

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

RELATION AND FUNCTION

Question Bank

1. If A-{a,b,c,d) mention the type of relations on A given below,

which of them are equivalence relations?

{(a, a),(b,b)}

2. If A-{a,b,c,d} mention the type of relations on A given below, which of them are equivalence relations? {(a, a).(b,b), (c,c), (d, d)} Watch Video Solution **3.** If A={a,b,c,d} mention the type of relations on A given below, are equivalence relations? which them of

 $\{(a,b),(b,a),(b,d),(d,b)\}$

Watch Video Solution

4. If A={a,b,c,d} mention the type of relations on A given below, which of them are equivalence relations? $\{(b, c), (b, d), (c, d)\}$ **5.** If A={a,b,c,d} mention the type of relations on A given below, which of them are equivalence relations? $\{(a, a), b, b), (c, c), (d, d), (a, d), (a, c), (d, a), (c, a), (c, d), (d, c)\}$ Watch Video Solution

6. Write relations in tabular form and determine their type for

$$R = \{(x,y) : 2x - y = 0\} on A = \{1,2,3,\ldots,13\}$$

Watch Video Solution

7. Write relations in tabular form and determine their type for

$$R = \{(x,y) : x ext{divides} y\} on A = \{1,2,3,4,5,6\}$$

8. Write relations in tabular form and determine their type for

$$R = \{(x, y) : x \text{ divides} 2 - y\} \text{on} A = \{1, 2, 3, 4, 5\}$$

Watch Video Solution

9. Write the relations in tabular form and determine their type.

R= {(x, y): $y \le x \le 4$ } on A = {1,2,3,4,5}

Watch Video Solution

10. Test whether the relations are reflexive, symmetric or transitive on the sets specified.

 $R=\{(m,n):m-n \geq 7\}$ on Z.

11. Test wheter relations are reflexive, symmetric or transitive on the sets specified for $R = \{(m, n\}: 2 \mid (m + n)\}$ onZ. Watch Video Solution

12. Test whether the relations are reflexive, symmetric or transitive

on the sets specified.

R= {(m,n): m +n is not divisible by 3) on Z.

13. Test whether the relations are reflexive, symmetric or transitive

on the sets specified.

R={(m,n):
$$\frac{m}{n}$$
 is a power of 5} on Z - {0}.

14. Test whether the relations are reflexive, symmetric or transitive on the sets specified.

R=(m,n}: mn is divisible by 2) on Z.

15. Test wheter relations are reflexive, symmetric or transitive on

the sets specified for $R=\{(m,n): 3 ext{divides} m-n \} on \{1,2,3\dots,10\}.$

Watch Video Solution

16. List the members of the equivalence relation defined by $\{\{1\}, \{2\}, \{3, 4\}\}$ partitins on X={1,2,3,4}.Also find the equivalence classes of 1,2,3 and 4.

17. List the members of the equivalence relation defined by $\{\{1, 2, 3\}, \{4\}\}$ partitins on X={1,2,3,4}.Also find the equivalence classes of 1,2,3 and 4.

Watch Video Solution

18. List the members of the equivalence relation defined by $\{\{1, 2, 3, 4\}\}$ partitins on X={1,2,3,4}.Also find the equivalence classes of 1,2,3 and 4.

19. Show that if R is an equivalence relation on X then dom R=rngR =X.

20. Given an example of a relation which is

reflexive, symmetric but not transitive.

Watch Video Solution

21. Given an example of a relation which is

reflexive, transitive but not symmetric.

Watch Video Solution

22. Given an example of a relation which is

symmetric, transitive but not reflexive.

reflexive but neither symmetric nor transitive.

26. Given an example of a relation which is

a universal relation.

27. Let R be a relation on X, If R is symmetric then $xRy \Rightarrow yRx$. If it is also transitive then xRy and $yRx \Rightarrow xRx$.So whenver a relation is symmetric and transitive then it is also reflexive. What is wrong in this argument ?

Watch Video Solution

28. Suppose a box contains a set of n balls (n > 4) (denoted by B)of four different colours (many have different sizes), viz,red, blue, green and yellow. Show that a relation R defined on B as $R = \{(b_1, b_2) : \text{balls} b_1 \text{and} b_2 \text{ have the same colour}\}$ is an equivalence relation on B. How many equivalence classes can you

find with respect ot R?

Watch Video Solution

29. Find the number of equivalence, relations on X ={1,2,3),

Watch Video Solution

30. Let R be the relation on the set R of real numbers such that aRb iff a-b is and integer. Test whether R is an equivalence relation. If so find the equivalence class of $1 \text{ and } \frac{1}{2}$ wrt. This equivalence relation.

31. Find the least positive integer r such that $185 \in \left[r ight]_7$
Vatch Video Solution
32. Find the least positive integer r such that $-375 \in \left[r ight]_{11}$
Watch Video Solution
33. Find the least positive integer r such that $-12 \in \left[r ight]_{13}$
Watch Video Solution
34. Find least non negative integer r such that $7 imes 13 imes 23 imes 413 \equiv r \pmod{11}$
S Watch Video Solution

Watch Video Solution

37. Find least non negative integer r such that $1936 \times 8789 \equiv r \pmod{4}$

38. Find least positive integer x, satisfying

```
276x + 128 = 4 \pmod{7}.
```


40. Let X ={x,y} and Y ={u,v}. Write down all the functions that can

be defined from X To Y. How many of these are (i) one-one (ii) onto

and (iii)one-one and onto ?

41. Let X and Y be sets containing m and n elements respectively. What is the total number of functions from X to Y.

42. Let X and Y be sets containing m and n elements respectively. How many functions from X to Y are one-one according as m < n, m > n and m = n?

Watch Video Solution

43. Examine $f: R o R, f(x) = x^2$ functions if it is (i) injective (ii)

surjective, (iii) bijective and (iv) none of the three.

44. Examine $f\!:\!R
ightarrow[-1,1], f(x)=\sin x$ functions if it is (i)

injective (ii) surjective, (iii) bijective and (iv) none of the three.

Watch Video Solution

45. Examine
$$f \colon R_+ o R+, f(x) = x + rac{1}{x}$$

where $R_+ = \{x \in R : x > 0\}$ functions if it is (i) injective (ii) surjective, (iii) bijective and (iv) none of the three.

Watch Video Solution

46. Examine $f \colon R o R, \, f(x) = x^3 + 1$ functions if it is (i)

injective (ii) surjective, (iii) bijective and (iv) none of the three.

47. Examine $f \colon (-1,1) o R, f(x) = rac{x}{1-x^2}$ functions if it is (i)

injective (ii) surjective, (iii) bijective and (iv) none of the three.

Watch Video Solution

48. Examine $f: R \to R$, f(x) = [x] = the greatest integer $\leq x$. functions if it is (i) injective (ii) surjective, (iii) bijective and (iv) none of the three.

Watch Video Solution

49. Examine $f\colon R o R,\, f(x)=|x|$ functions if it is (i) injective

(ii) surjective, (iii) bijective and (iv) none of the three.

50. Examine $f: R o R, f(x) = \mathrm{sgn} x$ functions if it is (i) injective

(ii) surjective, (iii) bijective and (iv) none of the three.

51. Examine $f: R \to R$, $f = id_R$ = the identity function or R. functions if it is (i) injective (ii) surjective, (iii) bijective and (iv) none of the three.

Watch Video Solution

52. Show that f(x)=sin x on [0, pi/2] functions are injective.

53. Show that $f(x) = \cos x [0, \pi]$ functions are injective.

54. Show that $f(x) = \log_a x \operatorname{on}(0,\infty), (a > 0 \operatorname{and} a \neq 1)$ functions are injective.

> Watch Video Solution

Watch Video Solution

55. Show that $f(x) = a^x \text{on} R$. $(a > 0 \text{and} a \neq 1)$ functions are

injective.

56. Show that functions f and g defined by $f(x)=2 \log x$ and g(x)

 $= \log x^2$ are not equal even though log `x^2 = 2 log x.

Watch Video Solution	

57. Give an example of a function which is Surjective but not injective.

Watch Video Solution

58. Give an example of a function which is injective but not surjective.

59. Give an example of a function which is neither injective nor surjective.

62. Prove that the following sets are equivalent

{1, 2, 3, 4, 5, 6....}, (2, 4, 6, 8, 10,...)

Watch Video Solution

63. Prove that the following sets are equivalent

{1, 2, 3, 4, 5, 6....}, (2, 4, 6, 8, 10,...)

(1,3,5, 7, 9,...), {1, 4, 9, 16, 25...)

Watch Video Solution

64. Prove that the following sets are equivalent

{1, 2, 3, 4, 5, 6....}, (2, 4, 6, 8, 10,...)

(1,3,5, 7, 9,...), {1, 4, 9, 16, 25...)

65. Let f={(1,a),(2,b),(3,c),(4,d)} and g={(a,x),(b,x),(c,y),(d,x)} Determine

gof and fog if possible. Test whether fog=gof.

67. Let $f(x) = \sqrt{x}$ and $g(x) = 1 - x^2$. Find natural domains of f

and g.

68. Let $f(x) = \sqrt{x}$ and $g(x) = 1 - x^2$. Compute fog and gof and

find their natural domains.

Watch Video Solution

69. Let
$$f(x) = \sqrt{x}$$
 and $g(x) = 1 - x^2$. Find natural domain of h(x)

= 1-x.

Watch Video Solution

70. Let $f(x) = \sqrt{x}$ and $g(x) = 1 - x^2$.

Show that hgof only on $R_0 = \{x \in R \colon x \geq 0\}$ and not on R..

71. Find the composition fog and gof and test whether fog = gof when f and g are functions or R given by $f(x) = x^3 + 1, g(x) = x^2 - 2$ Watch Video Solution

72. Find the composition fog and gof and test whether fog = gof

when f and g are functions or R given by $f(x)=\sin x, g(x), g(x)=x^5$

Watch Video Solution

73. Find the composition fog and gof and test whether fog = gof

when f and g are functions or R given by $f(x) = \cos x, g(x) = \sin x^2$

74. Find the composition fog and gof and test whether fog = gof

when f and g are functions or R given by $f(x)=g(x)=\left(1-x^3
ight)^{rac{1}{3}}$

Watch Video Solution

75. Let f be a real function. Show that h(x) = f(x)=f(-x) is always an

even function and g(x) = f(x) - f(-x) is always an odd fuction.

Watch Video Solution

76. Express each of $1 + x + x^2$ function as the sum of an even

function and an odd function.

77. Express each of x^2 function as the sum of an even function and an odd function.

78. Express each of e^x function as the sum of an even function and an odd function.

79. Express each of $e^x + \sin x$ function as the sum of an even

function and an odd function.

80. Let $X = \{1, 2, 3, 4\}$ Determine whether f: $X \to X$ defined as given below have inverses. Find f^{-1} if it exist $f = \{(1, 4,), (2, 3), (3, 2), (4, 1)\}$

Watch Video Solution

81. Let $X = \{1, 2, 3, 4\}$ Determine whether f: $X \to X$ defined as given below have inverses. Find f^{-1} if it exist $f = \{(1, 3)(2, 1), (3, 1), (4, 2)\}$

Watch Video Solution

82. Let $X = \{1, 2, 3, 4\}$ Determine whether f: $X \to X$ defined as given below have inverses. Find f^{-1} if it exist $f = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$ 83. Let X = $\{1, 2, 3, 4\}$ Determine whether f: $X \to X$ defined as given below have inverses. Find f^{-1} if it exist $f = \{(1, 1), (2, 2), (2, 3), (4, 4)\}$

Watch Video Solution

84. Let X ={1,2,3,4}Determine whether f: $X \to X$ defined as given below have inverses. Find f^{-1} if it exist $f = \{(1, 2), (2, 2), (3, 2), (4, 2)\}$

Watch Video Solution

85. Construct an example to show that $f(A \cap B) \neq f(A) \cap f(B)$ where $A \cap B \neq \theta$.

87. Prove that
$$f\colon X o$$
 Y is surjective iff for all $B\subseteq Y, fig(f^{-1}(B)ig)=B.$

Watch Video Solution

88. Prove that
$$f\colon X o Y$$
 is injective iff $f^{-1}(f(A))= ext{A}$ for all $A\subseteq X.$

89. Prove that f:X o Y is injective iff for all $\sub{sA}, BofX, f(A\cap B) = f(A)\cap f(B).$

90. Prove that f:X o Y is surjective iff for all $A \subseteq X, (f(A))' \subseteq f(A')$, where A' denotes the complement of A in X.

Watch Video Solution

91. Show that the operation * given by x*y=x+y+ -xy is a binary

oeration on Z,Q and R but not on N.

92. Determine whether a * b = 2a + 3bonZ operations as defined

by * are binary operations on the sets specified in each case. Give reasons if it is not a binary operation.

94. Determine whether $a * b = a + b \pmod{7} \operatorname{on}\{0, 1, 2, 3, 4, 5, 6\}$ operations as defined by * are binary operations on the sets specified in each case. Give reasons if it is not a binary operation.

95. Determine whether $a * b = \min\{a, b\} \text{on}N$ operations as defined by * are binary operations on the sets specified in each case. Give reasons if it is not a binary operation.

Watch Video Solution

96. Determine whether $a * b = \text{GCD}\{a, b\}\text{on}N$ operations as defined by * are binary operations on the sets specified in each case. Give reasons if it is not a binary operation.

Watch Video Solution

97. Determine whether $a * b = \operatorname{LCM}\{a, b\} \operatorname{on} N$ operations as

defined by * are binary operations on the sets specified in each

case. Give reasons if it is not a binary operation.

99. Determine whether $a * b = \sqrt{a^2 + b^2} onQ_+$ operations as defined by * are binary operations on the sets specified in each case. Give reasons if it is not a binary operation.

100. Determine whether $a * b = a \times b \pmod{5} \operatorname{on}\{0, 1, 2, 3, 4\}$ operations as defined by * are binary operations on the sets specified in each case. Give reasons if it is not a binary operation.

Watch Video Solution

101. Determine whether $a * b = a^2 + b^2 \text{on}N$ operations as defined by * are binary operations on the sets specified in each case. Give reasons if it is not a binary operation.

Watch Video Solution

102. Determine whether $a * b = a + b - abonR - \{1\}$ operations as defined by * are binary operations on the sets specified in each case. Give reasons if it is not a binary operation.

103. Constract the composition table/multiplication table for the binary operation * defined on {0,1,2,3,4}by $a * b = a \times b \pmod{5}$. Find the identity element if any. Also find the inverse elements of 2 and 4.