©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

LINEAR PROGRAMMING

Question Bank

1. A merchant sells two models X and Y of TV
with cost price ₹ 25000 and ₹ 50000 Per set
respectively. He gets a profit of ₹ 1500 on
model X and ₹ 2000 on model Y. The sales
connot exceed 20 sets in a month. If he cannot invest more than 6 lakh rupees, formulate the problem of determining the number of sets of each type he must keep in stock for maximum profit.

D Watch Video Solution

2. A company manufactures and sells two models of lamps L_{1} and L_{2}, the profit being ₹

15 and ₹ 10 respectively. The process involves
two workers W_{1} and W_{2} who are available for this kind of work 100 hours and 80 hours per month respectively, W_{1} assembles, L_{1} in 20 and L_2 in 30 minutes. $W_{-} 2$ [aomts L_1 in 20 and L-2 in 10 minutes. Assuming that all lamps made can be sold, formulate the LPP for determining the productions figures for maximum proft.

Watch Video Solution

3. A factory uses three different respurce for
the manufacture of two different products, 20
units of the resource $A, 12$ units of B and 16 unit of C being available. One unit of the first product requires 2,2 and 4 units of the resources and one unit of the second product requires 4,2 and 0 units of the resources taken
in order. It is known that the first product gives a profit of ₹20 per unit and the second ₹ 30 prt uniy. Formulate the LPP so as to earn maximum profit.
4. A man plans to start a poultry farm by investing at most ₹ 3000 . He can buy old hens for ₹80 each and young ones for ₹ 140 each, but he cannot house more than 30 hens. Old
hens lay 4 eggs per week ,each ell bing sold at ₹ 5 . It costs ₹ 5 to feed an old hen and ₹8 to feed a young hen per week. Formulate his problem determining the number of hens of each type he should buy so as to earn a proft of more than ₹ 300 per week.
5. (Allocation Problem.)A farmer has 5 acres of
land on which he wishes to grow two crops X and Y. He has to use 4 cart loads and 2 cart
loads of manure per acre for crops X and Y respectively. But not more than 18 cart loads of manure is available. Other expenses are
₹ 200 and ₹ 500 per acre for the crops X and Y respectively. He estimates profit from crops X and Y at the rates ₹ 1000 and ₹ 800 per acre respectively. Formulate the LPP as to how
much land he should allocate to each crop for maximum profit.

D Watch Video Solution

6. Special purpose coins each weighing 10gms are to be manufactured using two basic metals M_{1} and M_{2} and a mix of other metals
$M_{3} . M_{1}, M_{2}$ and M_{3} cost₹ 500 ,₹ 800 and ₹800 and ₹ 50 per gram respectively. The strength of a coin demands that not more than 7 gm . of
M_{1} and a minimum of 3 gm of M_{2} should be
used. The amount of M_{3} in each coin is maintained at 25% of that of M_{1}. Since the demand for that coin is related to its price,formulate the LPP to find the minimum cost of a coin.

D Watch Video Solution

7. A company produces three types of cloth A, B
and C. Three kinds of wool, say red, green and
blue are required for the cloth needs 2 metres
of red and 3 etres of blue wool, one unit
length of type B cloth needs 3 metres of red, 2 metres of green and 2 metres of blue wool and one unit length of type C cloth needs 5 metres of green and 4 metres of blue wool.

The firm has a stock of only 80 metres of red,

100 metres of green and 150 metres of blue wool. Assuming that income obtained from one unit length of cloth is ₹ 30 , ₹ 50 and ₹ 40 of types. A, B and C respectively, formulate the LPP so as to maximize income.
8. Maximize $Z=5 x_{1}+6 x_{2}$

Subject to: $2 x_{1}+3 x_{2} \leq 6$
$x_{1}, x_{2} \geq 0$

- Watch Video Solution

9. Minimize: $Z=6 x_{1}+7 x_{2}$

Subject to: $x_{1}+2 x_{2} \geq 4$
$x_{1}, x_{2} \geq 0$
10. Maximize $: Z=20 x_{1}+40 x_{2}$

Subject to: $x_{1}+x_{2} \leq 1$
$x_{1}, x_{2} \geq 0$.

- Watch Video Solution

11. Solve the following LPP graphically.

Minimize $z=30 x_{1}+45 x_{2}$ subject to
$2 x_{1}+6 x_{2} \geq 4, \quad 5 x_{1}+2 x_{2} \geq 5 \quad$ and
$x_{1}, x_{2} \geq 0$

D Watch Video Solution
12. Optimize : $Z=5 x_{1}+25 x_{2}$

Subject to: $-0.5 x_{1}+x_{2} \leq 2$
$-x_{1}+5 x_{2} \geq 5$
$x_{1}, x_{2} \geq 0$

D Watch Video Solution

13. Maximize: $Z=14 x_{1}+4 x_{2}$

Subject to: $x_{1}+12 x_{2} \leq 65$
$7 x_{1}-2 x_{2} \leq 25$
$2 x_{1}+3 x_{2} \geq 10$
$x_{1}, x_{2} \geq 0$

D Watch Video Solution
14. Maximize: $Z=10 x_{1}+12 x_{2}+8 x_{3}$

Subject to: $x_{1}+2 x_{2} \leq 30$
$5 x_{1}-7 x_{3} \geq 12$
$x_{1}+x_{2}+x_{3}=20$
$x_{1}, x_{2} \geq 0$
(Watch Video Solution
15. Minimize: $Z=20 x_{1}+10 x_{2}$

Subject to: $x_{1}+2 x_{2} \leq 40$
$3 x_{1}-x_{2} \geq 30$
$4 x_{1}+3 x_{2} \geq=60$
$x_{1}, x_{2} \geq 0$

D Watch Video Solution

16. Maximize $Z=4 x_{1}+3 x_{2}$

Subject to: $x_{1}+x_{2} \leq 50$
$x_{1}+2 x_{2} \leq 80$
$2 x_{1}+x_{2} \geq 20, x_{1}, x_{2} \geq 0$
17. Maximize : $Z=20 x_{1}+40 x_{2}$

Subject to: $x_{1}+x_{2} \leq 1$
$x_{1}, x_{2} \geq 0$.

- Watch Video Solution

18. Minimize: $Z=6 x_{1}+7 x_{2}$

Subject to: $x_{1}+2 x_{2} \geq 4$
$x_{1}, x_{2} \geq 0$
19. Maximize : $Z=1500 x+2000 y$

Subject to: $x+y<20$
$x+2 y<24$
$x, y \geq 0$

- Watch Video Solution

20. Maximize : $Z=15 x+10 y$

Subject to: $2 x+3 y \leq 600$
$2 x+y \leq 480$
$x, y \geq 0$

D Watch Video Solution
21. Maximize : $Z=20 x+30 y$

Subject to: $x+2 y \leq 10$
$x+y \leq 6$
$x \leq 4$
$x, y \geq 0$

D Watch Video Solution
22. Maximize : $Z=2 x+4 y$

Subject to $3 x+2 y \leq 10$
$2 x+5 y \leq 15$
$5 x+6 y \leq 21$
$x, y \geq 0$

D Watch Video Solution
23. Maximize : $Z=1000 x+800 y$

Subject to $x+y \leq 5$
$2 x+y \leq 9$
$x+y \leq 0$
24. Minimize : $Z=4960-70 x-130 y$

Subject to : $x+y \leq 12$
$x+y \geq 6$
$x \leq 8$
$y \leq 8$
$x, y \geq 0$

- Watch Video Solution

25. Minimize : $Z=16 x+20 y$

Subject to $: x+2 y \geq 10$
$x+y \leq 6 x_{1}, x_{2} \geq 0$

D Watch Video Solution

