

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

MATRICES

Question Bank

1. State the order of [a b c] matrices.

2. State the order of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ matrices.

Watch Video Solution

Watch Video Solution

5. How many entries are there in a 3 imes 3 matrix Watch Video Solution **6.** How many entries are there in a 3 imes 4 matrix Watch Video Solution **7.** How many entries are there in a p imes q matrix Watch Video Solution

8. How many entries are there in a sqare matrix of order p? Watch Video Solution **9.** Give an example of 3 imes 1 matrix Watch Video Solution **10.** Give an example of 2 imes 2matrix Watch Video Solution

14. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 4 & 5 & 6 & 1 & 2 \\ 3 & 9 & 1 & 1 & 6 \end{bmatrix}$$
 Write down the entries

 a_{31}, a_{25}, a_{23} ?

Watch Video Solution

15. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 4 & 5 & 6 & 1 & 2 \\ 3 & 9 & 1 & 1 & 6 \end{bmatrix}$$
 Write down A^T .

16. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 4 & 5 & 6 & 1 & 2 \\ 3 & 9 & 1 & 1 & 6 \end{bmatrix}$$
 What is the order of A^t

17. Matrices A and B are given below .Find A+B,B+A,A-

BandB - A Verify that

A+B=B+A and B-A=-(A-B).

$$A = \begin{bmatrix} 7 \\ 1 \end{bmatrix} B = \begin{bmatrix} -6 \\ 9 \end{bmatrix}$$

Watch Video Solution

18. Matrices A and B are given below .Find A+B,B+A,A-

BandB -A Verify that

A+B=B+A and B-A=-(A-B).

$$A = egin{bmatrix} 1 & a-b \ a+b & -3 \end{bmatrix} ext{ and } B = egin{bmatrix} 1 & b \ -a & 5 \end{bmatrix}$$

19. Find the $2 \times 2mtrixX$ if X+[[0,1], [1,0]]=[[2,0],

[0,2]]`

20. Find the 2 imes 2mtrixX Given [x y z]-[-4 3 1] =[-5 1 0]`

derermine x,y,z.

21. Find the $2 \times 2mtrixX$ if $[[x_1,x_2], [y_1,y_2]]$ -[[2,0],[0,2]]=[[3,5],[1,2]]det $er \min ex_1,x_2,y_1,y_2$ `. Watch Video Solution

22. Find the
$$2 \times 2$$
 mtrix X find a matrix which when
added to $\begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$ gives $\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$
Watch Video Solution

23. Calculate whenever possible,
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$

27. If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, C = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

Calculate AB.

Watch Video Solution

28. If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, C = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

Calculate BA.

Watch Video Solution

29. If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, C = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

Calculate BC.

30. If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, C = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

Calculate CB.

Watch Video Solution

31. If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, C = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

Calculate AC.

32. If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} B = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}, C = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

Calculate CA.

38. Find products :
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Watch Video Solution

39. Find products :
$$\begin{bmatrix} 0 & k \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Watch Video Solution

40. Find products :
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

41. Find products :
$$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Watch Video Solution

43. Write true or false in the following case:

The sum of a 3 imes 4 matrix with a 3 imes 4 matrix is a

3 imes 3 matrix.

44. Write true or false in the following case:

 $k[0]=0, k\in R.$

Watch Video Solution

45. Write true or false in the following case:

A-B = B -A if one of A and B is zero and A and B are of

the same order.

46. Write true or false in the following case:

A + B = B + A, if A and B are matrices of the same order.

48. Write true or false in the following case:

$$\begin{bmatrix} 3 & 1 \\ 6 & 2 \end{bmatrix} = 3 \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

49. Write true or false in the following case:

With five elements a matrix can not be constructed.

50. Write true or false in the following case:

The unit matrix is its own transpose.

51.

$$A = egin{bmatrix} 2 & 4 \ 3 & 13 \end{bmatrix} ext{and I} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} ext{find} A - lpha I, lpha \in R.$$

If

Watch Video Solution

$$egin{bmatrix} x & -2y \ 0 & -2 \end{bmatrix} = egin{bmatrix} 1 & -8 \ 0 & -2 \end{bmatrix}$$

Watch Video Solution

53. Find x and y: $\begin{bmatrix} x+3\\ 2-y \end{bmatrix} = \begin{bmatrix} 1\\ -3 \end{bmatrix}$

54. Find x and y :

$$\left[egin{array}{c} 2x-y \ x+y \end{array}
ight] = \left[egin{array}{c} 3 \ -9 \end{array}
ight]$$

Watch Video Solution

$$egin{bmatrix} x \ y \end{bmatrix} + egin{bmatrix} 3 \ 4 \end{bmatrix} = egin{bmatrix} 2 \ -1 \end{bmatrix}$$

56. Find x and y :

Watch Video Solution

57. The element of ith row and jth column of the

following matrix is I + j. Complete the matrix.

Γ^2	3	4	ך 5
3	4	5	_
4	5	_	_
5	—	—	—
L —	_	_	_

58. Write down the matrix

$$egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 if $a_{ij}=2i+3j$

Watch Video Solution

59. Construct a 2 imes 3 matrix having element:

$$a_{ij}=i+j$$

Watch Video Solution

60. Construct a 2 imes 3 matrix having element:

$$a_{ij}=i-j$$

61. Construct a 2×3 matrix having element:

 $a_{ij}=i imes j$

Watch Video Solution

62. Construct a 2 imes 3 matrix having element:

$$a_{ji}=rac{i}{j}$$

63. If
$$\begin{bmatrix} 2x & y \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 4 & 2 \\ 0 & -1 \end{bmatrix} = [[8, 3], 1, 2]$$
 Find x and y.

Watch Video Solution

Watch Video Solution

65. If
$$egin{bmatrix} x+y & x-z \\ 2x-y & 0 \end{bmatrix} = egin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix}$$

find the values of x,y,z.

Watch Video Solution

67. Find A if
$$\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} A = \begin{bmatrix} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{bmatrix}$$

Watch Video Solution

68. Find x and y when $\begin{bmatrix} 1 & 3 \\ 2 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

69. Find AB and BA given that:

$$A=egin{bmatrix} 0&1\ 1&0 \end{bmatrix},B=egin{bmatrix} 2&3\ 4&1 \end{bmatrix}$$

Watch Video Solution

70. Find AB and BA given that:

$$A=egin{bmatrix} 7 & 5 \ 6 & 4 \end{bmatrix}, B=egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

71. Find AB and BA given that:

$$A=egin{bmatrix} 1&-1\2&3 \end{bmatrix},B=egin{bmatrix} 4&2\-1&-2 \end{bmatrix}$$

Watch Video Solution

72. Find AB and BA given that:

$$A=egin{bmatrix} 1&2\2&5 \end{bmatrix},B=egin{bmatrix} 5&-2\-2&1 \end{bmatrix}$$

Watch Video Solution

73. Evaluate
$$[[2,1]+2[0,\ -2]]iggl[egin{smallmatrix} 2 & 1 & 3 \ 1 & -2 & 0 \ \end{bmatrix}$$

74. Evaluate
$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Watch Video Solution

Show that AB=AC

though $B \neq C$.Verify that: A+(B+C)=(A+B)+C

76.
 If
 A

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2 \end{bmatrix}$

Show that AB=AC

though B '!=C`.Verify that: A(B+C)=AB+AC

Watch Video Solution

77.
 If
 A

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2 \end{bmatrix}$

Show that AB=AC

though B
eq C.Verify that: A(BC) =(AB)C

78. Find A and B where

$$2A+B = \begin{bmatrix} 2 & 2 & 5 \\ 5 & 4 & 3 \\ 1 & 1 & 4 \end{bmatrix} \text{and} A - 2B = \begin{bmatrix} 1 & 6 & 5 \\ 5 & 2 & -1 \\ -2 & -2 & 2 \end{bmatrix}$$

Watch Video Solution

79. If A=
$$\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$

and I be the 2 imes 2 unit matrix find (A-2I)(A-3I)

80. Verify that
$$[AB]^T = B^T A^T$$
 where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$$

82. Verify that
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

satisfies the equation $A^2 - (a+d)A + (ad-bc)I = 0$ where I is the 2x2

unit matrix.

Watch Video Solution

83. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
 "show that"

$$A^3 - 23A - 40I = 0$$

84. Simplify:

$$\left[{{
m x}} \, {{
m y}} \, {{
m z}}
ight] imes \left[{egin{matrix} a & h & g \ h & b & f \ g & f & c \ \end{array} }
ight] imes \left[{egin{matrix} x \ y \ z \ \end{array} }
ight]$$

Watch Video Solution

85. If A and B are matrices of the same order and AB=BA, Then prove that $A^2 - B^2 = (A - B)(A + B)$

Watch Video Solution

86. If A and B are matrices of the same order and AB=BA, Then prove that $A^2 + 2AB + B^2 = \left(A + B
ight)^2$

$$A^2-2AB+B^2=\left(A-B
ight)^2$$

Watch Video Solution

88. If α and β are scalars and A is a square matrix

then prove that

$$(A-lpha I).~(A-eta I)=A^2-(lpha+eta)A+lphaeta I$$

where I is a unit matrix of same order as A.

89. If α and β , are scalars such that $A = \alpha B + \beta I$, where A,B and the unit matrix I are of the same order, then prove that AB=BA.

91. If
$$A = \begin{bmatrix} 0 & 2 & 3 \\ 2 & 1 & 4 \end{bmatrix}$$

and $B = \begin{bmatrix} 7 & 6 & 3 \\ 1 & 4 & 5 \end{bmatrix}$

find 2A + 3B, 2A - 3B.

Watch Video Solution

92. If
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 3 & -1 \end{bmatrix}$$
,
 $B = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 2 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & -3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$
find $A - 3B + 3C$

93. If
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 3 & -1 \end{bmatrix}$$
,
 $B = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 2 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & -3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$
find $(A + B - C)^T$

Watch Video Solution

94. If
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 3 & -1 \end{bmatrix}$$
,
 $B = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 2 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & -3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$
find $B^T - C^T$.

95. If
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$
and $C = \begin{bmatrix} 1 & 0 & 2 \\ -2 & 3 & 0 \end{bmatrix}$, verify (A+B)C=AC+BC

Watch Video Solution

96.
$$\begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x & 2 \\ 1 & y \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ -1 & 4 \end{bmatrix}$$
 Find x and y.

97. If
$$A = \begin{bmatrix} 1 & -2 & 2 \\ 3 & 1 & -1 \end{bmatrix}$$

 $B \begin{bmatrix} 2 & 4 \\ 1 & 2 \\ 3 & -1 \end{bmatrix}$ verify
that $(AB)^T = B^T A^T$.

98. If A,B,C are matrices of order 2 imes 2 each and

$$2A+B+C=egin{bmatrix} 1&2\3&0\end{bmatrix}\A+B+C=egin{bmatrix} 0&1\2&1\end{bmatrix}\A+B-C=egin{bmatrix} 1&2\1&0\end{bmatrix}$$
find A,B and C.

Watch Video Solution

99. If
$$\begin{bmatrix} x & y \\ x & \frac{x}{2} + t \end{bmatrix} + \begin{bmatrix} y & x + t \\ x + 2 & \frac{x}{2} \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

find x,y,z and t.

100. State which of the following matrices is symmetric, slew symmetric, both or not either: [0 1]

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

101. State which of the following matrices is symmetric, slew symmetric, both or not either:

$$\begin{bmatrix} 0 & 1 & 2 \\ -1 & y & 3 \\ -2 & -3 & z \end{bmatrix}, (x,y,z) != (0,0,0)$$

104. State which of the following matrices is

symmetric, slew symmetric, both or not either:

- $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

105. State which of the following matrices is symmetric, slew symmetric, both or not either:

 $\left[\begin{array}{rrrr} 1 & -1 & 2 \\ 1 & 1 & -3 \\ -2 & 3 & 1 \end{array}\right]$

106. State which of the following matrices is symmetric, slew symmetric, both or not either: $\left[egin{array}{ccc} 0 & 0 & 1 \ 0 & 0 & -2 \ -1 & 2 & 0 \end{array}
ight]$ Watch Video Solution 107. State'True'or'false': If A and B are symmetric

matrices of the same order and AB-BA
eq 0, then

AB is not symmetric

108. State'True'or'false':For any square matrix A, AA' is

symmetric.

109. State'True'or'false': If A is any skew symmetric

matrix, then A^2 is also skew symmetric.

110. State'True'or'false': If A is symmetric, then

 A^2, A^3, \ldots, A^n are all symmetric.

111. State'True'or'false': If A is symmetric then $A - A^1$

is both symmetric and skew symmetric.

113. State'True'or'false': A matrix which is not symmetric is skew symmetric.

114. If A and B are symmetric matrices of the same order with $AB \neq BA$, final whether AB-BA is symmetric or skew symmetric.

Watch Video Solution

115. A and B are square matrices of the same order, prove that : if A,B and AB are all symmetric, then AB-BA

Watch Video Solution

=0

116. A and B are square matrices of the same order, prove that :If A,B and AB are all skew symmetric then AB+BA=0

117. If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ -2 & 5 & 3 \end{bmatrix}$$
, then verify that
 $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ -2 & 5 & 3 \end{bmatrix}$
 $\Rightarrow A' = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 5 \\ 0 & 3 & 3 \end{bmatrix}$

A+A' is symmetric

118. If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ -2 & 5 & 3 \end{bmatrix}$$
, then verify that
 $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ -2 & 5 & 3 \end{bmatrix}$
 $\Rightarrow A' = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 5 \\ 0 & 3 & 3 \end{bmatrix}$

A+A' is skmmetric

Watch Video Solution

119. Prove that A unit matrix is its own inverse. Is the

converse true?If
$$A = egin{bmatrix} 0 & 1 & -1 \ 4 & -3 & 4 \ 3 & -3 & 4 \end{bmatrix}$$
show that $A^2 = I$ and hence $A = A^{-1}.$

symmetric matrix:

 $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 0 & 1 \\ -1 & 5 & -2 \end{bmatrix}$

symmetric matrix:

 $\begin{bmatrix} 2 & -1 & 3 \\ 5 & 7 & -2 \\ 1 & 4 & 6 \end{bmatrix}$

123. Express as a sum of a symmetric and a skew

symmetric matrix:

 $\begin{bmatrix} x & a & b \\ a & y & c \\ b & c & z \end{bmatrix}$

symmetric matrix:

$$egin{bmatrix} 0 & x \ -x & 0 \end{bmatrix}$$

Watch Video Solution

125. Express as a sum of a symmetric and a skew

symmetric matrix:

$$egin{bmatrix} 1 & 5 \ 7 & -3 \end{bmatrix}$$

symmetric matrix:

 $\begin{bmatrix} 4 & -3 \\ 1 & 2 \end{bmatrix}$

Watch Video Solution

127. Express as a sum of a symmetric and a skew

symmetric matrix:

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

128. What is the inverse of :

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

129. What is the inverse of :

Watch Video Solution

130. Find inverse of the following matrices by elementary row/column operation (transformations):

 $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$

132. Find inverse of the following matrices by elementary row/column operation (transformations): $\begin{bmatrix} 4 \\ -2 \end{bmatrix}$

$$\left[egin{array}{ccc} 4 & -2 \ 3 & 1 \end{array}
ight]$$

133. Find inverse of the following matrices by elementary row/column operation (transformations):

 $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$

134. Find inverse of the following matrices by elementary row/column operation (transformations):

$$\begin{vmatrix} 1 & 0 \\ 2 & -3 \end{vmatrix}$$

135. Find inverse of the following matrices by

elementary row/column operation (transformations):

$$egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$

Watch Video Solution

136. Find the inverse of the following matrices using

elementary transformation

$$\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

137. Find the inverse of the following matrices using

elementary transformation

0	1	2]
1	2	3
3	1	1

138. Find the inverse of the following matrices using

elementary transformation:

 $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

139. Find the inverse of the following matrices using

elementary transformation:

 $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 1 & 0 & 2 \end{bmatrix}$