

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

DETERMINATES

Question Bank

1. Evaluate the following determinants. $\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$

- **2.** Evaluate the following determinants. $\begin{bmatrix} 2 & -3 \\ 1 & -4 \end{bmatrix}$

Watch Video Solution

3. Evaluate the following determinants.

$$\begin{bmatrix} \sec \theta & \tan \theta \\ \tan \theta & \sec \theta \end{bmatrix}$$

Watch Video Solution

- **4.** Evaluate the following determinants. $\begin{bmatrix} 0 & x \\ 2 & 0 \end{bmatrix}$

6. Evaluate the following determinants. $\begin{bmatrix} 4 & -1 \\ 3 & 2 \end{bmatrix}$

7. Evaluate the following determinants.

$$\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

8. Evaluate the following determinants.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- **9.** Evaluate the following determinants. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - Watch Video Solution

$$\begin{bmatrix} 2 & 3 & 1 \\ 0 & 0 & 0 \\ -1 & 2 & 0 \end{bmatrix}$$

$$egin{bmatrix} 1 & x & y \ 0 & \sin x & \sin y \ 0 & \cos x & \cos y \end{bmatrix}$$

Watch Video Solution

12. Evaluate the following determinants. $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 3 & 4 & 5 \end{bmatrix}$

$$\begin{bmatrix} 0.2 & 0.1 & 3 \\ 0.4 & 0.2 & 7 \\ 0.6 & 0.3 & 2 \end{bmatrix}$$

Watch Video Solution

14. Evaluate the following determinants.

$$\left[egin{array}{ccc} 1 & \omega & \omega^2 \ \omega & \omega^2 & 1 \ \omega^2 & 1 & \omega \end{array}
ight]$$

15. Evaluate the following determinants.
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$\begin{bmatrix} -6 & 0 & 0 \\ 3 & -5 & 7 \\ 2 & 8 & 11 \end{bmatrix}$$

- **17.** Evaluate the following determinants. $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{bmatrix}$

$$\begin{bmatrix} -18 & 17 & 19 \\ 3 & 0 & 0 \\ -14 & 5 & 2 \end{bmatrix}$$

19. State true or false. If the first and second rows of a determinant be interchanged then the sign of the determinant is changed.

20. State true or false. If first and third rows of a determinant be interchanged then the sign of the determinant does not change.

Watch Video Solution

21. State true or false. If in a third order determinant first row be changed to second column. Second row to 1st column and third row to third column, then the value of the determinant does not change.

22. State true or false. A row and a column of a determinant can have two or more common elements.

A. True

B. False

C.

D.

Answer:

23. State true or false. The minor and the co-factor of the element a_{32} of a determinant of third order are equal.

Watch Video Solution

24. State true of false. $\begin{bmatrix} 3 & 1 & 3 \\ 0 & 4 & 0 \\ 1 & 3 & 1 \end{bmatrix} = 0$

25. State true of false.
$$\begin{bmatrix} 6 & 4 & 2 \\ 4 & 0 & 7 \\ 5 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 4 & 5 \\ 4 & 0 & 3 \\ 2 & 7 & 3 \end{bmatrix}$$

26. State true of false.
$$\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 3 \\ 7 & 5 & 6 \\ 3 & 1 & 2 \end{bmatrix}$$

Watch Video Solution

27. Fill in the blanks with appropriate answer from

the brackes. The value of
$$\begin{bmatrix} 0 & 8 & 0 \\ 25 & 520 & 25 \\ 1 & 410 & 0 \end{bmatrix} =$$

A. 0

B. 25

C. 200

Answer:

Watch Video Solution

28. Fill in the blanks with appropriate answer from

the bracket.
$$\begin{bmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{bmatrix} = \underline{\qquad}$$

$$\mathsf{C}.\,\omega$$

D.
$$\omega^2$$

Answer:

Watch Video Solution

29. Fill in the blanks with appropriate answer from

the brackes.
$$\begin{bmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{bmatrix} = \underline{\hspace{1cm}}$$

Answer:

30. Fill in the blanks with appropriate answer from

the brackes. If
$$\begin{bmatrix} a & b & c \\ b & a & b \\ x & b & c \end{bmatrix}$$
 =0, then x=____

A. a

B.b

C. c

D. a+b+c

Answer:

31. Fill in the blanks with appropriate answer from

the brackets.
$$egin{bmatrix} a_1+a_2 & a_3+a_4 & a_5 \ b_1+b_2 & b_3+b_4 & b_5 \ c_1+c_2 & c_3+c_4 & c_5 \end{bmatrix}$$

can be expressed at the most as _____, different 3rd order determinants.

- **A.** 1
- B. 2
- C. 3
- D. 4

Answer:

32. Fill in the blanks with appropriate answer from the brackes. Minimum value of

$$\left[egin{array}{ccc} \sin x & \cos x \ -\cos x & 1+\sin x \end{array}
ight]$$
 is _____

- A. -1
- B. 0
- C. 1
- D. 2

Answer:

33. Fill in the blanks with appropriate answer from

the brackes. The determinant $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$

is equal to _____.

A.
$$\begin{bmatrix} 2 & 1 & 1 \\ 2 & 2 & 3 \\ 2 & 3 & 6 \end{bmatrix}$$
B.
$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 4 & 3 & 6 \end{bmatrix}$$
C.
$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 5 & 3 \\ 1 & 9 & 6 \end{bmatrix}$$

B.
$$\begin{bmatrix} 3 & 2 & 3 \\ 4 & 3 & 6 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 5 & 3 \\ 1 & 9 & 6 \end{bmatrix}$$

D.
$$\begin{bmatrix} 3 & 1 & 1 \\ 6 & 2 & 3 \\ 10 & 3 & 6 \end{bmatrix}$$

Answer:

34. Fill in the blanks with appropriate answer from the brackets. With 4 different elements we can construct _____ number of different determinants of order 2.

A. 1

B. 6

C. 8

D. 24

Answer:

35. Solve the following : $\begin{bmatrix} 4 & x+1 \\ 3 & x \end{bmatrix}$ = 5

- **36.** Solve the following: $\begin{bmatrix} x & a & a \\ m & m & m \\ b & m & b \end{bmatrix} = 0$
 - Watch Video Solution

- **37.** Solve the following: $\begin{vmatrix} 7 & 6 & x \\ 2 & x & 2 \\ x & 2 & 7 \end{vmatrix} = 0$
 - **Watch Video Solution**

38. Solve the following :
$$\begin{bmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{bmatrix} = 0$$

39. Solve the following :
$$\begin{bmatrix} 1+x & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+x \end{bmatrix}$$
 =0

40. Solve the following : $\begin{vmatrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{vmatrix} = 0$

41. Solve the following :
$$\begin{bmatrix} x+1 & \omega & \omega^2 \\ \omega & x+\omega^2 & 1 \\ \omega^2 & 1 & x+\omega \end{bmatrix}$$

=0

42. Solve the following :
$$\begin{vmatrix} 2 & 2 & x \\ -1 & x & 4 \\ 1 & 1 & 1 \end{vmatrix} = 0$$

43. Solve the following: $\begin{vmatrix} x & 1 & 3 \\ 1 & x & 1 \\ 3 & 6 & 3 \end{vmatrix} = 0$

- **44.** Evaluate the following : $\begin{bmatrix} 2 & 3 & 4 \\ 1 & -1 & 3 \\ 4 & 1 & 10 \end{bmatrix}$
 - Watch Video Solution

- **45.** Evaluate the following : $\begin{bmatrix} x & 1 & 2 \\ y & 3 & 1 \\ z & 2 & 2 \end{bmatrix}$
 - Watch Video Solution

46. Evaluate the following: $\begin{bmatrix} x & 1 & -1 \\ 2 & y & 1 \\ 3 & -1 & z \end{bmatrix}$

47. Evaluate the following : $\begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$

- **48.** Evaluate the following : $\begin{bmatrix} 8 & -1 & -\delta \\ -2 & -2 & -2 \\ 3 & -5 & -3 \end{bmatrix}$
 - Watch Video Solution

49. Evaluate the following : $\begin{bmatrix} \sin^2\theta & \cos^2\theta & 1 \\ \cos^2\theta & \sin^2\theta & 1 \\ -10 & 12 & 2 \end{bmatrix}$

Watch Video Solution

50. Evaluate the following : $\begin{bmatrix} -1 & 3 & 2 \\ 1 & 3 & 2 \\ 1 & -3 & -1 \end{bmatrix}$

Watch Video Solution

51. Evaluate the following : $\begin{bmatrix} 11 & 23 & 31 \\ 12 & 19 & 14 \\ 6 & 9 & 7 \end{bmatrix}$

52. Evaluate the following :
$$\begin{bmatrix} 37 & -3 & 11 \\ 16 & 2 & 3 \\ 5 & 3 & -2 \end{bmatrix}$$

53. Evaluate the following :
$$\begin{bmatrix} 2 & -3 & 4 \\ -4 & 2 & -3 \\ 11 & -15 & 20 \end{bmatrix}$$

54. Show that x=1 is a solution of

$$\begin{bmatrix} x+1 & 3 & 5 \\ 2 & x+2 & 5 \\ 2 & 3 & x+4 \end{bmatrix} = 0$$

Watch Video Solution

55. Show that (a+1) is a factor of

$$\begin{vmatrix} a+1 & 2 & 3 \\ 1 & a+1 & 3 \\ 3 & -6 & a+1 \end{vmatrix} = 0$$

56. Show that

$$egin{bmatrix} a_1 & b_1 & -c_1 \ -a_2 & b_2 & c_2 \ a_3 & b_3 & -c_3 \end{bmatrix} = egin{bmatrix} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \end{bmatrix}$$

Watch Video Solution

57. Prove that the following.

$$\begin{bmatrix} a & b & c \\ x & y & z \\ p & q & r \end{bmatrix} = \begin{bmatrix} y & b & q \\ x & a & p \\ z & c & r \end{bmatrix} = \begin{bmatrix} x & y & z \\ p & q & r \\ a & b & c \end{bmatrix}$$

58. Prove that the following.

$$\left[egin{array}{cccc} 1+a & 1 & 1 \ 1 & 1+b & 1 \ 1 & 1+c \end{array}
ight]$$

= abc(1+1/a+/b+1/c)

Watch Video Solution

59. Prove that the following.

$$egin{bmatrix} b+c & c+a & a+b \ q+r & r+p & p+q \ y+z & z+x & x+y \end{bmatrix} = 2egin{bmatrix} a & b & c \ p & q & r \ x & y & z \end{bmatrix}$$

$$\begin{bmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1 \end{bmatrix} = -2$$

$$\begin{bmatrix} a+d & a+d+k & a+d+c \\ c & c+b & c \\ d & d+k & d+c \end{bmatrix} = \mathsf{abc}$$

$$egin{bmatrix} 1 & 1 & 1 \ b+c & c+a & c+a \ b^2+c^2 & c^2+a^2 & a^2+b^2 \end{bmatrix}$$
 =(b-c)(c-a)(a-b)

Watch Video Solution

63. Prove that the following.
$$\begin{bmatrix} a & a^2 & a^3 \\ b & b^2 & b^3 \\ c & c^2 & c^3 \end{bmatrix} = abc(a-b)$$

(b-c)(c-a)

$$\begin{bmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{bmatrix}$$
=4ab

Watch Video Solution

$$egin{bmatrix} b^2+c^2 & ab & ac \ ab & c^2+a^2 & bc \ ca & cb & a^2+b^2 \end{bmatrix} = 4a^2b^2c^2$$

66. Prove that the following.
$$\begin{bmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{bmatrix} = (b-c)(c-bc)$$

a)(a-b)(bc+ca+ab)

Watch Video Solution

67. Prove that the following.

$$egin{bmatrix} a-b-c & 2a & 2a \ 2b & b-c-a & 2b \ 2c & 2c & c-a-b \end{bmatrix} = \left(a+b+c
ight)^3$$

68. Prove that the following.
$$\begin{vmatrix} \left(v+w\right)^2 & u^2 & u^2 \\ v^2 & \left(w+u\right)^2 & v^2 \\ w^2 & w^2 & \left(u+v\right)^2 \end{vmatrix} = 2uvw(u+v+w)^3$$

Watch Video Solution

69. Factorize the following.
$$\begin{bmatrix} x+a & b & c \\ b & x+c & a \\ c & a & x+b \end{bmatrix}$$
 Watch Video Solution

70. Factorize the following. $\begin{bmatrix} a & b & c \\ b+c & c+a & a+b \\ a^2 & b^2 & c^2 \end{bmatrix}$

71. Factorize the following.
$$\begin{bmatrix} x & 2 & 3 \\ 1 & x+1 & 3 \\ 1 & 4 & x \end{bmatrix}$$

72. Show that by eliminating α and β from the equations.

$$a_i lpha + b eta_i + c_i$$
=0, i=1,2,3 we get

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = 0$$

73. Prove the following :
$$\begin{bmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{bmatrix} = 0$$

Watch Video Solution

$$egin{bmatrix} x + 4 & 2x & 2x \ 2x & x + 4 & 2x \ 2x & 2x & x + 4 \end{bmatrix} - (5x + 4){(4 - x)}^2$$

$$\begin{bmatrix} \sin \alpha & \cos \alpha & \cos(\alpha + \delta) \\ \sin \beta & \cos \beta & \cos(\beta + \delta) \\ \sin \alpha & \cos \gamma & \cos(\gamma + \delta) \end{bmatrix} = 0$$

76. Prove the
$$\begin{bmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{bmatrix} = \left(1 - x^3\right)^2$$

$$\pi^3$$
) 2

77. Prove that the points : $(x_1, y_1), (x_2, y_2), (x_3, y_3)$

are collinear if
$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$
 =0

Watch Video Solution

78. If A+B+C = π , prove that

$$\begin{bmatrix} \sin^2 A & \cot A & 1\\ \sin^2 B & \cot B & 1\\ \sin^2 C & \cot C & 1 \end{bmatrix} = 0$$

79. Eliminate x,y,z from

a=x/y-z, b=y/z-x, c=z/x-y

Watch Video Solution

80. Given the equations

x=cy+bz, y=az+cx and z=bx+ay

where x,y and z are not all zero, prove that

 $a^2+b^2+c^2+2abc=1$ by determinant method.

81. If ax+hy+g=0, hx+by+f=0 and gx+fy+c= λ , find the value of λ in the form of a determinant.

82. Write the number of solution of the following system of equation. x-2y=0

83. Write the number of solution of the following system of equation. x-y=0 and 2x-2y=1

Match Wides Colution

watch video Solution

84. Write the number of solution of the following system of equation. 2x+y=2 and -x-1/2 y=3

Watch Video Solution

85. Write the number of solution of the following system of equation. 3x+2y=1 and x+5y=6

86. Write the number of solution of the following system of equation. 2x+3y+1=0 and x-3y-4=0

Watch Video Solution

87. Write the number of solution of the following system of equation. x+y+z=1

x+y+z=2

2x+3y+z=0

88. Write the number of solution of the following system of equation. x+4y-z=0

$$3x-4y-z=0$$

$$x-3y+z=0$$

Watch Video Solution

89. Write the number of solution of the following system of equation.x+y-z=0

$$3x-y+z=0$$

$$x-3y+z=0$$

90. Write the number of solution of the following

system of equation. $a_1x + b_1y + c_1z = 0$

$$a_2 x + b_2 y + c_2 z = 0$$

$$a_3x + b_3y + c_3z = 0$$

and
$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
 =0

Watch Video Solution

91. Show that the following system is inconsistent.

$$(a-b)x+(b-c)y+(c-a)z=0$$

$$(b-c)x+(c-a)y+(a-b)z=0$$

$$(c-a)x+(a-b)y+(b-c)z=1$$

92. The system of equations

$$x+2y+3z=4$$

$$2x+3y+4z=5$$

A. infinitely many solutions

B. no solution

C. a unique solution

D. none

Answer: A

93. If the system of equations

$$2x+5y+8z=0$$

$$6x + 9y - z = 0$$

has nontrivial solution, then is equal to

A. 12

B. -12

C. 0

D. none

Answer: B

94. The system of linear equations

$$x+y+z=2$$

$$2x+y-z=3$$

$$3x+2y+kz=4$$

has a unique solution if

A.
$$k \neq 0$$

B.
$$-1 < k < 1$$

$$\mathsf{C.} - 2 < k < 2$$

Answer: A

Watch Video Solution

95. The equations

$$x+y+z=6$$

$$x+2y+3z=10$$

given infinite number of value of the triplet (x,y,z,) if

A. m=0,
$$n \in R$$

B. m=3,
$$n \neq 10$$

D. none

Answer: C

Watch Video Solution

96. The system of equations

2x-y+z=0

x-2y+z=0

x-y+2z=0 has infinite of nontrivial solutions for

A. = 1

B. = 5

C. = -5

D. no real value of

Answer: B

View Text Solution

97. The system of equations

$$a_1 x + b_1 y + c_1 z = 0$$

$$a_2 x + b_2 y + c_2 z = 0$$

$$a_3x + b_3y + c_3z = 0$$

$$egin{bmatrix} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \end{bmatrix} = 0$$

A. more than two solutions

B. one trivial and one nontrivial solutions

C. no solution

D. only trivial solutions

Answer: A

Watch Video Solution

98. Can the inverse of the following matric be found

?

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

99. Can the inverse of the following matric be found

?

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Watch Video Solution

100. Can the inverse of the following matric be found

?

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

101. Can the inverse of the following matric be found

- ?
- $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$
 - 0

Watch Video Solution

102. Can the inverse of the following matric be found

- ?
- $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
 - $0 \quad 1 \quad 0$
 - $0 \ 0 \ 1$

103. Find the inverse of the following:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Watch Video Solution

104. Find the inverse of the following:

$$egin{bmatrix} 2 & -1 \ 1 & 3 \end{bmatrix}$$

Watch Video Solution

105. Find the inverse of the following:

$$\left[egin{matrix} 4 & -2 \ 3 & 1 \end{smallmatrix}
ight]$$

106. Find the inverse of the following:

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

Watch Video Solution

107. Find the inverse of the following:

$$\begin{vmatrix} 1 & 0 \\ 2 & -3 \end{vmatrix}$$

108. Find the inverse of the following:

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Watch Video Solution

109. Find the inverse of the following:

$$[[i,\ -i],[i,i]$$

Watch Video Solution

110. Find the inverse of the following:

$$\begin{bmatrix} x & -x \\ x & x^2 \end{bmatrix}$$
,x ne 0, x ne -1`

111. Find the adjoint of the following matrice.

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & 2 \\ 1 & 3 & -2 \end{bmatrix}$$

112. Find the adjoint of the following matrice.

$$\begin{bmatrix} -2 & 2 & 3 \\ 1 & 4 & 2 \\ -2 & -3 & 1 \end{bmatrix}$$

113. Find the adjoint of the following matrice.

$$\begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

Watch Video Solution

114. Find the adjoint of the following matrice.

$$egin{bmatrix} 1 & 3 & 0 \ 2 & -1 & 6 \ 5 & -3 & 1 \end{bmatrix}$$

115. Find the adjoint of the following matrice.

$$\begin{bmatrix} -2 & 2 & 3 \\ 1 & 4 & 2 \\ -2 & -3 & 1 \end{bmatrix}$$

Watch Video Solution

116. Which of the following matrice is invertible?

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & -1 & 1 \end{bmatrix}$$

117. Which of the following matrice is invertible?

$$\left[egin{array}{cccc} 2 & 1 & -2 \ 1 & 2 & 1 \ 3 & 6 & 4 \end{array}
ight]$$

Watch Video Solution

118. Which of the following matrice is invertible?

$$\left[egin{array}{cccc} -1 & -2 & 3 \ 2 & 1 & -4 \ -1 & 0 & 2 \end{array}
ight]$$

119. Which of the following matrice is invertible?

$$egin{bmatrix} 1 & 0 & 1 \ 2 & -2 & 1 \ 3 & 2 & 4 \end{bmatrix}$$

Watch Video Solution

120. Examining consistency and solvability, solve the following equation by matrix method.

$$x-y+z=4$$

$$2x+y-3z=0$$

$$x+y+z=2$$

121. Examining consistency and solvability, solve the following equation by matrix method.

$$x+2y-3z=4$$

$$2x+4y-5z=12$$

$$3x-y+z=3$$

Watch Video Solution

122. Examining consistency and solvability, solve the following equation by matrix method.

$$2x-y+z=4$$

$$x+3y+2z=12$$

$$3x+2y+3z=16$$

123. Examining consistency and solvability, solve the following equation by matrix method.

$$x+y+z=4$$

$$2x+5y-2x=0$$

$$x+7y-7z=5$$

Watch Video Solution

124. Examining consistency and solvability, solve the following equation by matrix method.

$$x+y+z=4$$

$$2x-y+3z=1$$

$$3x + 2y - z = 1$$

Watch Video Solution

125. Examining consistency and solvability, solve the following equation by matrix method.

$$3x+4y-z=-2$$

$$5x-3z=-1$$

126. Examining consistency and solvability, solve the following equation by matrix method.

$$x-y+z=4$$

$$2x+y-3z=0$$

$$x+y+z=2$$

Watch Video Solution

127. Given the matrices.

$$\mathsf{A=}\begin{bmatrix}1&2&3\\3&-2&1\\4&2&1\end{bmatrix},X=\begin{bmatrix}x\\y\\z\end{bmatrix}\text{ and }\mathsf{C=}\begin{bmatrix}1\\2\\3\end{bmatrix}$$

write down the linear equations given by AX=C and solve it for x, y, z by matrix method.

128. Find X, if
$$egin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & -1 \end{bmatrix} X = egin{bmatrix} 6 \\ 0 \\ 1 \end{bmatrix}$$
 where $X = egin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Watch Video Solution

129. Answer the following:

If every element of a third order matrix is multiplied by 5, then how many times its determinant value becomes?

130. Answer the following:

What is the value of x if

$$\left[egin{array}{cc} 4 & 1 \ 2 & 1 \end{array}
ight]^2 = \left[egin{array}{cc} 3 & 2 \ 1 & x \end{array}
ight] - \left[egin{array}{cc} x & 3 \ -2 & 1 \end{array}
ight]$$
 ?

Watch Video Solution

131. Answer the following:

What are the values of x and y if

$$\left[egin{array}{cc} x & y \ 1 & 1 \end{array}
ight] = 2, \left[egin{array}{cc} x & 3 \ y & 2 \end{array}
ight] = 1$$
 ?

132. Answer the following:

What is the value of x if

$$\left[egin{array}{cccc} x+1 & 1 & 1 \ 1 & 1 & -1 \ -1 & 1 & 1 \end{array}
ight] = 4\,?$$

133. Answer the following:

What is the value of $\begin{vmatrix} o & -h & -g \\ h & o & -f \\ g & f & o \end{vmatrix}$?

134. Answer the following:

What is the value of $\begin{bmatrix} rac{1}{a} & 1 & bc \\ rac{1}{b} & 1 & ca \\ rac{1}{c} & 1 & ab \end{bmatrix}$

Watch Video Solution

135. Answer the following:

What is the co-factor of 4 in the determinant

$$\begin{bmatrix} 1 & 2 & -3 \\ 4 & 5 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

136. Answer the following: In which inverval does the

determinant

$$\mathsf{A} = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix} \text{ lie?}$$

Watch Video Solution

137. Answer the following:

If $x+y+z=\pi$, what is the value of

$$\Delta = egin{bmatrix} \sin(x+y+z) & \sin B & \cos C \ -\sin B & 0 & an A \ \cos(A+B) & - an A & 0 \end{bmatrix}$$

Where A, B, C are the angles of triangle.

138. Evaluate the following determinants:

$$\begin{bmatrix} 14 & 3 & 28 \\ 17 & 9 & 34 \\ 25 & 9 & 50 \end{bmatrix}$$

Watch Video Solution

139. Evaluate the following determinants:

$$\begin{bmatrix} 16 & 19 & 13 \\ 15 & 18 & 12 \\ 14 & 17 & 11 \end{bmatrix}$$

140. Evaluate the following determinants:

$$\begin{bmatrix} 224 & 777 & 32 \\ 735 & 888 & 105 \\ 812 & 999 & 116 \end{bmatrix}$$

Watch Video Solution

141. Evaluate the following determinants:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 5 & 7 \\ 8 & 14 & 20 \end{bmatrix}$$

Watch Video Solution

143. Evaluate the following determinants:

$$\begin{bmatrix} 1^2 & 2^2 & 3^2 \\ 2^2 & 3^2 & 4^2 \\ 3^2 & 4^2 & 5^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -5863 \\ -7361 & 2 & 7361 \\ 1 & 0 & 4137 \end{bmatrix}$$

Watch Video Solution

145. Evaluate the following determinants:

$$\begin{bmatrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{bmatrix}$$

$$\left[egin{array}{ccc} 0 & a^2 & b \ b^2 & 0 & a^2 \ a & b^2 & 0 \end{array}
ight]$$

Watch Video Solution

147. Evaluate the following determinants:

$$\left[egin{array}{cccc} a-b & b-c & c-a \ x-y & y-z & z-x \ p-q & q-r & r-p \end{array}
ight]$$

$$\begin{bmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{bmatrix}$$

Watch Video Solution

149. If
$$egin{bmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{bmatrix} = 0$$

what are x and y?

150. For what value fo x

$$\left[egin{array}{cccc} 2x & 0 & 0 \ 0 & 1 & 2 \ -1 & 2 & 0 \end{array}
ight] = \left[egin{array}{cccc} 1 & 0 & 0 \ 2 & 3 & 4 \ 0 & 3 & 5 \end{array}
ight] ?$$

Watch Video Solution

151. Solve
$$\begin{bmatrix} x+a & 0 & 0 \ a & x+b & 0 \ a & 0 & x+c \end{bmatrix} = 0$$

152. Solve
$$egin{bmatrix} a+x & a-x & a-x \ a-x & a+x & a-x \ a-x & a-x & a+x \end{bmatrix}=0$$

153. Solve
$$\begin{bmatrix} x+a & b & c \ a & x+b & c \ a & b & x+c \end{bmatrix} = 0$$

154. Show that x=2 is a root of

$$\begin{bmatrix} x & -6 & -1 \\ 2 & -3x & x - 3 \\ -3 & 2x & x + 2 \end{bmatrix} = 0$$

Solve this completely,

155. Evaluate
$$\begin{bmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{bmatrix} - \begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$$

Watch Video Solution

- **156.** Evaluate $\begin{bmatrix} a & a^2 bc & 1 \\ b & b^2 ac & 1 \\ c & c^2 ab & 1 \end{bmatrix}$
 - Watch Video Solution

157. For what value of λ the system of equations

$$x+y+z=6, 4x+\lambda y-\lambda z=0,$$

3x+2y-4z=-5 deos not possess a solution?

158. If A is a 3×3 matrix and |A| = 2, then which matrix is represented by $A \times adjA$?

Watch Video Solution

159. If
$$A=\begin{bmatrix}0&-\tan\left(\frac{\alpha}{2}\right)\\\tan\left(\frac{\alpha}{2}\right)&0\end{bmatrix}$$
 show that
$$(I+A)=(I-A)\begin{bmatrix}\cos\alpha&-\sin\alpha\\\sin\alpha&\cos\alpha\end{bmatrix}$$
 where $I=\begin{bmatrix}1&0\\0&1\end{bmatrix}$

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$egin{bmatrix} a^2+1 & ab & ac \ ab & b^2+1 & bc \ ac & bc & c^2+1 \end{bmatrix} \ = 1+a^2+b^2+c^2$$

Watch Video Solution

161. Prove the following:

$$\left[egin{array}{cccc} 1 & 1 & 1 \ a & b & c \ a^3 & b^3 & c^3 \end{array}
ight]$$

=(b-c)(c-a)(a-b)(a+b+c)

$$egin{bmatrix} a & b & c \ b & c & a \ c & a & b \end{bmatrix} = 3abc - a^3 - b^3 - c^3$$

Watch Video Solution

163. Prove the following:

$$egin{bmatrix} b^2 - ab & b - c & bc - ac \ ab - a^2 & a - b & b^2 - ab \ bc - ac & c - a & ab - a^2 \end{bmatrix} = 0$$

$$egin{bmatrix} -a^2 & ab & ac \ ab & -b^2 & bc \ ac & bc & -c^2 \end{bmatrix} = 4a^2b^2c^2$$

Watch Video Solution

165. Prove the following:

$$egin{bmatrix} (b+c)^2 & a^2 & bc \ (c+a)^2 & b^2 & ca \ (a+b)^2 & c^2 & ab \end{bmatrix}$$

$$=(a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)$$

$$\begin{bmatrix} b+c & a+b & a \\ c+a & b+c & b \\ a+b & c+a & c \end{bmatrix}$$
$$=a^3+b^3+c^3-3abc$$

Watch Video Solution

167. Prove the following:

$$\left[egin{array}{cccc} a+b+c & -c & -b \ -c & a+b+c & -a \ -b & -a & a+b+c \end{array}
ight]$$

$$=2(b+c)(c+a)(a+b)$$

$$egin{array}{|c|c|c|c|} ax-by-cz & ay+bx & az+cx \ bx+ay & by-cz-ax & bz+cy \ cx+az & ay+bz & cz-ax-by \ \end{bmatrix}$$
 = $(a^2+b^2+c^2)(ax+by+cz)(x^2+y^2+z^2)$

Watch Video Solution

169. If 2s=a+b+c show that

$$\begin{bmatrix} a^2 & (s-a)^2 & (s-a)^2 \\ (s-b)^2 & b^2 & (s-b)^2 \\ (s-c)^2 & (s-c)^2 & c^2 \end{bmatrix} =$$

$$2s^3(s-a)(s-b)(s-c)$$

170. If
$$egin{bmatrix} x & x^2 & x^3-1 \ y & y^2 & y^3-1 \ z & z^2 & z^3-1 \end{bmatrix} = 0$$

then prove that xyz=1 when x,y,z are non zero and unequal.

171. Without expanding show that the following determinant is equal to Ax+B where A and B are determinants of order 3 not involning x.

$$\left[egin{array}{ccccc} x^2+x & x+1 & x-2 \ 2x^2+3x-1 & 3x & 3x-3 \ x^2+3x+3 & 2x-1 & 2x-1 \end{array}
ight]$$

172. If x,y,z are positive and are the pth, qth and rth terms of a G.P. then prove that

$$egin{bmatrix} \log x & p & 1 \ \log y & q & 1 \ \log z & r & 1 \ \end{bmatrix} = 0$$

Watch Video Solution

173. If a_1, a_2, \ldots, a_n are in G.P. and $a_i > 0$ for every i, then find the value of

$$\begin{bmatrix} \log a_n, \log a_{n+1}, \log a_{n+2} \\ \log a_{n+1}, \log a_{n+2}, \log a_{n+3} \\ \log a_{n+2}, \log a_{n+3}, \log a_{n+4} \end{bmatrix}$$

If

$$f(x) = egin{bmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 2x \ \sin^2 x & 1 + \cos^2 x & 4\sin 2x \ \sin^2 x & \cos^2 x & 1 + 4\sin 2x \end{bmatrix}$$

what is the maximum value of f(x).

Watch Video Solution

175. If $f_r(x), g_r(x), h_r(x), r=1,2,3$ are polynomials in x such that

$$f_r(a)=g_r(a)=h_r(a)$$
 and

$$F(x) = egin{bmatrix} f_1(x) & f_2(x) & f_3(x) \ g_1(x) & g_2(x) & g_3(x) \ h_1(x) & h_2(x) & h_3(x) \end{bmatrix}$$

176. If
$$f(x)=egin{bmatrix}\cos x & \sin x & \cos x \\ \cos 2x & \sin 2x & 2\cos 2x \\ \cos 3x & \sin 3x & 3\cos 3x\end{bmatrix}$$

find f'(pi/2).

