©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

CONIC SECTIONS

Question Bank

1. Fill in the blanks by choosing the correct answer from the given alternatives : The
$x^{2}+y^{2}+2 x-6 y+1=0$ is
A. $(2,-6)$
B. $(-2,6)$
C. $(-1,3)$
D. $(1,-3)$

Answer:
(Watch Video Solution
2. Fill in the blanks by choosing the correct answer from the given alternatives :The
equation $2 x^{2}-k y^{2}-6 x+4 y-1=0$
represents a circle if $\mathrm{k}=$ \qquad
A. 2
B. -2
C. 0
D. 1

Answer:

3. Fill in the blanks by choosing the correct answer from the given alternatives : The point
$(-3,4)$ lies _____ the circle $x^{2}+y^{2}=16$
A. outside
B. inside
C. on
D.
4. Fill in the blanks by choosing the correct answer from the given alternatives : The line y $=\mathrm{x}+\mathrm{k}$ touches the circle $x^{2}+y^{2}=16$ if $\mathrm{k}=$
A. $\pm 2 \sqrt{2}$
B. $\pm 4 \sqrt{2}$
C. $\pm 8 \sqrt{2}$
D. $\pm 16 \sqrt{2}$

Answer:

- Watch Video Solution

5. Fill in the blanks by choosing the correct answer from the given alternatives : The radius of circle $x^{2}+y^{2}-2 x+4 y+1=0$ is
A. 1
B. 2
C. 4

D. $\sqrt{19}$

Answer:

- Watch Video Solution

6. State (with reasons), which of the following
are true or false : Every second degree equation in x and y represents a circle.

D Watch Video Solution

7. State (with reasons), which of the following are true or false : The circle
$(x-1)^{2}+(y-1)^{2}=1 \quad$ passes through origin.

D Watch Video Solution

8. State (with reasons), which of the following are true or false : The line $\mathrm{y}=0$ is a tangent to
the circle $(x+1)^{2}+(y-2)^{2}=1$.
9. State (with reasons), which of the following are true or false : The radical axis of two circles always passes through the center of one of the circles.

D Watch Video Solution

10. State (with reasons), which of the following are true or false : The circles
$x^{2}+(y-3)^{2}=4 \quad$ and $\quad(x-4)^{2}+y^{2}=9$
touch each other.
11. Find the equation of circles determined by
the following conditions. The centre at $(1,4)$ and passing through ($-2,1$).

- Watch Video Solution

12. Find the equation of circles determined by
the following conditions.The centre at $(-2,3)$ and passing through origin.

Watch Video Solution

13. Find the equation of circles determined by the following conditions. The centre at $(3,2)$ and circle is tangent to x-axis.

- Watch Video Solution

14. Find the equation of circles determined by
the following conditions. The centre at $(-1,4)$ and circle tangent to y -axis.
15. Find the equation of circles determined by the following conditions. The ends of diameter are $(-5,3)$ and $(7,5)$.

D Watch Video Solution

16. Find the equation of circles determined by
the following conditions. The radius is 5 and circle is tangent to both axes.
17. Find the equation of circles determined by the following conditions.The centre is on the x-axes and the circle passes through the origin and the point (4, 2).

D Watch Video Solution

18. Find the equation of circles determined by
the following conditions. The centre is on the
line $8 x+5 y=0$ and the circle passes through the points $(2,1)$ and $(3,5)$.

- Watch Video Solution

19. Find the equation of circles determined by
the following conditions. The centre is on the
line $2 x+y-3=0$ and the circle passes through the points $(5,1)$ and $(2,-3)$.

- Watch Video Solution

20. Find the equation of circles determined by the following conditions. The circle touches
the axis of x at $(3,0)$ and also touches the line $3 y-4 x=12$.

D Watch Video Solution

21. Find the equation of circles determined by
the following conditions. Circle is tangent to x axis and passes through (1,-2) and (3, -4)

D Watch Video Solution

22. Find the equation of circles determined by
the following conditions. Circle passes
through origin and cuts off intercepts a and b from the axes.

D Watch Video Solution

23. Find the equation of circles determined by
the following conditions. Circle touches the axis of x at a distance 3 from origin and intercepts a distance of 6 on the y-axis.
24. Find the centre and radius of the following circles : $x^{2}+y^{2}+6 x-4 y-12=0$

D Watch Video Solution

25. Find the centre and radius of the following circles : $a x^{2}+a y^{2}+2 g x+2 f y+K=0$
26. Find the centre and radius of the following circles : $4 x^{2}+4 y^{2}-4 x+12 y-15=0$

- Watch Video Solution

27. Find the centre and radius of the following
circles : $a\left(x^{2}+y^{2}\right)-b x-c y=0$

D Watch Video Solution

28. Obtain the equation of circles passing
through the following points and determine
the coordinates of centre and radius of the circle in each case : the points $(3,4)(4,-3)$ and $(-3,4)$.

D Watch Video Solution

29. Obtain the equation of circles passing
through the following points and determine
the coordinates of centre and radius of the circle in each case : the points $(2,3)(6,1)$ and $(4,-6)$.
30. Obtain the equation of circles passing through the following points and determine the coordinates of centre and radius of the circle in each case : the points (a, 0), (-a, 0) and ($0, b$).

D Watch Video Solution

31. Obtain the equation of circles passing through the following points and determine the coordinates of centre and radius of the
circle in each case : the points $(-3,1),(5,-3)$ and
$(-3,4)$.

D Watch Video Solution

32. Find the equation of the circles circumscribing the triangles formed by the
lines given below : the lines $x=0, y=x, 2 x+3 y$
$=10$
33. Find the equation of the circles circumscribing the triangles formed by the lines given below : the lines $x=0, y=0,3 x+4 y$
$-12=0$

D Watch Video Solution

34. Find the equation of the circles circumscribing the triangles formed by the lines given below : the lines $y=x, y=2$, and $y=$ $3 x+2$
35. Find the equation of the circles circumscribing the triangles formed by the lines given below : the lines $x+y=6,2 x+y=4$ and $x+2 y=5$

D Watch Video Solution

36. Find the coordinates of the points where
the circle $x^{2}+y^{2}-7 x-8 y+12=0$ meets
the coordinates axes and hence find the intercepts on the axes.

D Watch Video Solution

37. Find the equation of the circle passing
through the point (1, -2) and having its centre at the point of intersection of lines $2 x-y+3=0$ and $x+2 y-1=0$.
38. Find the equation of the circle whose ends
of a diameter are the points of intersections
of the lines and $x+y-1=0,4 x+3 y+1=0$ and
$4 x+y+3=0, x-2 y+3=0$.

- Watch Video Solution

39. Find the equation of the circle inscribed inside the triangle formed by the line $x / 4+y / 3=1$ and the co-ordinate axes.
40. Find the equation of the circle with its centre at (3,2) and which touches to the line $x+2 y-4=0$.

- Watch Video Solution

41. The line $3 x+4 y+30=0$ is a tangent to the circle whose centre is at $(-12 / 5,-16 / 5)$. Find the equation of the circle.
42. Prove that the points $(9,7),(11,3)$ lie on a circle with centre at origin. Find the equation of the circle.

D Watch Video Solution

43. Find the equation of the circle which touches the line $x=0, x=a$ and $3 x+4 y+5 a=$ 0.

D Watch Video Solution

44. If a circle touches the co-ordinate axes and also touches the straight line $x / a+y / b=1$ and has its centre in the 1st quadrant, find its equation.

D Watch Video Solution

45. $A B C D$ is a square of side ' a '. If $A B$ and $A D$
are taken as co-ordinate axes, prove that the equation of the circle circumscribing the square is $x^{2}+y^{2}=a(x+y)$.
46. Find the equation of the tangent and normal to the circle $x^{2}+y^{2}=25$ at the point $(3,-4)$.

- Watch Video Solution

47. Find the equation of the tangent and normal, to the circle,
$x^{2}+y^{2}-3 x+4 y-31=0$ at the point $(-2$,
$3)$.

Watch Video Solution

48. Find the equation of the tangents to the circle $x^{2}+y^{2}+4 x-6 y-16=0$ at the point where it meets the y-axis.

- Watch Video Solution

49. Find the condition under which the tangents at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ are perpendicular.

- Watch Video Solution

50. Calculate the radii and distance between the centres of the circle whose equations are,
$x^{2}+y^{2}-16 x-10 y+8=0$
$x^{2}+y^{2}+6 x-4 y-36=0$
Hence or otherwise prove that the tangents drawn to the circles at their points of intersection are perpendicular.
51. Find the equation of the tangents to the circle $x^{2}+y^{2}=9$, perpendicular to the line x
$-y-1=0$.

- Watch Video Solution

52. Find the equation of the tangents to the circle $x^{2}+y^{2}-2 x+4 y=4$, parallel to the line $3 x+4 y=1$
53. Show that the line $x-7 y+5=0$ is a tangent to the circle $x^{2}+y^{2}-5 x+5 y=0$. Find the point of contact. Find also the equation of tangent parallel to the given line.

- Watch Video Solution

54. Prove that the line $a x+b y+c=0$ will be a tangent to the circle $x^{2}+y^{2}=r^{2}$ if $r^{2}\left(a^{2}+b^{2}\right)=c^{2}$.
55. prove that the line $2 x+y=1$ is a tangent to the circle $x^{2}+y^{2}+6 x-4 y+8=0$.

D Watch Video Solution

56. If the line $4 y-3 x=k$ is a tangent to the circle $x^{2}+y^{2}+10 x-6 y+9=0 \quad$ find \quad ' k '.

Also find the co-ordinates of the point of contact.
57. Find the length of the tangent, drawn to
the circles $x^{2}+y^{2}+10 x-6 y+8=0$ from
the centre of the circle $x^{2}+y^{2}-4 x=0$

D Watch Video Solution

58. Find the length of the tangent drawn from

> the point $(2, \quad-1)$ to the circle
> $x^{2}+y^{2}-6 x+10 y+18=0$

D Watch Video Solution

59. Find the length of the tangent drawn from the point $(4,7)$ to the circle $x^{2}+y^{2}=15$.

- Watch Video Solution

60. Prove that the circles given by the equations $x^{2}+y^{2}+2 x-8 y+8=0$ and $x^{2}+y^{2}+10 x-2 y+22=0$ touches each other externally. Find also the point of contact.
61. Prove that the circles given by the equations

$$
x^{2}+y^{2}=4
$$

$x^{2}+y^{2}+6 x+8 y-24=0 \quad$ touche each other and find the equation of the common tangent.

- Watch Video Solution

62. Prove that the two circles
$x^{2}+y^{2}+2 b y+c^{2}=0$
and
$x^{2}+y^{2}+2 a x+c^{2}=0$, will touch each
other $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$.

Watch Video Solution

63. Prove that the circles given by
$x^{2}+y^{2}+2 a x+2 b y+c=0$, and
$x^{2}+y^{2}+2 b x+2 a y+c=0, \quad$ touch each other, if $(a+b)^{\wedge} 2=2 c$.

- Watch Video Solution

64. Find the equation of the circle through the
point of intersection of circles
$x^{2}+y^{2}-6 x=0$ and $x^{2}+y^{2}+4 y-1=0$ and the point $(-1,1)$.

D Watch Video Solution

65. Find the equation of the circle passing
through the intersection of the circles,
$x^{2}+y^{2}-2 a x=0 \quad$ and $\quad x^{2}+y^{2}-2 b y=0$
and having the centre on the line $\mathrm{x} / \mathrm{a}-\mathrm{y} / \mathrm{b}=2$.

D Watch Video Solution

66. Find the radical axis of the circles
$x^{2}+y^{2}-6 x-8 y-3=0 \quad$ and
$2 x^{2}+2 y^{2}+4 x-8 y=0$.

- Watch Video Solution

67. Find the radical axis of the circles
$x^{2}+y^{2}-6 x+8 y-12=0 \quad$ and
$x^{2}+y^{2}+6 x-8 y+12=0$. Prove that the
radical axis is perpendicular to the line joining
the centers of the two circles.
68. If centre of one circle lies on or inside another, prove that the circle cannot be orthogonal.

- Watch Video Solution

69. If a circle S intersects circles S_{1} and S_{2} orthogonally. Prove that the centre of S lies on the radical axis of S_{1} and S_{2}.
70. R is the radical centre of circles S_{1}, S_{2} and
S_{3}. Prove that if R is on/inside/outside one of the circles then it is similarly situated with respect to other two.

- Watch Video Solution

71. Determine a circle which cuts orthogonally

$$
\begin{aligned}
& \text { each of the } \\
& S_{1}: x^{2}+y^{2}+4 x-6 y+12=0
\end{aligned}
$$ circles.

$S_{2}: x^{2}+y^{2}+4 x+6 y+12=0$
$S_{3}: x^{2}+y^{2}-4 x+6 y+12=0$

- Watch Video Solution

72. Prove that on pair of concentric circles can have a radical axis.

- Watch Video Solution

73. The equation of the directrix to the parabola $x^{2}=-6 y$ is
A. $y+6=0$
B. $2 y-3=0$
C. $y-6=0$
D. $2 y+3=0$

Answer: B

D Watch Video Solution

74. The eccentricity of the parabola $y^{2}=8 x$ is
A. 2
B. 8
C. 0
D. 1

Answer: D

D Watch Video Solution

75. The line $y+x=k$ is tangent to the parabola
$y^{2}+12 x=0$ if $\mathrm{k}=$
A. (-3)
B. 3
C. 6
D. (-6)

Answer: B

D Watch Video Solution

76. The latus rectum of the parabola ${ }^{`}(y-$
2) ${ }^{\wedge} 2=8(x+3)$ is
A. 2
B. 4
C. 8
D. 16

Answer: C

D Watch Video Solution

77. The equation of tangent to the parabola
$x^{2}=6 y$ at vertex is
A. $x=0$
B. $y=0$
C. $x=-3 / 2$
D. $y=-3 / 2$

Answer: B

- Watch Video Solution

78. The equation of axis of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is
A. $x=4$
B. $y=3$
C. $x=0$
D. $y=0$

Answer: D

D Watch Video Solution

79. The equation of the major axis of ellipse

$$
\frac{(x+1)^{2}}{16}+\frac{(y-2)^{2}}{9}=1 \text { is }
$$

A. $x=4$
B. $x=-1$
C. $y=5$
D. $y=2$

Answer: B

D Watch Video Solution

80. The distance between the focii of the ellipse $3 x^{2}+4 y^{2}=1$ is
A. 1
B. 1/sqrt3
C. 2/sqrt3
D. $1 / 2$ sqrt 3

Answer: B

D Watch Video Solution

81. The ecentricity of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ is \qquad
A. $4 / 5$
B. 5/4
C. $3 / 5$
D. $16 / 25$

Answer: C

- Watch Video Solution

82. The line $y=2 x+k$ is a tangent to the ellipse
$5 x^{2}+y^{2}=5$ if $\mathrm{k}=$
A. 2
B. 5
C. sqrt3
D. $\operatorname{sqrt}(21)$

Answer: C

D Watch Video Solution

83. The length of the latus rectum of the
ellipse $\frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{25}=1$ is
A. $4 / 25$
B. $2 / 5$
C. 5/2
D. $8 / 5$

Answer: D

D Watch Video Solution

84. The equation of the conjugate axis of the
hyperbola $\frac{x^{2}}{9}-\frac{(y+2)^{2}}{16}=1$ is
A. $x=0$
B. $x=3$
C. $y=-2$
D. $y=4$

Answer: A

D Watch Video Solution

85. The hyperbola $\frac{y^{2}}{16}-\frac{x^{2}}{12}=1$ intersects x axis at
A. $(0, \pm 4)$
B. © (+-2 sqrt3,0)
C. $(2,0)$
D. no where

Answer: D

- Watch Video Solution

86. The eccentricity of the parabola
$4 x^{2}-3 y^{2}=1$ is
A. $4 / 3$
B. 3/4
C. $\frac{\sqrt{21}}{3}$
D. $\frac{\sqrt{7}}{2} \sqrt{3}$

Answer: C

- Watch Video Solution

87. The latus rectum of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ is
A. $16 / 9$
B. $9 / 16$
C. $1 / 9$
D. $32 / 9$

Answer: D

D Watch Video Solution

88. The line $y=3 x-k$ is a tangent to the hyperbola $6 x^{2}-9 y^{2}=1$ if $\mathrm{k}=$
A. 1
B. $5 / 3 \sqrt{2}$
C. $1 / \sqrt{6}$
D. $2 / 3$

Answer: B

D Watch Video Solution

89. The equation $y=x^{2}+2 x+3$ represent a parabola with its axis parallel to y-axis
90. The latus rectum of the parabola $y^{2}=-8 x$ is 2.

D Watch Video Solution

91. The eccentricity of the parabola
$(y-1)^{2}=2(x+3)^{2}$ is $1 / 3$.

- Watch Video Solution

92. The line $\mathrm{y}=3$ is a tangent to the parabola $(x+2)^{2}=6(y-3)$.

D Watch Video Solution
93. The equation $A x^{2}+B y^{2}=1$ represent an ellipse with its axis parallel to x-axis if $A>B>0$.

D Watch Video Solution
94. The focii of the ellipse $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$ are the points ${ }^{`}(+-1,0)$.

D Watch Video Solution

95. The equation of the ellipse with focii(0 ,
$+-4)$ and vertices $(0,+-7)$ is $\frac{x^{2}}{16}-\frac{y^{2}}{16}=1$.

D Watch Video Solution
96. Mention the statement true or False. The
length of the latera recta of the ellipse
$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and $\frac{(x+2)^{2}}{4}+\frac{(y-1)^{2}}{9}=1$ are equal.

- Watch Video Solution

97. Mention the statement true or False. The length of the latera recta of the ellipse

$$
\frac{(x+2)^{2}}{4}+\frac{(y-1)^{2}}{9}=1 \text { are } x=4 \pm \sqrt{7}
$$

98. The line $y=x+2$ is a tangent to the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{1}=1$

D Watch Video Solution

99. The conjugate axis of the hyperbola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the hyperbola at two points which are at distance 2 b from each other.
100. The conjugate axis of the hyperbola $\frac{(y-3)^{2}}{9}+\frac{(x+2)^{2}}{3}=1$ is parallel to the line $x=4$.

- Watch Video Solution

101. The length of the transverse axis of the hyperbola with focii at ${ }^{`}(+-5,0)$ and vertices at $(+-2,0)$ is 10 .
102. The latus rectum of the ellipse $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ are same .
(Watch Video Solution
103. The y-axis is tangent to the hyperbola

$$
a y^{2}-b x^{2}=1
$$

(Watch Video Solution

104. Find the equation of the parabola in each of the following cases: at the vertex at(0,0) and focus at $(0,3)$

D Watch Video Solution

105. Find the equation of the parabola in each
of the following cases: the vertex at $(0,0)$ and directrix $x-2=0$.
106. Find the equation of the parabola in each of the following cases: the vertex at $(6,-2)$ and
focus at (-3,-2)

- Watch Video Solution

107. Find the equation of the parabola in each of the following cases: the vertex at $(-2,1)$ and
focus at (-2,4).

- Watch Video Solution

108. Find the equation of the parabola in each of the following cases:The length of the latus rectum is 6 and the vertex is at $(0,0)$ the parabola opening to the right.

- Watch Video Solution

109. Find the equation of the parabola in each of the following cases:The vertex is at $(0,0)$ the parabola opening to the left and passing through (-1,2).
110. Find the equation of the parabola in each of the following cases: the vertex at $(0,0)$ the parabola opens downwards and the latus rectum of length 10.

- Watch Video Solution

111. Find the equation of the parabola in each of the following cases: the axis of vertical and the parabola passes through the points(0,2), $(-1,1),(2,10)$.
112. Find the equation of the parabola in each of the following cases: the axis is horizontal and the parabola passes through the points $(2,-1),(-2,4)$ and $(-1,3)$.

- Watch Video Solution

113. Find the equation of the parabola in each of the following cases: vertex at $(1,3)$ and the

- Watch Video Solution

114. Find the equation of the parabola in each
of the following cases:vertex at $(1,-1)$ and the directrix $y-2=0$

D Watch Video Solution

115. Find the equation of the parabola in each
of the following cases: the focus at $(-2,3)$ and
the directrix $3 x+4 y-2=0$.

- Watch Video Solution

116. Find the equation of the ellipse in each of
the following cases:centre at $(0,0)$ one vertex at $(0,-5)$ and one end of minor axis is $(3,0)$.

(Watch Video Solution

117. Find the equation of the ellipse in each of
the following cases:centre at $(0,0)$ one vertex
at $(7,0)$ and one end of the minor axis is $(0,-5)$.

D Watch Video Solution

118. Find the equation of the ellipse in each of
the following cases: foci at ${ }^{`}(+-5,0)$ and length of major axis is 12.

- Watch Video Solution

119. Find the equation of the ellipse in each of
the following cases:vertices at $(+-5,0)$ and
length of latus rectum is $8 / 5$.

- Watch Video Solution

120. Find the equation of the ellipse in each of
the following cases: centre at $(5,4)$ and the major axis is of length 16 and the minor axis is of length 10.

D Watch Video Solution
121. Find the equation of the ellipse in each of
the following cases: centre at $(-3,3)$ vertex at
$(-3,6)$ and one end minor axis at $(0,3)$.

D Watch Video Solution

122. Find the equation of the ellipse in each of the following cases: centre at $(0,0)$ axes parallel to co-ordinate axes eccentricity is $\frac{1}{\sqrt{2}}$ and minor axis of length 5 .
123. Find the equation of the ellipse in each of the following cases: centre at $(0,0)$ axes
parallel to co-ordinate axes eccentricity is $\frac{\sqrt{3}}{2}$ and the ellipse passing through the point `(sqrt3,1/2).

- Watch Video Solution

124. Find the equation of the ellipse in each of
the following cases: centre at $(0,0)$ one end of major axis is $(-5,0)$ and eccentricity $3 / 5$.

- Watch Video Solution

125. Find the equation of the ellipse in each of the following cases: axis parallel to coorrdinates axes the centre at $(0,0)$ and the ellipse passing through ($3,-2$) and ($-1,3$).

- Watch Video Solution

126. Find the equation of the ellipse in each of the following cases: centre at $(3,4)$ axis parallel
to x-axis and passing through $(6,4)$ and $(3,6)$

D Watch Video Solution

127. Find the equation of the ellipse in each of
the following cases: centre at $(-2,1)$ axis parallel
to y-axis eccentricity is $\frac{\sqrt{7}}{4}$ and the ellipse passing through ($-2,5$).

D Watch Video Solution

128. obtain the equation of hyperbola in each of the following cases : foci at $(\pm 4,0)$ and vertices at $(\pm 2,0)$.

- Watch Video Solution

129. obtain the equation of hyperbola in each of the following cases: foci at $(0, \pm \sqrt{2})$ and vertices $(0, \pm 1)$
130. obtain the equation of hyperbola in each of the following cases: centre at $(0,0)$ transverse axis along x-axis of length 4 and focus at $(2 \sqrt{5}, 0)$.

- Watch Video Solution

131. obtain the equation of hyperbola in each of the following cases: centre at $(0,0)$ conjugate axis along x-axis of length 6 and eccentricity 2.
132. obtain the equation of hyperbola in each of the following cases:foci at $(\pm 2 \sqrt{3}, 0)$ and eccentricity $\sqrt{3}$.

D Watch Video Solution

133. obtain the equation of hyperbola in each
of the following cases: centre at $(0,0)$
transverse axis is along y-axis the distance
between the foci is 14 and distance between the vertices is 12 .

D Watch Video Solution

134. obtain the equation of hyperbola in each of the following cases: centre $(1,-2)$ transverse axis parallel to x-axis of length 6 and conjugate axis of length 10.

D Watch Video Solution

135. obtain the equation of hyperbola in each
of the following cases: centre at $(2,-3)$
eccentricity $5 / 3$ and hyperbola passing through (5,-3)

- Watch Video Solution

136. obtain the equation of hyperbola in each of the following cases: centre at origin axis perpendicular to y-axis and the hyperbola passes through the points($3,-2$) and ($5,-7$).
137. obtain the equation of hyperbola in each of the following cases: The transverse axis parallel to y-axis the hyperbola passes through the points $(11 / 3,0),(1,2)$ and its centre is the intersections of lines $x+y-6=0,4 x-y+1=0$.

D Watch Video Solution

138. Reducing to standard form obtain the coordiante of the vertes focus, end points of the
latus rectum the length of latus retum the equation of axis and directrix of the following parabolas: $y^{2}-4 x+4 y-1=0$

D Watch Video Solution

139. Reducing to standard form obtain the coordiante of the vertes focus, end points of the
latus rectum the length of latus retum the equation of axis and directrix of the following parabolas: $2 x^{2}-4 y+6 x-3=0$
140. Reducing to standard form obtain the coordiante of the vertes focus, end points of the latus rectum the length of latus retum the equation of axis and directrix of the following parabolas: $x^{2}+x+y+1=0$

- Watch Video Solution

141. Reducing to standard form obtain the coordiante of the vertes focus, end points of the latus rectum the length of latus retum the
equation of axis and directrix of the following parabolas: $y^{2}+14 y-3 x+1=0$

D Watch Video Solution

142. Reducing to standard form obtain the coordinates of centre the foci the vertices the endpoints of latera recta the equation of the directrices and the eccentricity of the following ellipses:
$3 x^{2}+4 y^{2}+6 x+8 y-5=0$
143. Reducing to standard form obtain the coordinates of centre, the foci, the vertices, the end points of latera recta, the equation of the directrices and the eccentricity of the following ellipses:
$4 x^{2}+8 y^{2}+4 x+24 y-13=0$

D Watch Video Solution

144. Reducing to standard form obtain the coordinates of centre the foci the vertices the
endpoints of latera recta the equation of the directrices and the eccentricity of the following ellipses:
$2 x^{2}+3 y^{2}-12 x+24 y+60=0$

D Watch Video Solution

145. Reducing to standard form obtain the coordinates of centre, the foci, the vertices, the endpoints of latera recta, the equation of the directrices and the eccentricity of the
following
$9 x^{2}+4 y^{2}+36 x-8 y+4=0$

D Watch Video Solution

146. Reducing to standard form obtain the coordinates of the centre the vertices the foci
the endpoints of conjugate axis, the endpoints of latera recta the equation of directrices and
the eccentricity of the following hyperbola :
$x^{2}-2 y^{2}-6 x-4 y+5=0$
147. Reducing to standard form obtain the coordinates of the centre the vertices the foci the endpoints of conjugate axis, the endpoints of latera recta the equation of directrices and the eccentricity of the following hyperbola : $9 y^{2}-4 x^{2}-90 y+189=0$.

D Watch Video Solution

148. Reducing to standard form obtain the coordinates of the centre the vertices the foci
the end points of conjugate axis, the end points of latera recta the equation of directrices and the eccentricity of the following hyperbola
$49 x^{2}-4 y^{2}-98 x+48 y-291=0$

D Watch Video Solution

149. Reducing to standard form obtain the coordinates of the centre the vertices the foci
the end points of conjugate axis, the end points of latera recta the equation of
directrices and the eccentricity of the following hyperbola
$3 x^{2}-2 y^{2}-4 y-26=0$.

D Watch Video Solution

150. Prove that the equation of the parabola whose vertex and focus are at distances α and
β from origin on x-axis respectively is $y^{2}=4(\beta-\alpha)(x-\alpha)$.
151. Find the locus of the points of trisection of a double ordinate of the parabola $y^{2}=4 a x$

D Watch Video Solution

152. Prove that a double ordinate of the parabola $y^{2}=4 a x$ of length 8 a subtends a right angle at its vertex.
153. Find the angle which a double ordinate of length 2a subtends at its vertex and focus.

- Watch Video Solution

154. Obtain the equations of the tangent and normal of the parabola $y^{2}=4 a x$ at a point where the ordinate is equal to three times the abscissa.
155. Find the equation of tangents and normals to the parabola $y^{2}=4 a x$ at the ends of its latus rectum.

D Watch Video Solution

156. Find the equtions of tangent and normals
to the parabola $y^{2}=4 a x$ at the points where
it is cut by the line $y=3 x-a `$

D Watch Video Solution

157. Show that the tangent to the parabola $y^{2}=4 a x$ at the point ($\mathrm{a}^{\prime}, \mathrm{b}^{\prime}$) is perpendicular to the tangnet at the point $\left(\frac{a^{2}}{a},-4 \frac{a^{2}}{b},\right)$.

D Watch Video Solution

158. A tangent to the parabola $y^{2}=8 x$ makes
an angle 45° with the line $3 x-y+5=0$ Find the equation and the point of contact.

D Watch Video Solution

159. Prove that for all values of k the line $y=k(x+a)+a / k$ is a tangent to the parabola $y^{\wedge} 2,=4 a(x+a)$.

D Watch Video Solution

160. obtain the condition that the line $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0$ will touch the parabola $y^{2}=4 a x$.

D Watch Video Solution

161. Prove that the line $4 x-2 y-1=0$ touches the parabola whose focus it at $(0,0)$ and directrix is the line $y=2 x-1$.

D Watch Video Solution

162. If $(-2,0)$ and $(2,0)$ are the two vertices of a triangle with perimeter 16 then obtain the locus of the third vertex.
163. A point in a plane is such that the sum of its distances from the point $(2,2)$ and $(6,2)$ is
164. Find the locus of the point.

D Watch Video Solution

164. Obtain the equation of the elllipse which
has its centre at origin a focus at $(2,0)$ and the corresponding directrix is the line $2 x=7$ calculate the length of the latus rectum.
165. Find the equation of the ellipse which has
its centre at $(-1,4)$ b eccentricity $\frac{1}{\sqrt{3}}$ and the ellipse passes through the point $(3,2)$.

- Watch Video Solution

166. Find the equation of tangent and normal
to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ at the point (8/3,
$\sqrt{5}$).

- Watch Video Solution

167. Find the equations of tangents and normals to the ellipse $2 x^{2}+3 y^{2}=6$ at the end points of the latera recta.

D Watch Video Solution

168. Prove that the line $y=2 x+5$ is a tangent to
the ellipse $9 x^{2}+4 y^{2}=36$ and find the point of contact.

D Watch Video Solution

169. Find the equation of the tangent to the ellipse $4 x^{2}+5 y^{2}=20$ which are parallel to the line $x-y=2$.

D Watch Video Solution

170. Find the equation of the tangent to the ellipse $4 x^{2}+9 y^{2}=1$ which are perpendicular to $2 a x+y-1=0$.
171. Prove that the line $x \cos \alpha+y \sin \alpha=p$
touches the ellipse $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)=1$ $p^{2}=a^{2} \operatorname{coas}^{2} \alpha+b^{2} \sin ^{2} \alpha$.

- Watch Video Solution

172. Prove that the product of the distances of the foci from any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to b^{2}.

- Watch Video Solution

173. Find the equation of the hyperbola which has its foci at $(0,0)$ and $(0,4)$ and which passes
through the point $(12,9)$

D Watch Video Solution

174. Find the equation of the hyperbola with
foci at $(\pm 3,0)$ and directrices $x= \pm 2$

D Watch Video Solution

175. Find the foci and latus rectum of the hyperbola whose transverse and conjugate axis are 6 and 4 and center is at (0,0,).

D Watch Video Solution

176. Find the equation of tangent and normal to the hyperbola $x^{2}-6 y^{2}=3$ at the point $(-3,-1)$.
177. Find the equation of the tangent to the
hyperbola $4 x^{2}-11 y^{2}=1$ which are parallel to the straight line $20 x-33 y=13$.

- Watch Video Solution

178. Find the equation of tangents to
hyperbola $9 x^{2}-16 y^{2}=144$ which are perpendicular to the line $2 x+3 y=4$.
179. Prove that the line $x+y+2=0$ touches
the hyperbola $3 x^{2}-5 y^{2}=30$ and find the point of contact. Find also the equation of normal at the point.
