

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

RELATIONS AND FUNCTIONS

Question Bank

1. Compute the product $A \times B$ when A = {0} =

R

2. Compute the product $A \times B$ A = {a,b} , B = {a,b,c}

Watch Video Solution

3. Compute the product A = Z, B = ϕ

4. If |A| = m, |B| = n, what can you say about

Watch Video Solution

5. If |A| = m, |B| = n, what can you say about

Watch Video Solution

6. Find x,y if (x,y) = (-3,2)

7. Find x,y if $(x+y)^{1} = (1, x-y)^{2}$

Watch Video Solution

8. Find x,y if (2x+y,1) = (x,2x+3y)

9. If $A \times B = B \times A$ then what can you say about A and B?

Watch Video Solution

10. $|A \times B|$ = 6. If (-1,y), (1,x),(0,y) are in $A \times B$.

Write other elements in A imes B , where x
eq y.

11. Let A = { a,b,c }, |B| = {1,2} Determine all the relations from A to B and determine the domain range and inverse of each relation.

Watch Video Solution

12. Let A = { a,b,c }, |B| = {1,2} Determine all the relation from B to A.

13. Let A = { a,b,c }, |B| = {1,2} Is there any relation which is both a relation from A to B and B to A? How many?

Watch Video Solution

14. Let A = { a,b,c }, |B| = {1,2} Of all the relations from A to B identify which relations are many one, one many and one-one and represent these diagramatically.

15. Are the following sets relation ? ϕ from A to B . Determine the domain range and inverse of each of the relations mentioned above.

Watch Video Solution

16. Are the following sets relation ? $A \times B$ from A to B.Determine the domain and range of each of the relations mentioned above.

17. Are the following sets relation ? $A \times \phi$ from A to ϕ . Determine the domain range and inverse of each of the relations mentioned above.

Watch Video Solution

18. Are the following sets relation ? ϕ * B from ϕ to B.

19. Are the following sets relation ? $\phi \times \phi$ from ϕ to ϕ . Determine the domain range and inverse of each of the relations mentioned above.

Watch Video Solution

20. Are the following sets relation ? ϕ x C` from A to B . Determine the domain range and inverse of each of the relations mentioned above.

21. Are the following sets relation ? $\phi \times \phi$ from A to B. Determine the domain range and inverse of each of the relations mentioned above.

Watch Video Solution

 $10 \}, B = N$

$$\mathsf{f=\{(x,y)}\ \in A\times B\!:\!y=x^2\}$$

Watch Video Solution

23. Express the following relations on A to B in

each case in tabular form A = B = R

$$f = \{(x,y) : x^2 + y^2 = 1 \text{ and } |x - y| = 1\}$$

24. Express the following relations on A to B in each case in tabular form $\{1,2,3,4\}$, B = $\{1,2,3,4,5\}$ f = $\{(x,y): 2 \text{ divides } 3x+y\}$

Watch Video Solution

25. A and B arenon-empty sets such that |A| = m, |B| = n. How many relations can be defined from A to B ? (Remember that the number of relations is the number of subsets of $A \times B$) .

26. Give an example of a relation f such that dom f = rng f

Watch Video Solution

27. Give an example of a relation f such that $dom \ f \ \subset \ rng \ f$

28. Give an example of a relation f such that $dom f \supset rng f$

Watch Video Solution

29. Give an example of a relation f such that $\operatorname{dom} \mathsf{f} \, \cup f^{-1} = \phi$

30. Give an example of a relation f such that f =

Watch Video Solution

31. Give an example of a relation f such that f

$$\cap f^{-1}
eq \phi$$

32. Let $R = \{(a,a^3) \mid a \text{ is a prime number less than 10} \}$ Find R.

Watch Video Solution

33. Let $R = \{(a,a^3) \mid a \text{ is a prime number less than 10} \} dom R.$

34. Let $R = \{(a,a^3) \mid a \text{ is a prime number less} \}$ than 10 }. Find rng R.

Watch Video Solution

35. Let $R = \{(a,a^3) \mid a \text{ is a prime number less than 10}\}$. Find R^{-1} .

36. Let $R = \{(a,a^3) \mid a \text{ is a prime number less} \}$ than 10 }.Find dom R^{-1} .

Watch Video Solution

37. Let $R = \{(a,a^3) \mid a \text{ is a prime number less than 10 }.Find rng <math>R^{(-1)}$.

38. Let A = $\{1,2,3,4,5,6\}$ and Let R be a relation on A defined by R $\{(a,b)| a \text{ divides b}\}$ Find R.

Watch Video Solution

39. Let A = {1,2,3,4,5,6} and Let R be a relation on A defined by R {(a,b)| a divides b} Find dom R.

40. Let A = {1,2,3,4,5,6} and Let R be a relation on A defined by R {(a,b)| a divides b} Find rng R.

Watch Video Solution

41. Let A = $\{1,2,3,4,5,6\}$ and Let R be a relation on A defined by R $\{(a,b)| a \text{ divides b}\}$ Find R^{-1} .

42. Let A = $\{1,2,3,4,5,6\}$ and Let R be a relation on A defined by R $\{(a,b)| a \text{ divides b}\}$ Find Dom R^{-1} .

Watch Video Solution

43. Let A = $\{1,2,3,4,5,6\}$ and Let R be a relation on A defined by R $\{(a,b)| a \text{ divides b}\}$ Find rng R^{-1} .

44. Give an example of a relation which is not a function.

Watch Video Solution

45. If X and Y are sets containing m and n elements respectively then what is the total number of function from X to Y?

$$:\sqrt{9-x^2}$$

Watch Video Solution

47. Find the domain of the following functions

$$: x / (1 + x^2)$$

: 1 - |x|

Watch Video Solution

49. Find the domain of the following functions

 $: '1/(x^2-1)$

 $: (\sin x)/(1+\tan x)$

Watch Video Solution

51. Find the domain of the following functions

:x/|x|

$$: \frac{1}{x + |x|}$$

Watch Video Solution

53. Find the domain of the following functions

: [x] - x

$$: \frac{1}{\sqrt{1-x^2}}$$

Watch Video Solution

55. Find the domain of the following functions

: log(sinx)

56. Find the range of the following functions :

$$x^2 - 1/x^2 + 1$$

Watch Video Solution

57. Find the range of the following functions:

$$\sqrt{x-1}$$

[x] - x

Watch Video Solution

59. Find the range of the following functions :

$$\frac{x}{-x}$$

$$x/(1+x^2)$$

Watch Video Solution

61. Find the range of the following functions:

$$1/2-\cos 3x$$

 $log_10 (1-x)$

Watch Video Solution

63. Find the range of the following functions:

$$\sqrt{1+x^2}$$

64. Find the domain and range of the following functions : $x^2 \, / \, (1 + x^2)$

Watch Video Solution

65. Find the domain and range of the following functions : $\sqrt{2x-3}$

66. Find the domain and range of the following functions : $\log_e |x-2|$

Watch Video Solution

67. Give an example of a step function on [-1,3]

$$= \{x \in R, -1 \le x \le 3\}$$

68. Let X {a,b,c}, Y = {1,2,3,4}

Find Out which of the following relations are functions and which are not and why?

Watch Video Solution

{(a.1).(a.2).(b.3).(b.4)}

69. Let $X \{a,b,c\}$, $Y = \{1,2,3,4\}$

Find Out which of the following relations are functions and which are not and why?

{(a,2),(b,3),(c,4)}

70. Let
$$X \{a,b,c\}$$
, $Y = \{1,2,3,4\}$

Find Out which of the following relations are

functions and which are not and why?

$$\{(a,3),(b,1),(a,4),(c,2)\}$$

Watch Video Solution

71. Let X {a,b,c}, Y = {1,2,3,4}

Find Out which of the following relations are

functions and which are not and why?

{(a,1),(b,1),(c,1)}

Watch Video Solution

72. Let $X \{a,b,c\}$, $Y = \{1,2,3,4\}$

Find Out which of the following relations are

functions and which are not and why? {(a,2),(b,1),(c,1)}

73. Let $X \{a,b,c\}$, $Y = \{1,2,3,4\}$

Find Out which of the following relations are functions and which are not and why?

{(a.a).(b.b).(c.c)}

Watch Video Solution

74. Find the domain and range of those relations in a which are functions.

{(a,1),(a,2),(b,3),(b,4)}

75. Find the domain and range of those relations in a which are functions.

Watch Video Solution

76. Find the domain and range of those relations in a which are functions.

77. Find the domain and range of those relations in a which are functions.

Watch Video Solution

78. Find the domain and range of those relations in a which are functions.

$$\{(a,2),(b,1),(c,1)\}$$

79. Find the domain and range of those relations in a which are functions.

{(a,a),(b,b),(c,c)}

Watch Video Solution

80. Identify the constant function if any.

{(a,1),(a,2),(b,3),(b,4)}

{(a,2),(b,3),(c,4)}

Watch Video Solution

82. Identify the constant function if any.

 $\{(a,3),(b,1),(a,4),(c,2)\}$

 $\{(a,1),(b,1),(c,1)\}$

Watch Video Solution

84. Identify the constant function if any.

 $\{(a,1),(b,1),(c,1)\}$

 $\{(a,a),(b,b),(c,c)\}$

Watch Video Solution

86. Identify the identity function if any.

 $\{(a,1),(a,2),(b,3),(b,4)\}$

 $\{(a,2),(b,3),(c,4)\}$

Watch Video Solution

88. Identify the constant function if any.

 $\{(a,3),(b,1),(a,4),(c,2)\}$

 $\{(a,1),(b,1),(c,1)\}$

Watch Video Solution

90. Identify the constant function if any.

 $\{(a,1),(b,1),(c,1)\}$

 ${(a,a),(b,b),(c,c)}$

Watch Video Solution

92. Find $f(\sqrt{2})$ and $f(-\sqrt{3})$ for the function

$$f(x) = \begin{cases} x^2, & \text{if } x < 0 \\ x, & \text{if } 0 \le x \le 1 \\ \frac{1}{x}, & \text{if } x > 1 \end{cases}$$

93. Find x for which the value of $f(x) = x^2 - 4x + 3$ is 0.

94. Find x for which the value of f(x) =

$$x^2 - 4x + 3$$
 is -1.

95. Find the value/values of x for which the following are not defined.

$$\left(x^2-4\right)/(x-2)$$

Watch Video Solution

96. Find the value/values of x for which the following are not defined.

$$\frac{\sin x}{x}$$

97. Find the value/values of x for which the following are not defined.

$$\frac{\log \cos x}{\sec x}$$

Watch Video Solution

98. Let $f(x) = \sqrt{1 + x}$, $g(x) = \sqrt{1 - x}$ Find f + g also find the domain of the each case.

99. Let $f(x) = \sqrt{1+x}$, $g(x) = \sqrt{1-x}$ Find f - g also find the domain of the each case.

Watch Video Solution

100. Let $f(x) = \sqrt{1+x}$, $g(x) = \sqrt{1-x}$ Find fg also find the domain of the each case.

101. Let $f(x) = \sqrt{1+x}$, $g(x) = \sqrt{1-x}$ Find $\frac{f'}{g}$ also find the domain of the each case.

Watch Video Solution

102. If f(x) =
$$\log_e\left(\frac{1-x}{1+x}\right)$$
 , then prove that $f(x)+f(y)=f\left(\frac{x+y}{1+xy}\right)$

103. Let f = {(-1,4),(2,7) , (-2,11)} , (0,1), (1,2) be a quadratic polynomial from Z to Z, find f(x).

Watch Video Solution

104. Sketch the graphs of the following functions.

$$f(x) = x^3$$

105. Sketch the graphs of the following functions.

$$f(x) = 1 + \frac{1}{x^2}$$

Watch Video Solution

106. Sketch the graphs of the following functions.

$$f(x) = (x-1)^2$$

