole

B. 9.6 kacl/mole

C. 6 kcal/mole

D. 11.4 kacl/mole

Answer: A

Watch Video Solution

75. The mutual heat of neutralisation of 40 grams NaOH and 60 grams CH_3COOH will be

A. 56.1 kJ

B. less than 56.1 kJ

C. more than 56.1 kJ

D. 13.7 kJ

Answer: B

Watch Video Solution

76. In which of the following neutralisation reaction, the heat of neutralisation is the highest

A. NH_4OH and H_2SO_4

B. HCl and NaOH

 $\mathsf{C}.\,CH_3COOH$ and KOH

D. CH_3COOH and NH_4OH

Answer: B

77. Hess's law deals with

A. change in heat of reaction

B. rate of reaction

C. equilibrium constant

D. influence of pressure on volume of a gas

Answer: A

Watch Video Solution

78. Hesss law of heat of summation includes

A. initial reactants only

B. initial reactants and final products

C. final products only

D. intermediates only

Answer: B

79.
$$H_2(g)+I_2(g)
ightarrow 2HI(g),\ riangle H=-12.40 kcals$$
, Heat of

formation of HI will be

A. 12.4 kcals

B.-12.4kcals

 ${\rm C.}-6.20 kacls$

D. 6.20 kcals

Answer: C

80. Combustion of methane

A. is an exothermic process

B. is an endothermic process

C. requires catalyst

D. give H_2

Answer: A

Watch Video Solution

81. For which reaction, Δ S will be maximum ?

A.
$$Ca(s)+rac{1}{2}O_2(g) o CaO(s)$$

B. $CaCO_3(S) o CaO(s)+CO_2(g)$
C. $C(s)+O_2(g) o CO_2(g)$
D. $N_2(g)+O_2(g) o 2NO(g)$

82. The total entropy change for a system and its surrounding increases, if the process is

A. reversible

B. irreversible

C. exothermic

D. endothermic

Answer: B

83. Fill up the gap: When ice melts to liquid water, its entropy _____.

A. becomes zero

B. decreases

C. increases

D. remains same

Answer: C

Watch Video Solution

84. Heat of combustion is always

A. = ve

B. -ve

C. neutral

D. all of the above

Answer: B

85. Energy required to dissociate 4 gms of gaseous hydrogen into free gaseous atoms is 208 kcals at $25^{\circ}C$. The bond energy of H-H bond will be

A. 104 kcals

B. 10.4 kcals

C. 1040 kcals

D. 104 cals

Answer: A

86. If a refrigerator door is opend then we get

A. room heated

B. room cooled

C. more heat is passed out

D. no effect on room

Answer: A

Watch Video Solution

87. When 1 mole of NH_4OH is neutralised by 1 mole of HCl, heat

evolved is:

A. 57.2kJ

B. greater than 57.2 kJ

C. less than 57.2 kJ

D. None of these

Answer: C

Watch Video Solution

88. For the reaction :

 $2Cl(g) - . Cl_2(g).$

A. riangle H = +ve and riangle S = -ve

 $\mathsf{B.}\ \bigtriangleup\ H=\ -\ ve\ \text{and}\ \ \bigtriangleup\ S=\ +\ ve$

C.
$$/_H= -ve and /_ S= -ve$$

Answer: C

Watch Video Solution

89. The relation riangle G = riangle H - T riangle S was given by

A. Thomson

B. Faraday

C. Blotzman

D. Gibb's-Helmholtz

Answer: D

Watch Video Solution

90. For the formation of NH_3 from N_2 and $H_2, (\ \bigtriangleup E - \ \bigtriangleup H)$ is :

A. RT

B. -2RT

C. 2RT

D. RT/2

Answer: C

91. For $H_2(g) + I_2(g) \rightleftharpoons 2HI(g), \ riangle H = 12.4Kcal$. The enthalpy

of formation of HI is:

A. 12.4 K cal

B. -12.4 K cal

C. 6.2 K cal

D. -6.2 K cal

Answer: C

92. For the reaction :

 $C_2H_4(g)+5O_2(g)
ightarrow 3CO_2(g)+4H_2O(l)$ at constant

temperature. \triangle H - \triangle U is:

A. RT

B. -3RT

 $\mathsf{C.}~=3RT$

D. -RT

Answer: B

93. The bond energies of C-C, C=C, H-H and C-H linkages arev350, 600, 400 and 410 kJ per mol respectively. The heat of hydrogenation of ethylene is:

A. $-170kJmol^{-1}$

 $\mathsf{B.}-260 k Jmol^{-1}$

C. $-400kJmol^{-1}$

D. $-450kJmol^{-1}$

Answer: A

94. Considering entropy (S) as a thermodynamic parameter the criterion for the spontaneity of any process is:

A.
$$riangle S_{system} - riangle S_{surroundings} > 0$$

- B. riangle S > 0only
- C. $riangle \; S_{surroundings} > 0$ only
- D. $riangle S_{system} + \ riangle S_{surround \, \in \, gs} > 0$

Answer: D

95. A reaction occurs spontaneously if :

A. T riangle S > riangle H and riangle H is +ve and riangle Sis - ve

B. T riangle S = riangle Hand both riangle Hand riangle S are +ve

C. T riangle S < riangle H and both riangle H and riangle S is +ve

D. T riangle S > riangle H and both riangle H and riangle S are is +ve

Answer: D

Watch Video Solution

96. For a phase change $H_2O(l) \rightleftharpoons H_2O(s)$

 $0^{\,\circ}\,C$,1 bar

- A. riangle G=0
- B. riangle S=0
- C. riangle H=0
- D. riangle U=0

Answer: A
Vatch Video Solution
97. In which condition entropy change is not zero ?
Watch Video Solution
98. What is the relationship between free energy change and
enthalpy change a reaction ?
Watch Video Solution
99. Give two examples of extensive property.
Vatch Video Solution

100. Give examples of macroscopic properties.

104. Define enthalpy of neutralization.

108. Write the sign of $\ riangle S$ for the following changes

 $SolidCO_2
ightarrow CO_2(g)$

Watch Video Solution

109. Write the sign of $\ riangle S$ for the following changes

Steam
ightarrow Water

Watch Video Solution

110. What is the sign of riangle H in exothermic and endothermic

reaction ?

111. Explain "free energy".

Watch Video Solution

112. Explain why entropies of all pure substances at aboslute zero are

zero.

113. Explain the state of chemical reation.

$$\triangle G = 0$$

114. Explain the state of chemical reation.

 $riangle \ G < 0$

116. Write down the expressions for standard free energy change in

terms of equilibrium constant.

Watch Video Solution

117. What is the relationship between enthalpy (H) and internal energy (E) ?

118. Define Hess's law.
Watch Video Solution
119. For a spontaneous process how T $ riangle S$ and $ riangle H$ are related ?
Vatch Video Solution
120. What are the factors on which internal energy depends ?
Watch Video Solution
121. What is the value of $ riangle G$, when a reaction takes place at
constant temperature and pressure?
Vatch Video Solution

122. Calculate the entropy of vaporisation for liquid boiling at 300K

having enthalpy of vapourisation, 27kJ mol^{-1} .

 $(R=8.314JK_{-1}mol_{-1})$

126. Calculate the entropy of vaporisation for liquid boiling at 300K

having enthalpy of vapourisation, 27kJ mol^{-1} .

Watch Video Solution

127. The equilibrium constant for the reaction is 10 at 300K. What will

be the value of $\ riangle \ G^\circ$?

Watch Video Solution

128. Explain the latest sign conventions regarding work and heat as

per IUPAC recommendation.

129. What would be the heat released when 0.5 mole of HCI is neutralised by 0.5 mole of NaOH in aqueous solution.

water. Given $\ riangle \ H = 6025$ J/mole

133. Calculate the heat of formation of benzene from the following data.

$$egin{aligned} C(s) + O_2(g) &
ightarrow CO_2(g) &
ightarrow H = &-393.5 kJ \ C_6 H_6(l) + rac{15}{2} O_2(g) &
ightarrow 6 CO_2(g) + 3 H_2 O(l) &
ightarrow H = &-3267.7 kJ \ H_2(g) + rac{1}{2} O_2(g) &
ightarrow H_2 O(l) &
ightarrow H = &-286.2 kJ \end{aligned}$$

Watch Video Solution

134. The enthalpy of combustion of glucose is -2840 kJ. What is the

energy evolved for the combustion of 5.2 gm of glucose ?

135. What do you mean by internal energy?

136. Explain the significance of change of enthalpy.

137. Calculate the enthalpy change(riangle H) for the following reaction.

 $2C_2H_2(g) + 5O_2(g) o 4CO_2(g) + 2H_2O$

Given : Average bond energies of varisous bonds C-H, $C \equiv C$, O=O,

C=O, O-H are 414, 814, 499, 724, 640 kJ mol⁻ respectively.

138. The standard free energy change for a reaction is $-212.3kJmol_{-1}$. If the enthalpy of the reaction is $216.7kJmol_{-1}$, calculate the change in entropy in the reaction at 298K.

142. The standard heat of formation of diamond, although an elementary substance, is not taken as zero. Explain why ?

Watch Video Solution
143. Are the bond energies of all the four C-H bonds in methane
molecule equal ? Justify your answer.
Watch Video Solution
144. Why is entropy of substance taken as zero at absolute zero
temperature ?
O Watch Video Solution

145. What is the value of change in entropy at equilibrium ?

146. Neither q nor w is a state function but (q+w) is a state function.

Explain why?

Watch Video Solution

147. Arrange water vapour, liquid water and ice in the order of

increasing entropy.

Watch Video Solution

148. Why does a real crystal has more entropy than an ideal crystal ?

152. Is the entropy of the universe constant?

153. What is mean by macroscopic properties in thermodynamics ?

Watch Video Solution
 154. Define intensive properties and give few examples.
 Watch Video Solution

155. How can you convert an extensive property to an intensive property ?

Watch Video Solution

156. Give relation betwween internal energy change and enthalpy change.

157. What are the standard states for various form of matter ?

Watch Video Solution
158. Define and illustrate standard enthalpy of reaction.
Watch Video Solution
159. Define and illustrate standard enthalpy of formation.
Watch Video Solution
160. What is enthalpy of solution ?
Watch Video Solution

Watch Video Solution

162. Define and illustrate bond dissociation energy.

163. How can bond enthalpy data can be used to calculate enthalpy

of reaction ?

Watch Video Solution

164. State Zeroth law of thermodynamics.

169. Give Kirchhoff's equation at constant pressure and contant

temperature.

Watch Video Solution	
170. Show that maximum work is done in isothermal reversible expansion.	

Watch Video Solution

171. Give an expression for work done in a reversible isothermal expression of an ideal gas.

172. How much work is done in an irreversible isothermal free expansion of an ideal gas in vacuum ?

176. What is the efficiency of a heat engine ?

Watch Video Solution

177. How is entropy change measured in a reversible isothermal

process ?

Watch Video Solution

178. Give four different ststements of second law of thermodynamics.

Watch Video Solution

179. Explain why the enthalpy of formation and the entropy of formation of an element in its standard state at 298 K and 1 bar pressure are not equal ?

184. Define molar differential enthalpy of solution.

Watch Video Solution
185. Explain the significance of molar enthalpy of solution at infinite
dilution.
Watch Video Solution
186. What is integral enthalpy of dilution ?
Wetch Video Colution
Watch video Solution

187. Explain molar integral enthalpy of dilution.

188. Define molar differential enthalpy of dilution.

Watch Video Solution
189. State and explain Nernst heat theorem.
Vatch Video Solution
190. State third law of thermodynamics, what is the importance of this law ?
Vatch Video Solution

191. When water is converted to ice, its entropy_____.
192. Heat of combustion is also known as
Vatch Video Solution
193. In endothermic reaction \triangle is and in exothermic reaction \triangle <i>H</i> is
O Watch Video Solution
194. What is the relationship between enthalpy (H) and internal energy (E) ?
Watch Video Solution

195. Measurement of disorderness or randommess of the system is

199. The energy required to break down all the bonds in one
compound is known as
Watch Video Solution
200. Ice is converted to water, then entropy
Watch Video Solution
201. Entropy of ice is than entropy of water vapour.
Watch Video Solution
202. For spontaneous process $ riangle S$ is and $ riangle G$ is
Vatch Video Solution

203. The system in which exchange of both matter and energy with
surroundings takes place is known as
Watch Video Solution
204. The properties which do not depend on the quantity of matter present in the system are called
Watch Video Solution
205. Number of moles, mass, volume, enthalpy, entropy and free energy are examples of properties.
Watch Video Solution

206. All natural processes are _____ process.

A. Minus

B. Zero

C. Constant

D. Very low

Answer: B

209. For the reversible vaporisation of water at $100^{\circ}C$ and 1 atmospheric pressure, $\triangle G$ is equal to:

A. riangle HB. riangle S

C. zero

D.
$$\triangle \frac{H}{T}$$

Answer: C

O Watch Video Solution

210. The total amount of energy in the universe is fixed, but:

A. Matter is increasing

B. Gravitation is decreasing

C. Disorder is increasing

D. Lightening is increasing

Answer: C

Watch Video Solution

211. Gibbs free energy G, enthalpy H and entropy S are related by:

A. G=H+TS

B. G=H-TS

C. G-TS=H

D. S=H-G

Answer: B

212. For the precipiyation of AgCl by Ag^+ ions and HCl:

A. riangle H = 0B. riangle G = 0C. $tr \in ag \leq G = -ve$

D. riangle H = riangle G

Answer: C

Watch Video Solution

213. Least random state of water is:

A. Ice

B. Liquid water

C. Steam

D. All present in same random state

Answer: A

Watch Video Solution

214. The matter has highest entropy in:

A. Solid state

B. Liquid state

C. Gaseous state

D. Equal in all

Answer: C

215. In a reversible isothermal process the change in internal energy

is:

A. Zero

B. Positive

C. Negative

D. None

Answer: A

Watch Video Solution

216. The total entropy change for a system and its surrounding increases, if the process is

A. reversible

B. irreversible

C. exothermic

D. endothermic

Answer: B

Watch Video Solution

217. When the value of entropy is greater, then the ability for work is:

A. Maximum

B. Minimum

C. Medium

D. None of these

Answer: A

218. A well stopped thermosflask contains some ice Cubes. This is an

example of a

A. Closed system

B. Open system

C. Isolated system

D. None

Answer: C

Watch Video Solution

219. Change in entropy is negative for:

A. $Bro \min e(l)
ightarrow Bro \min e(g)$

B. $C(s) + H_2O(g)
ightarrow CO(g) + H_2(g)$

 $\mathsf{C}.\, N_2(g, 10atm) \rightarrow N_2(g, 1atm)$

D. $Fe(1mol, 400K) \rightarrow Fe(1mol, 300K)$

Answer: D

220. At a certain temperature T, the endothermic reactiion $A \rightarrow B$ proceeds almost to completion.

The entropy change is:

A. riangle S=0

B. riangle S < 0

C. riangle S > 0

D. Cannot be predicted

Answer: C

221. The enthalpy change for the process C(s) o C(g) corresponds to enthalpy of:

A. Fusion

B. Vaporisation

C. Combustion

D. Sublimation

Answer: D

Watch Video Solution

222. For the process, $CO_2(s) o CO_2(g)$:

A. Both $\ riangle H$ and $\ riangle S$ are +ve

B. riangle H is negative and riangle S is +ve`

C. riangle H is +ve and riangle S is -ve`

D. Both riangle H and riangle S are -ve`

Answer: A

223. Maximum work done by a system is given by:

A. Decrease in Helmholtz free energy (riangle A)

B. Decrease in Gibb's free energy ($\triangle G$)

C. Decrease in internal energy

D. Decrease in heat energy

Answer: B

224. The final temperature in an adiabatic expansion is:

A. Greater than the initial temperature

B. Same as the initial temperature

C. Half of the initial temperature

D. Less than the initial temperature

Answer: D

Watch Video Solution

225. In an adiabatic process:

A. The system exchanges heat with surrounding

B. Pressure is maintained constant

C. There is perfect heat insulation

D. The gas is isothermally expanded

Answer: C

226. The work done by a system in an expansion against a constant external pressure is :

- A. riangle P. riangle V
- B. -P. $\triangle V$
- C. Q
- D. $V. \bigtriangleup P$

Answer: B

227. An endothermic reaction is one in which

A. Heat is liberated

B. heat is absorbed

C. Temperature remains constant

D. None of these

Answer: B

Watch Video Solution

228. The mathematical form of the first law of thermodynamics when

heat(q) is supplied and W is work done by the system(+ve) is:

A.
$$\triangle U = q + W$$

$$\mathsf{B.}\ \bigtriangleup\ U=q-W$$

$$\mathsf{C}. \ \bigtriangleup \ U = \ -q + W$$

D.
$$\triangle U = -q - W$$

Answer: B

229. Which one is not a state function:

A. Internal energy(U)

B. Volume

C. Heat (q)

D. Enthalpy

Answer: C

230. Thermodynamic is concerned with:

A. Total energy of a system

B. Energy changes in a system

C. Rate of chemical change

D. Mass change in nuclear reactions

Answer: B

Watch Video Solution

231. When no heat energy is allowed to enter or leave the system it is called:

A. Isothermal process

B. Reversible process

C. Adiabatic process

D. Irreversible process

Answer: C

232. The riangle *G* in the process of melting of ice at - $156 \circ C$ is:

A. riangle G < 0

B. riangle G > 0

C. riangle G = 0

D. All

Answer: B

233. The entropy change for vaporisation of liquid water to steam at $100^{\circ}C$ is _____JK^{-1}mol^{-1}, Given that heat of vapori-sation is $40.8kJmol^{-1}$.

A. 109.38

B. 100.38

C. 110.38

D. 120.38

Answer: A

Watch Video Solution

234. The work done by 100 calorie of heat is:

A. 481.4 J

B. 4.184J

C. 41.84J

D. None

Answer: A

Watch Video Solution

235. The work done by a system is 8 J, when 40 J heat is supplied to it.

The change in internal energy of the system during the process:

A. 32 J

B. 40 J

C. 36 J

D. 44 J

Answer: A

236. The work done during the process when 1 mole of gas is allowed

to expand freely into vacuum is:

A. Zero

B. + ve

C. - ve

D. Either of these

Answer: A

237. The maximum work done in expanding 16 g oxygen at 300K and occupying a volume of 5 dm^3 isothermally until the volume become 25 dm^3 is:

A. $2.01X10^3 J$

 $\mathrm{B.}+2.81X10^3J$

C. $2.01X10^{-3}J$

 $D. + 2.01X10^{-6}J$

Answer: A

Watch Video Solution

238. If temperature remains contant during a reaction the process is called:

A. Isothermal

B. Isochoric

C. Isobaric

D. Adiabatic

Answer: A

239. A gaseous system change form state A $(P_1, V_1, T_1) \rightarrow B(P_2, V_2, T_2), B \rightarrow C(P_3, V_3, T_3)$ and finally from C to A. The whole procoess may be called:

A. Reversible process

B. Cyclic process

C. Isobaric process

D. Spontaneous process

Answer: B

240. Work done by the system on surrounding is

A. Postive

B. Negative

C. Zero

D. None of these

Answer: B

Watch Video Solution

241. During isothermal transformation of an ideal gas, internal energy:

A. Increase as the pressure increases

B. Decreases as the volume decreases

C. Decreases as the pressure decreases

D. remains fixed

243. Write van't Hoffequation ?

A. $riangle G = RT \log_g K_p$

$$\texttt{B}. - tr \in ag \leq G = RT \log_g K_p$$

$$\mathsf{C.}\ \bigtriangleup\ G=RT^2\in K_p$$

D. None of these

Answer: B

244. 1 litre - atmosphere is equal to:

A. 101.3 J

B. 24.206 cal

C. $101.3x10^7 erg$

D. All

Answer: D

245. Decrease in free energy of a reacting system indicates to:

A. Exothermic reaction

B. Equilibrim reaction

C. Spontaneous reaction

D. Slow reaction

Answer: C

Watch Video Solution

246. An ideal gas undergoing expansion in vacuum shows:

A.
$$riangle U=0$$

B. W=0

C. q=0

D. All

Answer: D

Watch Video Solution

247. It is impossible to attain the lowest temperature known as zero

degree absolute. This is a simple statement of:

A. First law of thermodynamics

B. Second law of thermodynamics

C. Third law of thermodynamics

D. None

Answer: C

248. An example of extensive property is:

A. Temprature

B. Internal energy

C. Viscosity

D. Surface tension

Answer: B

Watch Video Solution

249. It is a general principle that the less energy of a system then it

is:

A. More stable

B. Less stable

C. Unstable

D. More unstable

Answer: A

Watch Video Solution

250. riangle S for the reaction,

 $MgCO_3(s)
ightarrow MgO(s) + CO_2(g)$ will be

A. Zero

B.-ve

 $\mathsf{C}.+ve$

D. ∞

Answer: C

251. The intensive property is:

A. Freezing point

B. Temperature

C. Refractive index

D. All

Answer: D

Watch Video Solution

252. An isolated system is that system in which:

A. There is no exchange of energy with the surroundings

B. There is exchange of mass and energy with the surroundings

C. There is no exchange of mass or energy with the suroundings

D. There is exchanges of mass with the surroundings

Answer: C

Watch Video Solution

253. For two mole of an ideal gas:

A.
$$(C_p - C_v) = R$$

B. $(C_p - C_v) = rac{R}{2}$
C. $(C_v - C_p) = -2R$
D. $(C_p - C_v) = 0$

Answer: A

254. When an ideal gas is compressed adiabatically and reversibly, the final temperature is:

A. Higher than the initial temperature

B. Lower than the initial temperature

C. The same as the initial temperature

D. Dependent on the rate of compression

Answer: C

Watch Video Solution

255. Above the inversion temperature, μ (J.T. coefficient):

A. Is positive

B. Is zero

C. Is nagative
D. Depends on the gas

Answer: C

256. For the adiabatic expansion of an ideal gas:

A. PV^{γ} =constant

B. $TV^{\gamma-1} = cons \tan t$

 $\mathsf{C}. T^{\gamma} P^{1-\gamma} = cons \tan t$

D. All

Answer: D

257. The inversion temperature for a van der Waals' gas is:

A.
$$T_i=2rac{a}{Rb}$$

B. $T_i=rac{a}{Rb}$
C. $T_i=rac{a}{2}(Rb)$

D. T_i =0.5T Boyle

)

Answer: A

258. Which is not a spontaneous process:

A. Expansion of a gas into vacum

B. Water flowing down hill

C. Heat flowing from colder body to a hotter body

D. Evaporation of water from clothes during drying

Answer: C

260. When ice melts into water, entropy:

A. becomes zero

B. Decreases

C. increases

D. Remains the system

Answer: C

Watch Video Solution

261. Human body is an example of:

A. Open system

B. Closed system

C. Isolated system

D. None

Answer: B

Watch Video Solution

262. A closed flask contains water in all its three states, solids, liquid and vapour at $0 \circ C$. In this situation the average KE of the water molecule will be:

A. Maximum in vapour state

B. Maximum in solid state

C. Greater in the liquid than in vapour state

D. Same in all the three states

Answer: D

263. Which gas shows a heating effect when expanded into a region of low pressure:

A. O_2

B. NH_3

 $\mathsf{C}.\,F_2$

D. H_2

Answer: D

Watch Video Solution

264. On dissolving NaCl in water there occurs:

A. becomes zero

B. Increases in entropy

C. Decrease in entropy

D. No change in entropy

Answer: B

265. When hydrogen and oxygen burn to from water in an oxyhydrogen torch, the entropy change is:

A. Negative

B. Positive

C. Zero

D. may be +ve or -ve

Answer: A

266. Joule Thomson co-efficient for ideal gas is:

A. Zero

B. Positive

C. Negative

D. Infinite

Answer: A

Watch Video Solution

267. riangle is postive for the change:

A. Mixing of two gases

B. Boiling of liquid

C. Melting of Solid

D. All

268. The heat change in a chemical reaction at constant pressure is:

- A. riangle H
- B. riangle U
- C. $\triangle T$
- D. riangle V

Answer: A

269. A thermally isolated gaseous system can exchange energy with

the surrounding. The mode of transference of energy can be:

A. Heat

B. Work

C. Heat and radiation

D. None of these

Answer: B

Watch Video Solution

270. Which correctly represents the physical significance of free energy change:

A.
$$riangle G = W_{\exp a} nsion$$

- $\mathsf{B.}\ \bigtriangleup \ G = W_n o \neq x pansion$
- C. $riangle G = -W_C ompression$
- D. $\triangle G = W_compression$

Answer: C

Watch Video Solution

271. A reaction taking palce with absorption of energy is:

A. Burning of a candle

B. Electrolysis of water

C. Digestion of food

D. Rusting or iron

Answer: B

272. All the naturally occuring process i.e., spontaneous proceed

spontaneously in a direction which leads to:

A. Decrease of free energy

- B. Increase of free energy
- C. Decrease of entropy
- D. Increase of entropy

Answer: A

Watch Video Solution

273. Work done by the system in a cyclic process is equal to:

A. Zero

B. riangle U

C. $\triangle H$

D. q

Answer: D

274. Internal energy of an ideal gas depends on:

A. Pressure

B. Temperature

C. Volume

D. None

Answer: B

Watch Video Solution

275. A spontaneous change is one in which the system suffers:

A. An increase in internal energy

B. A lowering of entropy

C. A lowering of free energy

D. No energy

Answer: C

Watch Video Solution

276. Heat given to a system under isochoric process is equal to:

A. W

B. q_p

C. $\triangle E$

D. riangle H

Answer: A

277. The apparatus generally used for measuring heat changes is:

A. Voltameter

B. Voltmeter

C. Calorimeter

D. Coulometer

Answer: C

Watch Video Solution

278. In which of the following case entropy decreases:

A. Solid changing to liquid

B. Expansion of a gas

C. Crystals dissolve

D. Polymerisation

Answer: D

279. In which case, a spontaneous reaction is impossible at any temperature:

- A. $riangle H > 0, \ riangle S > 0$
- $\mathsf{B.}\ \bigtriangleup\ H>0,\ \bigtriangleup\ S<0$
- $\mathsf{C}.\ \bigtriangleup\ H < 0,\ \bigtriangleup\ S < 0$

D. In all cases

Answer: B

280. In which case, a spontaneous reaction is possible at any temperature:

- A. $riangle H < 0, \ riangle S > 0$
- B. $riangle H < 0, \ riangle S < 0$
- $\mathsf{C}.\ \bigtriangleup H>0,\ \bigtriangleup S>0$

D. In none of the cases

Answer: A

281. In a reaction, $\triangle H$ and $\triangle S$ both are more than zero. In which of the following cases, the reaction would not be spontaneous:

A. riangle H > T riangle S

B.
$$riangle S = riangle rac{H}{T}$$

C. $riangle H = T riangle S$

D. All

Answer: D

Watch Video Solution

282. In which reaction riangle S is positvive:

A.
$$H_2O(l) o H_2O(s)$$

B. $3O_2(g)
ightarrow 2O_3(g)$

C. $H_2O(l)
ightarrow H_2O(g)$

D.
$$N_2(g)+3H_2(g)
ightarrow 2NH_3(g)$$

Answer: C

283. Change in entropy for a reaction is given by:

A. 2.303 nR
$$\frac{\log_{10}(v_2)}{v_1}$$

B. nR $\frac{\log_e(v_2)}{v_1}$
C. nR $\frac{\log_e(P_1)}{P_2}$
D. All

Answer: D

284. The efficiency of heat engine is maximum when:

A. Temprature of source greater than temperature of sink

B. Temprature of sink greater than temperature of source

C. Temprature difference of source and sink is minimum

D. Temprature difference of source and sink is maximum

Answer: D

286. A system is provided 50 joule of heat and work done on the system is 10 J. The change in internal energy during the process is:

A. 40 J

B. 60 J

C. 80 J

D. 50 J

Answer: B

Watch Video Solution

287. Enthalpy of vaporisation for water is 186.5kJ mol^{-1} . The entropy change during vaporisation is kJ $K^{-1}mol^{-1}$:

A. 0.5

B. 1

C. 1.5

D. 2

Answer: A

Watch Video Solution

288. A system is changed from state A to state B by one path and from B to A by another path. If U and U_2 are the corresponding change in internal energy, then:

- A. $U_1 + U_2 = + ve$
- B. $U_1 + U_2 = -ve$
- $C.U_1 + U_2 = 0$

D. None

Answer: C

289. The cooling in refrigerator is due to:

A. The work of compressor

B. The expansion of gas in the refrigerator

C. Expansion of ice

D. Reaction of the refrigerator

Answer: B

Watch Video Solution

290. If $\ riangle G^\circ > 0$, for a reaction then:

A. $K_p > 1$

B. $K_p < 1$

C. The products predominate in the equilibrium mixture

D. None

Answer: B

Watch Video Solution

291. Highest entropy at the same temperature is in:

A. Water

B. Hydrogen

C. Mercury

D. Graphite

Answer: B

292. During an adiabatic process:

A. Pressure is maintained constant

B. Gas is isothermally expanded

C. There is perfect heat insulation

D. The system change heat with surroundings

Answer: C

Watch Video Solution

293. The process in which pressure remains constant throughout a change is:

A. Adiabatic

B. Isochoric

C. Isobaric

D. Isothermal

Answer: C

294. Which statements is/are correct:

A.
$$\left(\delta H \, / \, \delta T
ight)_v - \left(\delta U \, / \, \delta T
ight)_v = R$$

$$\mathsf{B.}\left(\delta H/\delta T\right)_{p}>\left(\delta U/\delta T\right)_{v}$$

C. $(\delta E/\delta V)_T$ for ideal gas is zero

D. All

Answer: D

295. In an irreversible process, the value of $\ riangle \ S_system + \ riangle \ S_surr$

is :

A. greater than 0

B. less than O

C. equal O

D. All

Answer: A

Watch Video Solution

296. The entropy change at a given temperature is expressed as:

A.
$$riangle S = q - T$$

B.
$$riangle S = q/ riangle T$$

 $\mathsf{C}.\,q=T\,\bigtriangleup\,S$

D. S=q/T

Answer: C

297. The temperature of the system increases during an:

A. Isothermal expansion

B. Adiabtic compression

C. Adiabtic expansion

D. Isothermal compression

Answer: B

298. Enthalpy is same as:

A. Heat content

B. Entropy

C. Heat

D. Volume

Answer: A

Watch Video Solution

299. The relation riangle G = riangle H - T riangle S was given by

A. Boltzmann

B. Faraday

C. Gibbs-Helmholtz

D. Thomson

Answer: C

300. Entropy decreases during:

A. Crystallisation of sucrose from solution

B. Rusting of iron

C. Melting of ice

D. Vaporisation of camphor

Answer: A

301. The spontaneous nature of a reaction is impossible if:

A. $riangle His + ve, \ riangle S$ is also +ve

B. riangle H is -ve, riangle S is also -ve

C. riangle H is -ve, riangle S is +ve

D. riangle H is +ve, riangle S is -ve

Answer: D

Watch Video Solution

302. For an adiabatic process :

A. Q=+w

B. Q=0

 $\mathsf{C.}\ \bigtriangleup E = q$

D.
$$P \bigtriangleup V = 0$$

Answer: B

303. Energy equivalent to one erg, one joule and one calorie are in order:

A. 1 erggt1 Jgt1 cal

B. 1 erggt1 calgt1 J

C. 1 calgt 1 Jgt1 erg

D. 1 Jgt1 cal gt 1 erg

Answer: C

304. A boiled egg show a/an_in entropy:

A. Increase

B. Decreases

C. No change

D. None

Answer: A

Watch Video Solution

305. Molar heat capacity at constant P for substance is equal to:

A. $\left(\delta E \, / \, \delta T
ight)_v$

- B. $(\delta H / \delta T)_v$
- C. $\left(\delta E / \delta T \right)_p$

D. $\left(\delta H \, / \, \delta T
ight)_p$

Answer: D

306. The work done by a weightless piston in causing an expansion $\triangle V$ (at constant temperature), when the opposing pressure, P is variable, is given by:

A.
$$W=~-\int\!\!P \bigtriangleup V$$

B. W=0

$$\mathsf{C}.\,W=\,-\,P\,\bigtriangleup\,V$$

D. None

Answer: A

307. An adiabatic process is one in which:

A. The system is not closed to energy transfer

B. The system is not closed to heat transfer

C. There is no enthalpy change

D. There is no change in mass of the system

Answer: C

Watch Video Solution

308. Which is the intensive property:

A. Temperature

B. Viscosity

C. Density

D. All

Answer: D

309. Warming ammonium chloride with sodium hydroxide in a test tube is an example of:

A. Closed system

B. Isolated system

C. Open system

D. None of these

Answer: C
310. The unit of entropy are:

A. $JK^{-1}mol^{-1}$

B. $kJ^{-1}mol^{-1}$

C. $kJmol^{-1}$

D. $J^{-1}K^{-1}mol^{-1}$

Answer: A

Watch Video Solution

311. At absolute zero, the entropy of a perfect cyrstal is zero. This is

which law of thermodynamics ?

A. First law of thermodynamics

B. Second law

C. Third law

D. None

Answer: C

312. Net work done by a system is given by:

A. Decrease in Helmholtz free energy (riangle A)

B. Decrease in Gibb's free energy ($\triangle G$)

C. Decrease in internal energy

D. Decrease in heat enthalpy

Answer: A

313. The process of evaporation of a liquid is accompanied by:

A. Increase in enthalpy

B. Decrease in free energy

C. Increase in entropy

D. All

Answer: D

Watch Video Solution

314. $riangle S^{\,\circ}$ will be highest for the reaction

A. $Ca(s) + 1/2O_2(g)
ightarrow CaO(S)$

B. $CaCO_3(S)
ightarrow CaO(s) + CO_2(g)$

 ${\sf C}.\, C(s)+O_2(g) o CO_2(g)$

D.
$$N_2(g) + O_2(g) o 2NO(g)$$

Answer: B

315. The free energy change for a reversible reaction at equilibrium is:

A. Zero

B. Small positive

C. Small negative

D. Large positive

Answer: A

316. Which is not a state function:

A. Internal energy

B. Entropy

C. Work

D. Enthalpy

Answer: C

Watch Video Solution

317. The temperature of the system decreases in an:

A. Adiabatic expansion

B. Isothermal compression

C. Isothermal expansion

D. Adiabatic compression

B. Work

C. Entropy

D. Internal energy

Answer: C

Watch Video Solution

319. Select the correct limitations of III law of thermodynamics:

A. Glassy solids at zero Kelvin has entropy greater than zero

B. Solids having mixture of isotopes do not have entropy zero at

Kelvin

C. Crystals of CO, N_2O ,NO, H_2O,` etc., do not have zero entropy at

zero Kelvin.

D. All

Answer: D

320. Which of the following have same units:

(i) Work, (ii) Heat, (iii) Energy (iv) Entropy

A. (i), (ii) and (iii)

B. (i), (ii) and (iv)

C. (ii), (iii) and (iv)

D. (iii) and (iv)

Answer: A

Watch Video Solution

321. When two atoms of hydrogen combine to form a molecule of

hydrogen gas, the energy of the molecule is:

A. Greater than that of separate atoms

B. Equal to that of separate atoms

C. Lower than that of separate atoms

D. Sometimes lower than sometimes higher

Answer: C

322. A gas on subjecting to adiabatic expansion gets cooled due to:

A. Fall in temperature

B. Loss of Kinetic energy

C. Decrease in velocity

D. Energy used in doing work

Answer: D

Watch Video Solution

323. In a spontaneouse irreversible process, the total entropy of the

system and surroundings:

A. Remains constant

B. Increases

C. Decreases

D. Zero

Answer: B

Watch Video Solution

324. If a refrigerator door is opend then we get

A. Room cooled

B. Room heated

C. more heat is passed out

D. no effect on room

Answer: B

325. During isothermal expansion of an ideal gas its

A. Q=0

B. $\triangle V = 0$

C. W=0

D. riangle U = 0

Answer: D

> Watch Video Solution

326. A gas expands isothermally and reversibly. The work done by the

gas is:

A. Zero

B. Minimum

C. Maximum

D. Equal to work done

Answer: C

327. Temperature and heat are:

A. Extensive properties

B. Intensive properties

C. Intensive amd extensive properties respectively

D. Extensive and intensive properties respectively

Answer: C

328. Internal energy and pressure of a gas of unit volume are related

as:

A. P=2/3U

B. P = 3/2U

 $\mathsf{C}.\, P = U/2$

D. P=2U

Answer: A

Watch Video Solution

329. The internal energy of one mole of a gas is:

A. 3/2RT

B. KT/2

 $\mathsf{C.}\,RT\,/\,2$

D. 3KT/2

Answer: A

330. The heat measured for a reaction in a bomd calorimeter is:

A. riangle G

B. riangle H

C. $\triangle U$

D. $P \bigtriangleup V$

Answer: C

331. Give an expression for work done in a reversible isothermal expression of an ideal gas.

A.
$$2.303RT\lograc{V_2}{V_1}$$

B. $rac{nR}{(\gamma-1)}(T_2-T_1)$
C. $2.303RT\lograc{P_2}{P_1}$

Answer: A

D Watch Video Solution

332. Work done in reversible adiabatic process is given by:

A.
$$2.303RT\lograc{V_2}{V_1}$$

B. $rac{nR}{(\gamma-1)}(T_2-T_1)$
C. $2.303RT\lograc{V_1}{V_2}$

D. None

Answer: B

Watch Video Solution

333. The bond dissociatin energy of C-H bond $inCH_4$ from the equation,

 $C(g) + 4H(g)
ightarrow CH_4$, riangle H=-397.8kcal is:

 $\mathsf{A.}+397.8 kcal$

 $\mathbf{B.}+198.9kcal$

 $\mathsf{C.}+99.45 kcal$

 $\mathsf{D.}-99.45 kcal$

Answer: D

334. The enthalpy of formation of water from hydrogen and oxygen is - 286 kJ mol^{-1} . The enthalpy of decomposition of water into hydrogen and oxygen is:

A. $-286kJmol^{-1}$

 $\mathsf{B.}-143 kJmol^{-1}$

 $C. + 286 k Jmol^{-1}$

 $D. + 143kJmol^{-1}$

Answer: C

Watch Video Solution

335. For a gaseous reaction,

A(g)+3B(g)
ightarrow 3C(g)+3D(g)

riangle U is 17 kcal at $27^{\circ}C$. Assuming R=2cal K^-1 mol^-1, the value of

triangleH` for the above reaction will be:

A. 15.8 kcal

B. 16.4 kcal

C. 18.2 kcal

D. 20.0 kcal

Answer: C

Watch Video Solution

336. The heat of combustion of methane is, -880kJ mol^{-1} . If 3.2 g of

methane is burnt:

A. 176 kJ of heat is evolved

B. 176 kJ of heat is absorbed

C. 88 kJ of heat is evolved

D. None of the above

Answer: A

Watch Video Solution

337. $IfH_2(g)+Cl_2(g) \rightarrow 2HCl, ^@=-44$ kcal2Na(s)+2HCl($g \rightarrow$)2NaCl(s)+H_2(g), \triangle H =-152 kcalthen, Na(s)+0.5Cl_2(g) \rightarrow NaCl(s), \triangle H = ?

A. 108 kcal

B. 196 kcal

 ${\rm C.}-98 k cal$

D. 54 kcal

Answer: B

338. The heat of formation of CO(g) and $CO_2(g)$ are -26.4 kcal and -94.0 kcal respectively. Heat of combustion of carbon monoxide will be:

 $\mathsf{A.}+26.4 kcal$

 $\mathsf{B.}-67.6 kcal$

 ${\rm C.}-120.6 kcal$

 $\mathsf{D.}+52.8kcal$

Answer: B

Watch Video Solution

339. The standard heat of formation of $NO_2(g)$ amd $N_2O_4(g)$ are 8.0 2.0 kcal mol^{-1} respectively. The heat of dimerization of NO_2 in kcal is: A. 10

B. - 6.0

C. - 12.0

D. - 14.0

Answer: D

340. Given enthalpy of formation of $CO_2(g)$ and CaO(s) are -94.0 kJ

and -152 kJ respectively and the enthalpy of the reaction,

 $CaCO_3(s) o CaO(s) + CO_2(g)$ is 42 kJ. The enthalpy of formation of $CaCO_3(s)$ is:

A. -42kJ

 $\mathrm{B.}-202kJ$

 ${\rm C.}+202kJ$

 $\mathrm{D.}-288kJ$

Answer: D

341. The heat of combustion of rhombic and momoclinic sulphur are 70.96 and 71.03 kcal. The heat of transition of $S_{R \to M}$ is:

A. 70.96 kcal

B. 71.03 kcal

 $\mathsf{C.}-70 cal$

 $\mathsf{D.}+70 cal$

Answer: D

342. The heat of combustion for C, H_2 and CH_4 are-349.0, -241.8 and

-906.7 kJ respectively. The heat of formation CH_4 is:

A. 174.1 kJ

B. 274 kJ

C. 374.1 KJ

D. 74.1 kJ

Answer: D

Watch Video Solution

343. riangle n, the change in the number of mole for the reaction, $C_{12}H_{22}O_{11}(s)+12O_2(g) o 12CO_2(g)+11H_2O(l)$ at $25^\circ C$ is

A. Zero

B.-1

C. 2

D. 4

Answer: A

Watch Video Solution

344. The enthalpy change of a reaction does not depand on:

A. State of reactants and products

B. Nature of reactants and products

C. Different intermediate reaction

D. Initial and final enthalpy change of reaction

Answer: C

345. The riangle H for the process,

 $CH_3COOH \rightarrow CH_3COO^- + H^+$ is:

A. Positive

B. Negative

C. Zero

D. Unpredicatable

Answer: A

Watch Video Solution

346. The bond enerhies of F_2 , Cl_2 , Br_2 and I_2 are 155.4, 243.6, 193.2

and 151.2 kJ mol^{-1} respectively. The strongest bond is:

A. F-F

B. CI-CI

C. Br-Br

D. I-I

Answer: B

Watch Video Solution

347. For the reaction, $N_2(g)+3H_2(g)
ightarrow 2NH_3(g)$, which is true:

- A. riangle H = riangle U
- $\mathsf{B.}\ \bigtriangleup\ H <\ \bigtriangleup\ U$
- $\mathsf{C}. \ \bigtriangleup H > \ \bigtriangleup U$

D. None

Answer: B

348. Hess's law is related to:

A. Change in heat during of reaction

B. Rates of reaction

C. equilibrium constant

D. influence of pressure on volume of a gas

Answer: A

Watch Video Solution

349. The heat released during neutralisation is constant for the reaction of aqueous solutions of:

A. Strong acid and strong base

B. Strong acid and weak base

C. Strong base and weak acid

D. In all the cases

Answer: A

350. Evaporation of water is:

A. An exothermic change

- B. An endothermic change
- C. A process where no heat change occurs
- D. A process accompanied by chemical change

Answer: B

351. At constant P and T which statement is correct for the reaction,

 $CO(g) + 1/2O_2(g)
ightarrow CO_2(g)$:

A. riangle H = riangle U

B. $\triangle H < \ \triangle U$

 $\mathsf{C}. \ \bigtriangleup \ H > \ \bigtriangleup \ U$

D. \triangle *H* is independent for physical state of reaction.

Answer: B

Watch Video Solution

352. The difference between riangle H and riangle U is equal to:

A. R

B. $P \bigtriangleup V$

 $\mathsf{C}.\, V\, \bigtriangleup\, P$

D.
$$\frac{3}{2}R$$

Answer: B

353. 1 mole of gas occupying 3 litre volume is expanded against a constant external pressure of 1 atm to a volume of 15 litre . The work done by the system is:

A. $1.215 x X 10^3 J$

B. $12.15510^3 J$

C. $1.215 imes 10^3 J$

D. None

Answer: A

354. For a reaction at $25^{\circ}C$ enthalpy change (\triangle *H*) and entropy change (\triangle *S*) are- $11.7 \times 10^{3} Jmol^{-1}$ and -105 J $mol^{-1}K^{-1}$ respectively. The reaction is:

A. Spontaneous

B. Non-Spontaneous

C. Instantaneoous

D. None

Answer: B

Watch Video Solution

355. 1 mole of an ideal gas at $25^{\circ}C$ is subjected to expand reversibly ten times of its intial volume. The change in entropy of expansion is:

A. $19.15 JK^{-1} mol^{-1}$

B. $16.15 JK^{-1} mol^{-1}$

C. $22.15 JK^{-1} mol^{-1}$

D. None

Answer: A

Watch Video Solution

356. The entropy change for the reaction given below is:

 $2H_2(g)+O_2(g) o 2H_2O(l)$ is __ at 300K. Standard entropies of $H_2(g), O_2(g)$ and $H_2O(l)$ are 126.6, 201.20 and 68.0 JK^{-1} mol^-1` respectively.

A. $-318.4 JK^{-1}mol^{-1}$

B. $318.4 JK^{-1} mol^{-1}$

C. $31.84 JK^{-1} mol^{-1}$

D. None

Answer: A

357. The temperature at which the reaction, $Ag_2O(s) \rightarrow 2Ag(s) + I/2O_2(g)$ is at equilibrium is....., Given \triangle H=30.5 kJ mol^{-1} and \triangle S=0.066 kJ $K^{-1}mol^{-1}$:

A. 462.12 K

B. 362.12 K

C. 262.12 K

D. 562.12 K

Answer: A

358. The ionisation energy of solid NaCl is 180 kcal, per mol. The dissolution of the solid in water in the from of ions is endothermic to the extent of 1 kcal per mol, If the solvation energies of Na^+ and Cl^- ions are in the rstio 6:5, what is the enthalpy of hydration of sodium ion:

A.
$$-85.6kca \frac{l}{m}ol$$

B. $-97.5kca \frac{l}{m}ol$
C. $82.6kca \frac{l}{m}ol$
D. $+100kca \frac{l}{m}ol$

Answer: B

energy of C-H is 20kcal/mol greater than the bond energy of C-Cl and bond energies of H-H and H-Cl are same in magnitude, then for the reaction: $1/2H_2(g) + 1/2Cl_2(g) o HCl(g) riangle H$ is

$$A. - 22.5kca \frac{l}{m}ol$$

$$B. - 20.5kca \frac{l}{m}ol$$

$$C. - 32.5kca \frac{l}{m}ol$$

$$D. - 12.5kca \frac{l}{m}ol$$

Answer: A

360. The standard heat of formation of sodium ions in aqueous solution from the following data: Heat of formation of NaOH(aq) from NaOH(s) at $25^\circ C=~-470 kJ$

Heat of formation of OH-(aq) from OH-(s) at $25\,^\circ C=\,-\,228.8 kJ$.

A. - 251.9

B. 241.9 kJ

C. -241.9kJ

D. 151.9 kJ

Answer: C

361. For a diatomic molecule AB, the electronegativity difference between A and $B=0.2028\sqrt{\bigtriangleup}$ where \bigtriangleup =[Bond energy of AB-Geometric mean of the bond energies of A_2 and B_2]. The electonegativities of fluorine and chlorine are 4.0 and 3.0 respectively and the bond energies are of F-F : 38 kcal mol^{-1} and Cl-Cl : 58 kcal mol^{-1} . The bond energy of Cl-F is:

A. 71 kcal/mol
B. 61 kcal/mol

C. 48 kcal/mol

D. 75 kcal/mol

Answer: A

Watch Video Solution

362. If heat of neutralisation is -13.7 k cal and $H_f^{\,\circ}\,H_2O$ =-68 k cal

, $then enthal py of OH^-$ `would be:

A. 54.3 k cal

 ${\rm B.}-54.3 kcal$

C. 71.3 k cal

D. None

Answer: B

363. The dissociation energy of CH_4 and C_2H_6 are respectively 360and 620 kcal/mole. The bond energy of C-C bond is:

A. 260 kcal/mol

B. 180 kcal/mol

C. 130 kcal/mol

D. 80 kcal/mol

Answer: D

Watch Video Solution

364. 2.1 g of Fe combines with S evolving 3.77 kJ of heat. The heat of formation of FeS in kJ/mol is:

 $\mathsf{A.}-3.77$

 $\mathsf{B.}-1.79$

 $\mathsf{C.}-100.5$

D.

Answer: C

365. The heat of neutralisation of HCl by NaOH is-55.9 kJ/mol. If the heat of neutralisation of HCN by NaOH is -12.1 kJ/mol. The energy of disso-ciation of HCN is:

 $\mathsf{A.}-43.8kJ$

B. 43.8kJ

C. 68 kJ

D.-68kJ

Watch Video Solution

366. When a certain amount of ethylene was burnt 6226 kJ heat was evolved. If heat of combustion of ethylene is 1411 kJ, the volume of O_2 (at NTP) that entered into the reaction is:

A. 296.5 mL

B. 296.5 litre

C. 622x22.4 litre

D. 22.4 litre

Answer: B

367. The heat evolved during the combustion of 112 litre of water gas (mixture of equal volume of H_2 and CO) is : Given H 2 (g)+1/2O 2 (g)=H 2 O(g); Δ H=-241.8kJ CO(g)+1/2O 2 (g)=CO 2 (g); Δ H=-283kJ

A. 241.8 kJ

B. 283 kJ

C. 1312 kJ

D. 1586 kJ

Answer: C

Watch Video Solution

368. Heat of combustion of CH_4 , C_2H_4 , C_2H_6 are-890, -1411 and -1560 kJ/mol respectively. Which has the lowest calorific fuel value in kJ/g:

A. CH_4

 $\mathsf{B.}\, C_2 H_4$

 $\operatorname{C.} C_2 H_6$

D. All same

Answer: B

Watch Video Solution

369. riangle H for $CaCO_3(s) o CaO(s) + CO_2(g)$ is 176 kJ mol^{-1} at

1240 K. The riangle Ufor the change is equal to:

A. 160 kJ

B. 165.6 kJ

C. 186.3 kJ

D. 180.0 kJ

Answer: B

Watch Video Solution

370. Energy required to dissociate 4 gms of gaseous hydrogen into free gaseous atoms is 208 kcals at $25^{\circ}C$. The bond energy of H-H bond will be

A. 104 kcal

B. 10.4 kcal

C. 1040 kcal

D. 104 kcal

Answer: A

371. Energy change during neutralisation of NH_4OH and HCl is :

A. -1.5kJ

B.+1.5kJ

 ${\rm C.}+3.0kJ$

D. - 3.0kJ

Answer: B

Watch Video Solution

372. From the thermochemical reactions, $C_g ra\phi te + 1/2O_2 = CO$,

 $\triangle H = -110.5 kJ$

 $CO + 1/2O_2 = CO_2, ~~ riangle ~~ H = ~-~ 283.2 kJ$

riangle H for the reaction, $C_g ra\phi te + O_2 = CO_2$ is:

 ${\rm A.}-393.7kJ$

 $\mathsf{B.}+393.7kJ$

 ${\rm C.}-172.7kJ$

D. + 172.7kJ

Answer: A

Watch Video Solution

373. Energy change during neutralisation of NH_4OH and HCl is :

A. 13.7 kcal/eq.

B. less than 13.7 kcal/eq.

C. greater than 13.7 kcal/eq.

D. Zero

Answer: B

374. riangle *H* for thermal decomposition process is:

A. Positive

B. Negative

C. Zero

D. Positive or negative

Answer: A

375. Hess's law of constant heat summation is an application of:

A. Kirchhoff's law

B. First law of thermodynamic

C. Second law of thermodynamics

D. Third law of thermodynamics

Answer: B

376. Bond energy of a molecule:

A. Is always negative

B. Is always positive

C. Either positive or negative

D. Depends upon the physical state of the system

Answer: B

377. For the reaction, $3O_2
ightarrow 2O_3, \ riangle H = + ve$. We can say that:

A. Ozone is more stable than oxygen

B. Ozone is less stable than oxygen and ozone decomposes

forming oxygen readily

C. Oxygen is less stable than ozone and oxygen readily forms

ozone.

D. None

Answer: B

Watch Video Solution

378. Which of the following is incorrect about the reaction,

A. Heat of combustion of $C_D = -94.3kcal$.

B. Heat of formation of $CO_2 = -94.3kcal$

 $\mathsf{C.}\ \bigtriangleup\ H = \ \bigtriangleup\ U$

D. Standard heat of formation of CO_2

Answer: D

View Text Solution

379. The exchange of heat energy during chemical reaction at constant temperature and pressure occurs in from of:

A. Free energy

B. Internal energy

C. Enthalpy

D. Bond energy

Answer: C

380. Molar heat capacity of water in equilibrium with the ice at constant pressure is:

A. Zero

B. ∞

- C. $40.45kjK^{-1}mol^{-1}$
- D. 75.48 $JK^{-1}mol^{-1}$

Answer: B

Watch Video Solution

381. Heat energy change during the chemical reaction, $CO+1/2O_2 \rightarrow CO_2$ is known as:

A. Heat of combustion of CO

- B. Latent heat of CO_2
- C. Latent heat of vaporisation
- D. Heat of formation of CO_2

Answer: A

Watch Video Solution

382. When an exothermic is reversed, it:

A. Becomes another exothermic reaction

B. Becomes an endothermic reaction

C. Shows no change at all

D. Attains equilibrium

Answer: B

383. Heat of formation of $H_2O(g)$ at 1 atm and $25^\circ C$ is -243 kJ. riangle E for the reaction, $H_2(g)+rac{1}{2}O(g) o H_2O(g)at25^\circ C$ is

A. 241.8 kJ

 $\mathrm{B.}-241.8kJ$

 ${\rm C.}-243kJ$

D. 243 kJ

Answer: B

384. The H-H bond energy is 430 kJ mol^{-1} and Cl-Cl bond energy is 240 kJ mol^{-1} . \triangle H for HCl is -90 kJ. The H-Cl bond energy is about:

A. 425 kJ mol^{-1}

- B. 213 kJ mol^{-1}
- C. 360 kJ mol^{-1}
- D. 180 kJ mol^{-1}

Answer: A

Watch Video Solution

385.
$$S+3/2O_2
ightarrow SO_3+2xkcal$$
 $SO_2+rac{1}{2}O_2
ightarrow SO_3+ykcal:$

The heat of formation of SO_2 is :

A. y-2x

B. (2x+y)

C. (x+y)

D. 2x-y

Answer: A

Watch Video Solution

386. Given , $NH_3(g) + 3Cl_2(g) \rightleftharpoons NCl_3(g) + 3HCl(g), - \bigtriangleup H_1$ $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g), \bigtriangleup H_2$ $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g), + \bigtriangleup H_3$ The heat of formation of $NCl_3(g)$ in the terms of $\bigtriangleup H_1, \bigtriangleup H_2$ and \bigtriangleup_3 is:

D. None

Answer: A

387. AB, A_2 and B_2 are diatomic molecules. If the bond enthalpies A_2AB and B_2 are in the ratio 1:1:0.5 and the enthalpy of formation of AB fron A_2 and B_2 is -100 kJ mol^{-1} , what is the bond enthalpy of A_2 :

A. 200 kJ mol^{-1}

B. 200 kJ mol^{-1}

C. 100 kJ mol^{-1}

D. 300 kJ mol^{-1}

Answer: A

Watch Video Solution

388. $H_2(g)+Cl_2(g)
ightarrow 2HCl(g),\ riangle H$ 298K=-22.06 kcals, For this

reaction, `∆U is equal to:

A. $-22.06 + 2 imes 10^{-3} imes 298 imes 2kcal$

 ${\sf B.-22.06-2 imes 298} kcal$

 $\text{C.}-22.06-2\times298\times4kcal$

D. - 22.06kcl

Answer: D

Watch Video Solution

389. For the reaction,
$$H_2(g)+rac{1}{2}O_2(g)
ightarrow H_2O(l),$$

A. 7.63 imes (373 - 297) - 68.3

B. $7.63 imes 10^{-3} imes (373 - 298) - 68.3$

C. $7.63 imes 10^{-3} imes (373 - 298) + 68.3$

D. 7.63 imes(373-297)+68.3

Answer: B

the energy evolved when 7.8 g of benzene is burnt in air will be:

A. 163.22 kJ/mol

B. 326.4 kJ/mol

C. 32.64 kJ/mol

D. 3.264 kJ/mol

Answer: B

391. Given that standard heat enthalpy of CH_4, C_2H_4 and C_3H_8 are

-17.9, 12.5, -24.8 kcal/mol. The $\ riangle H$ for $CH_4+C_2H_4 o C_3H_8$ is:

 $\mathsf{A.}-55.2kcal$

 $\mathsf{B.}-30.2kcal$

C. 55.2 kcal

D.-19.4kcal

Answer: D

Watch Video Solution

392. Given,
$$C + O_2 \rightarrow CO_2 + 94.2kcal$$
.
(i) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O + 68.3kcal$
(ii) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 210.8kcal$ The heat of formation of methane in kcal will be:

A. 45.9

B. 47.8

C. 20.0

D. 47.3

Answer: C

393. When 1mole of carbon is converted into 1mole of CO_2 the heat liberated is same:

A. Irrespective of whether the volume is kept constant or pressure

is kept constant

B. Irrespective of the temperature at which the reaction is carried

out

C. Whether the carbon is in the form of diamond or garphite

D. None

Answer: A

394. Calorific value of carbohydrates is approximately:

A. 4.0 kcal/g

B. 16.0 kcal/g

C. 20 kcal/g

D. 9.0 kcal/g

Answer: B

Watch Video Solution

395. If $H^+ + OH \rightarrow H_2O + 13.7$ kcal then the heat of neutralisation for complete neutralisation of one mole of H_2SO_4 by a base will be:

 $\mathsf{A.}\,13.7kcal$

 ${\tt B.}\,27.4kcal$

 ${\sf C.}\,6.85kcal$

D. 3.425 kcal

Answer: B

Watch Video Solution

396. $IfH_2(g)=2H(g),\ riangle$ H=104 cal, then heat of atomisation of

hydrogen is:

A. 52 kcal

B. 104 kcal

C. 208 kcal

D. Nove of these

Answer: A

397. Given
$$N_2(g)+3H_2(g)=2NH_3(g),$$
 $riangle H^\circ$ =-22kcal. The

standard enthalpy of formation of NH_3 gas is:

Answer: A

Watch Video Solution

398. riangle H for the reaction, $H(g) + H(g) o H_2(g)$ will be,

A. Zero

B. + ve

C. -ve

D. infinite

Answer: C

O Watch Video Solution

399. Which one of the following bonds has the highest average bond

energy(kcal/mol):

A. S=O

B. C=C

C. C-=C

D. N-=N

Answer: D

Watch Video Solution

400. The Kirchhoff's equation given the effect of_____ on heat of reactions:

A. Pressure

B. Temperature

C. Volume

D. Molecularity

Answer: B

Watch Video Solution

401. Hess's law is used in the determination of:

A. Heat of recation

B. Heat of transition

C. Heat of formation

D. All of these

Answer: D

Watch Video Solution

402. When ammonium chloride is dissolved in water, the solution becomes cold.The change is:

A. Endothermic

B. Exothermic

C. Super cooling

D. None

403. A cannot engine operates between temperature T and 400 K(T>400K). If efficiency of engine is 25%, the temperature T is:

A. 400 K

B. 500 K

C. 533.3 K

D. 600 K

Answer: C

404. The work done in an open vessel at 300K, when 112 g iron reacts with dil HCl is:

A. -1.2 kcal

B. 0.6 kcal

C. -0.3 kcal

D. 0.2 kcal

Answer: A

Watch Video Solution

405. 16kg oxygen gas expands at STP to occupy double of its original

volume. The work done during the process is:

A. 260 kcal

B. 187.6 kcal

C. 130 kcal

D. 272.8 kcal

Answer: D

Watch Video Solution

406. Boiling point of a liquid is 50 K at 1 atm and $riangle H_v ap = 460.6$ cal mol^{-1} What will be its boiling point at 10 atm.

A. 150 K

B. 75 K

C. 100 K

D. 200 K

Answer: C

407. For which change $\triangle H \neq \triangle U$:

A. $H_2 + I_2 \rightleftharpoons 2HI$

B. $HCl + NaOH \rightarrow NaCl + H_2O$

 $\mathsf{C}.\, C(s) + O_2(g) \rightleftharpoons CO_2(g)$

D. $N_2 + 3H_2
ightarrow 2NH_3$

Answer: D

408. The heat of combustion of ethanol determined by a bomb calorimeter is -670.48 kcal mol^{-1} at $25^{\circ}C$. What is $\triangle U$ at $25^{\circ}C$ for the reaction, $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2 + 3H2O(g)$ is:

 $\mathsf{A.}-335.24 kcal$

 $\mathsf{B.}-669.28 kcal$

 ${\rm C.}-670.48 k cal$

 $\mathsf{D.}+670.48 k cal$

Answer: C

Watch Video Solution

409. A person requires 2870 kcal of energy to lead normal daily life. If heat of combustion of cane sugar is - 1349 kcal, then his daily consumption of sugar is:

A. 728 g

B. 0.728 g

C. 342 g

D. 0.342 g

Answer: A

410. The difference in riangle H and riangle E for the combustion of methane forming water in liquid state at $25^{\circ}C$ would be:

A. Zero

B. 2 imes 298 imes(-2)cal

C. 2 imes 298 imes(-3)cal

D. 2 imes 25 imes (-3) cal

Answer: A

411. The heat change taking place during the reaction $H_2O(l) \rightarrow H_2O(g)$ is ?[Given $\triangle H_1 = H_2O(g) = -57kal$, $Tri \angle H_f = H_2O(l) = -68.3kcal$]:

 $\mathsf{A.}+11.3kcal$

B.-11.3kcal

 ${\rm C.}-115.3 kcal$

 $\mathsf{D.}+115.3kcal$

Answer: A

412. If,
$$C(s) + O_2(g) \to CO_2(g)$$
, $\triangle H = R$ and $CO(g) + \frac{1}{2}O(g) \to CO_2(g)$, $\triangle H = S$, then the heat of formation of CO is:
A. R+S

B. R-S

C. S-R

D. RXS

Answer: B

413. The enthalpies of formation of N_2O and NO are 28 and $90kJmol^{-1}$ respectively. The enthalpy of the reaction, $2N_2O(g) + O_2(g) \rightarrow 4NO(g)$ is equal to:

A. 8 kJ

B. 88 kJ

 $\mathsf{C.}-16kJ$

D. 304 kJ

Answer: D

414. The enthalpy of formation of ammonia gas at 298 K is -46.11kJ mol^{-1} . The equation to which this value related is:

$$egin{aligned} \mathsf{A}.~&rac{1}{2}N_2(g)+rac{3}{2}H_2(g) o NH_3(g)\ & \mathsf{B}.~N(g)+3H(g) o NH_3(g)\ & \mathsf{C}.~N_2(g)+3H_2(g) o 2NH_3(g)\ & \mathsf{D}.~&rac{1}{2}N_2(g)+rac{3}{2}H_2(g) o NH_3(l) \end{aligned}$$

Answer: A

415. The heat of formation of methane $C(s) + 2H_2(g) \rightarrow CH_4(g)$ at constant is 18500 cal at $25^{\circ}C$. The heat of reaction at constant volume would be:

A. 19096 cal

B. 18798 cal

C. 18202 cal

D. 17904 cal

Answer: A

416.
$$H_2 + \frac{1}{2}O_2 \rightarrow H2O$$
, $\triangle H$ =-68.39 kcal (i)
 $K + aq \rightarrow KOH(aq) + \frac{1}{2}H_2$, $\triangle H = -48kcal$
(ii) KOH+aqrarrKOH(aq):triangleH=-14 kcal `(iii)T he heat of
formation(in kcal) of KOH is:

A. - 68.39 + 48 - 14

B. - 68.39 - 48 - 14

C.68.39 - 48 + 14

D. 68.39+48+14

Answer: B

Watch Video Solution

417. The enthalpy of formation of ammonia is -46.0kJ mol^{-1} . The enthalpy change for the reaction, $2NH_3(g) \rightarrow N_2(g) + 3H_2(g)is$:

A. $46.0 k Jmol^{-1}$

B. $92.0kJmol^{-1}$

 $C. - 23.0 k Jmol^{-1}$

D. $-92.0 k Jmol^{-1}$

Answer: B

418. A positive change in enthalpy occurs in:

$$egin{aligned} \mathsf{A}.\, H_2(g) &+ rac{1}{2}O_2(g) o H_2O(g) \ & \mathsf{B}.\, N_2(g) + 3H_2(g) o 2NH_3(g) \ & \mathsf{C}.\, MgCO_3(s) o MgO(s) + CO_2(g) \ & \mathsf{D}.\, H_2(g) + rac{1}{2}O_2(g) o H_2O(l) \end{aligned}$$

Answer: C

419. The amount of heat evolved when one mole of H_2SO_4 reacts

with two mole of NaOH is:

A. 57.3 KJ

B. 2x57.3 KJ

C. 57.3/2 KJ

D. None

Answer: C

Watch Video Solution

420.

lf

 $CH_{3}COOH + OH \equiv CH_{3}COO^{-+}H_{2}O + q_{1} \text{ and } H^{+}OH \equiv H_{2}O + q_{2}$

then the enthalpy change for the reaction, $CH_3COOH=CH_3COO^-+H^+, \ {
m is \ equal \ to:}$

A. $q_1 + q_2$

B. $q_1 - q_2$

 $C. q_2 - q_1$

D. $-q_1 - q_2$

Answer: B

421. The heats of neutralisation of four acids A, B, C, D are -13.7, -9.4, -11.2 and -12.4 kcal respectively when they are neutralised by a common base. The acidic character obeys the order:

A. AgtBgtCgtD

B. AgtDgtCgtB

C. DgtCgtBgtA

D. DgtBgtCgtA

Answer: B

422. In a chemical reaction if all reactants and products are in liquid state then:

A. riangle H > riangle U

B. riangle H < riangle U

C. $\triangle H = \ \triangle U$

D. None

Answer: C

Watch Video Solution

423. Standard molar enthalpy of formation of CO_2 is equal to:

A. Zero

B. The standard molar enthalpy of combustion of gaseous carbon

C. The sum of standard molar enthalpies formation of CO and O_2

D. The standard molar enthalpy of combustion of carbon

(graphite)

Answer: D

Watch Video Solution

424. Which is correct about the heat of combustion:

A. The combustion be exothermic in some cases and endothermic

in other cases.

B. Heat of combustion is always exothermic

C. Its value change with temperature

D. All

Answer: D

425. If $C(s) + O_2(g) \to CO_2(g)$, $\triangle H = X$ and $CO(g) + \frac{1}{2}O_2(g) \to CO_2(g)$, $\triangle H = Y$ then the heat of formation of CO is

A.
$$C_{gra\phi te} + O_2(g) = CO_2(g)$$

B. $CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(l)$
C. $CO(g) + \frac{1}{2}O_2(g) = CO(g)$
D. $C_6H_6(l) + 7\frac{1}{2}O_2(g) = 6CO_2(g) + 3H_2O(l)$

Answer: A

Watch Video Solution

426. riangle H for the reaction given below represents: $CO_2(g)+H_2(g) o CO(g)+H_2O,\ riangle H=40$ kJ

- A. Enthalpy of formation
- B. Enthalpy of combustion
- C. Enthalpy of neutralisation
- D. Enthalpy of reaction

Answer: D

Watch Video Solution

427. Molar heat capacity of a gas at constant temperature and

pressure is:

A. (3/2) R

B. (5/2) R

 $\mathsf{C}.\,\infty$

D. Depends upon atomicity of gas

428. If 50 calorie are added to a system and system does work of 30 calorie on surroundings, the change in internal energy of system is:

A. 20 cal

B. 50 cal

C. 40 cal

D. 30 cal

Answer: A

429. If S° for H_2 , Cl_2 and HCl are 0.13, 0.22 and 0.19 kJ $K^{-1}mol^{-1}$ respectively. The total change in standard entropy for the reaction, $H_2 + Cl_2 \rightarrow 2HClis$:

A. $30JK^{-1}mol^{-1}$

B. $40JK^{-1}mol^{-1}$

C. $60JK^{-1}mol^{-1}$

D. $20JK^{-1}mol^{-1}$

Answer: A

Watch Video Solution

430. The enthalpy and entropy change for a chemical reaction are $-2.5x10^3$ cal and 7.4 cal K^{-1} respectively. Predict that nature of reaction at 298 K is:

A. Spontaneous

B. Reversible

C. Irreversible

D. None-spontaneous

Answer: A

Watch Video Solution

431. One mole of an ideal at 300 K is expanded isothermaly from an initial volume of 1 liter to 10 liters. The $\triangle E$ for this process is [R= 2 cal $k^{-1}mol^{-1}$]

A. 163.7 cal

B. 1381.1 cal

C. 9 litre-atm

D. Zero

432. Latent heat of vaporisation of a liquid at 500K and 1 atm pressure is 10.0 kcal/mol. What will be the change in internal energy $(\bigtriangleup E)$ of 3 mole of liquid at same temperature:

A. 13.0 kcal

 ${\rm B.}-13.0 kcal$

C. 27.0 kcal

 ${\rm D.}-27.0 kcal$

Answer: C

433. Give the bond energies of N equiv N, H-H and N-H bonds as 945, 436 and 391 kJ mol^{-1} respectively, the enthalpy of the following reaction N 2(g) +3H 2(g) \rightarrow 2NH 3(g) is:

A. -93kJ

B. 102 kJ

C. 90 kJ

D. 105 kJ

Answer: A

Watch Video Solution

434. If heat of formation of CCl_4 is 316 kcal mol^{-1} the dissociation energy of C-Cl is :

A. $79kcalmol^{-1}$

B. $316kcalmol^{-1}$

C. $97kcalmol^{-1}$

D. $158kcalmol^{-1}$

Answer: A

Watch Video Solution

435. For the reaction, $C_2H_4(g)+3O_2(g)
ightarrow 2CO_2(g)+2H_2O(l),\ riangle U=-1414kJ.$ Then $riangle Hat27^\circ Cis$:

A. -1410kJ

 $\mathrm{B.}-1420 kJ$

 $\mathsf{C.}+1420 kJ$

 $\mathsf{D.}+1410kJ$

Answer: B

436. $H_2(g)+I_2(g) ightarrow 2HI(g),\ riangle H=-12.40 kcals$, Heat of

formation of HI will be

A. 12.4 kcal

 ${\rm B.}-12.4 kcal$

 ${\rm C.}-6.20 kcal$

D. 6.20 kcal

Answer: D

437. Heat evolved in the reaction, $H_2 + Cl_2 \rightarrow 2HCl$ is 182 kJ. Bond energies of H-H and Cl-Cl are 430 and 242 kJ/mol respectively. The H-Cl bond energy is:

A. $245 k Jmol^{-1}$

B. $427kJmol^{-1}$

C. $336kJmol^{-1}$

D. $154kJmol^{-1}$

Answer: A

Watch Video Solution

438. The heat of formation of CO(g) and CO 2 (g) are ΔH =-110 and ΔH =-393kJmmol -1 respectively. What is the heat of reaction(ΔH) (in kJ mol -1) for the following reaction? CO(g)+ 1/2 O 2 (g) \rightarrow CO 2 (g)

A. - 50

 $\mathsf{B.}-283$

C. - 150

D. - 300

Answer: D

Watch Video Solution

439. If,
$$S + O_2 \to SO_2$$
, $\triangle H = -298.2kJ$
(i) $SO_2 + \frac{1}{2}O_2 \to SO_3$, $\triangle H = -98.7kJ$
(ii) $SO_3 + H_2O \to H_2SO_4$, $\triangle H = -130.2kJ$
(iii) $H_2 + \frac{1}{2}O_2 \to H_2O$, $\triangle = -287.3kJ$ The enthalpy of formation of H_2SO_4 at 298 K will be:

 $\mathsf{A.}-754.4kJ$

 $\mathsf{B.}-814.4kJ$

 ${\rm C.}-650.3kJ$

 $\mathrm{D.}-433.7kJ$

Answer: A

Watch Video Solution

440. $H_2(g)+Cl_2(g)=2HCl(g),\ riangle H$ =-44.12 kcal` The enthalpy of

hydrogen cholride at 298 K is:

A. - 44.12

B. - 22.06

C. 44.12

D. 22.06

Answer: B

441.
$$H_2(g)+rac{1}{2}O_2(g)=H_2O(l)$$
 ,

 \triangle $H_{298}k$ =-68.32 kcal. Heat of vaporisation of water at 1 atm and $25^{\circ}C$ is 10.52 kcal. The standard heat of formation(in kcal) of 1 mole of water vapour at $25^{\circ}C$ is:

A. - 78.84

B. 78.84

C. + 57.80

D. - 57.80

Answer: D

442. Standard heat of formation of $CH_4(g), CO_2(g)$ and water at $25^{\circ}C$ are -17.9, -94.1 K and -68.3 kcal mol^{-1} respectively. Calculate the

heat change (in kcal) in the following reaction at $25\,^\circ C$:

 $CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(g)$

A. - 144.5

B. - 180.3

 $\mathsf{C.}-248.6$

 $\mathsf{D.}-212.8$

Answer: D

Watch Video Solution

443. Molar heat capacity is given by:

A. dQ/dT

B. dqxdT

C. sumQ 1/dT

D. None

Answer: A

Watch Video Solution

444. Heat of neutralisation of a strong acid and strong base is always.

A. $CH_{3}COOH + NaOH$

B. $HCl + NH_4OH$

 $\mathsf{C}.\,HCOOH+KOH$

 $D.HNO_3 + LiOH$

Answer: D

445. Endothermic compounds are generally:

A. Less stable

B. Have weaker bonds

C. Have positive enthalpies of formation

D. All are correct

Answer: D

Watch Video Solution

446. The heat evolved during neutralisation is maximum in the reaction of:

A. NH_4OH and CH_3COOH

B. NH_4OH and HCl

C. NaOH and CH_3COOH

 $\mathsf{D}.\, NaOH$ and HCl

Answer: D

447. For the reaction, $CaCO_3(s)
ightarrow CaO(s) + CO_2(g)$

- A. riangle H = riangle U
- B. riangle H < riangle U
- $\mathsf{C}. \ \bigtriangleup \ H \neq \ \bigtriangleup \ U$
- D. $\triangle H = 0$

Answer: C

448. \triangle *H* for transition of cardon in the diamond from to carbon in the graphite form, is -453.5 cal. This suggests that:

A. Graphite is chemically different from diamond.

B. Graphite is as stable as diamond

C. Graphite is more stable than diamond

D. Diamond is more stable than graphit.

Answer: C

Watch Video Solution

449. Which represents the largest amount of energy :

A. calorie

B. joule

C. erg

D. electron volt

Answer: A

Watch Video Solution

450. In the combustion of hydrocarbons, riangle H is:

A. Negative

B. Zero

C. Positive

D. Undeterminate

Answer: A

451. For an endothermic reaction

A. $CaCO_3
ightarrow CaO + CO_2$

 $\mathrm{B.}\,Fe+S \to FeS$

C. $NaOH + HCI \rightarrow NaCI + H_2O$

D. $CH_4 + 2O_2
ightarrow CO_2 + 2H_2O$

Answer: A

Watch Video Solution

452. The enthalpies of formation of organic substances can be conveniently determined from:

A. Heats of combustion data

B. Boiling point

C. Melting point

D. A catalytic reaction

Answer: A

453. Entropy of vaporisation of water at $100^{\circ}C$, if molar heat of vaporisation is 9710 cal mol^{-1} will be:

- A. 20 cal $mol^{-1}K^{-1}$
- B. 26.0 cal $mol^{-1}K^{-1}$
- C. 24 cal $mol^{-1}K^{-1}$
- D. 28.0 cal $mol^{-1}K^{-1}$

Answer: B

454. One mole of ice is converted into water at 273 K. The entropies of $H_2O(s)$ and $H_2O(l)$ are 38.20 and 60.01 J $mol^{-1}K^{-1}$ respectively. The enthalpy change for the conversion is:

A. $59.54 Jmol^{-1}$

B. $5954 Jmol^{-1}$

C. $595.4 Jmol^{-1}$

D. $320.6 Jmol^{-1}$

Answer: B

Watch Video Solution

455. One mole of a gas absorbs 200 J of heat at constant volume. Its temperature rises from 298 K to 308 K. The change in internal energy is:

A. 200 J

 $\mathrm{B.}-200J$

C. 200 x 308/297 J

D. 200 x 298/308 J

Answer: A

Watch Video Solution

456. A system absorbs 10 kJ of heat at contant volume and its temperature riess from $27^{\circ}C$ to $37^{\circ}C$. The $\triangle U$ of reaction is:

A. 100 kJ

B. 10 kJ

C. Zero

D. 1 kJ

Answer: B

457. One mole of a gas occupying 3 dm³ expands against constant external pressure of 1 atm to a volume of 13 dm³. The work done is:

- ${\rm A.}-10 atm dm^3$
- ${\rm B.}-20 atm dm^3$
- $C.-39 atm dm^3$
- $D. 48 atm dm^3$

Answer: A