

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

Elements of Mathematics

Question Bank

1. The raws n = 6 and n = 7 in Pascal triangle have been

kept vacant. Fill in the gaps.

2. Write down the expansion of $(a + b)^8$ using Pascal's triangle.

4. Expand the following $\left(7a+3b
ight)^6$

6. Expand the following
$$\left(a - 7\frac{c}{3}
ight)^4$$

7. Apply Binomial Theorem to find the value of $\left(1.01 ight)^5$

8. State true or false. The number of terms in expansion of $\left(x^2 - 2 + \frac{1}{x^2}\right)^6$ is equal to 7. Watch Video Solution

9. State true or false. There is a term independent of

both x and y in the expansion of $\left(x^2+rac{1}{y^2}
ight)^9$

Watch Video Solution

10. State true or false. The highest power in the expansion of $x^{40}\left(x^2+rac{1}{x^2}
ight)^{20}$ is equal to 40.

12. Answer the following: If 6th term in the expansion of $(x + \cdot)^n$ is equal to ${}^nC_5x^{n-10}$ find *.

16. Find the middle term in the expansion of the

$$\left(\frac{a}{b} + \frac{b}{a}\right)^6$$

17. Find the middle term in the expansion of the $\left(x+rac{1}{x}
ight)^9$

18. Find the middle term in the expansion of the $\left(x^{rac{3}{2}}-y^{rac{3}{2}}
ight)^8$

Watch Video Solution

20. Find the fifth term in the expansion of $\left(6x-\frac{a^3}{x}\right)^{10}$

· · · · ·

21. Find the coefficient of $\frac{1}{y^{10}}$ in the expansion of $\left(y^3+rac{a^7}{y^5}
ight)^{10}$

Watch Video Solution

22. In the expansion of $\left(y^3+rac{a^7}{y^5}
ight)^{10}$, Does there

exist a term independent of y in the above expansion?

23. Find the coefficient of x^4 in the expansion of $(1 + 3x + 10x^2)\left(x + \frac{1}{x}\right)^{10}$ **(Watch Video Solution**

24. Find the term independent of x in the above expansion. $(1 + 3x + 10x^2)\left(x + \frac{1}{x}\right)^{10}$

Watch Video Solution

25. Show that the coefficient of a^m and a^n in expansion of $(1 + a)^{m+n}$ are equal.

26. An expression of the form (a+b+c+d+) consisting of sum of many distinct symbols is called a multinomial. Show that $(a + b + c)^n$ is the sum of all terms of the form $n \frac{!}{p} ! q! e! a^p b^q c^r$ where p, q and r range over all possible triples of non negative integers such that p+q+r = n.

Watch Video Solution

27. State and prove a multinomial Theorem.

28. Prove that
$${}^{2n}C_0 + {}^{2n}C_2 + + {}^{2n}C_{2n} = 2^{2n-1}$$

31. Find the sum of
$$C_0 + 2C_1 + 3C_2 + \dots + (n+1)C_n$$

Watch Video Solution

32. Compute
$$\frac{(1+k)\left(1+\frac{k}{2}\right)....\left(1+\frac{k}{n}\right)}{(1+n)\left(1+\frac{n}{2}\right)....\left(1+\frac{n}{k}\right)}$$

33. Show that
$$C_0C_1 + C_1C_2 + C_2C_3 + \dots + C_{n-1}C_n$$
$$= \frac{2n!}{(n-1)!(n+1!)}$$

41. Find the sum of the following

$$C_1 - 2C_2 + 3C_3 - \dots + n(-1)^{n-1}C_n$$

Watch Video Solution
42. Show that $C_1^2 + 2C_2^2 + 3C_3^2 + \dots + {}^nC_n^2 = \frac{(2n-1!)}{\{(n-1)!\}^2}$

43. Show that $C_2 + 2C_3 + 3C_4 + ... + (n-1)C_n$ =

1+ (n-2) 2^(n-1)`

46. The sum $\frac{1}{1!9!} + \frac{1}{3!7!} + \dots + \frac{1}{7!3!} + \frac{1}{9!1!}$ can be written in the form $\frac{2^a}{b!}$ Find a and b.

Watch Video Solution

48. Using the binomial theorem show that $1^{99} + 2^{99} + 3^{99} + 4^{99} + 5^{99}$ is divisible by 3 and 5 so that it is actually divisible by 15.

