

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

AREA UNDER PLANE CURVES (APPLICATION OF DEFINITE INTEGRALS)

Question Bank

1. Find the area bounded by

$$y = e^x, y = 0, x = 4, x = 2$$

Watch Video Solution

2. Find the area bounded by

$$y = x^2, y = 0, x = 1$$

3. Find the area bounded by

$$xy=a^2, y=0, x=lpha, x=eta(eta>lpha)$$

Watch Video Solution

4. Find the area bounded by

$$y = \sin x, y = 0, x = \frac{\pi}{2}$$

5. Find the area enclosed by

$$y = e^x, x = 0, y = 2, y = 3$$

Watch Video Solution

6. Find the area enclosed by

$$y^2 = x, x = 0, y = 1$$

7. Find the area enclosed by

$$xy=a^2, x=0, y=lpha, y=eta(eta>lpha>0)$$

Watch Video Solution

8. Find the area enclosed by

$$y^2 = x^3, x = 0, y = 1$$

9. Determine the area within the ellipse

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1.$$

Watch Video Solution

10. Find the area of the circle

$$x^2 + y^2 = 2ax.$$

11. Find the area of the portion of the parabola $y^2=4x$ bounded by the double ordinate through(3,0).

Watch Video Solution

12. Determine the area of the region bounded by $y^2=x^3$ and the double ordinate through (2,0).

13. Find the area of the regions into which the circle $x^2+y^2=4$ is divided by the line $x+\sqrt{3}y=2$.

Watch Video Solution

14. Determine the area the of the region between the curves $y=\cos x$ and $y=\sin x$, bounded by x=0.

15. Find the area enclosed bt the two paraboles $y^2=4$ ax and $x^2=4$ ay.

Watch Video Solution

16. Determine the area common to the parabola $y^2=x$ and the circle $x^2+y^2=2x$.

