

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

STRAIGHT LINES

Question Bank

1. Find the distance between the following

pairs of points. (3,4) , (2,1).

2. Find the distance between the following pairs of points. (-1,0) , (5,3) .

3. If the distance between the points (3,a) and

(6,1) is 5, find the value of a.

4. Find the coordinates of the point which divides the line segment joining the points A (4,6),B (-3,1) in the ratio 2:3 internally. Find also the coordinates of the point which divides \overline{AB} in the same ratio externally.

Watch Video Solution

5. Find the coordinates of the mid-point of the

following pairs of points .(-7,3), (8,-4).

6. Find the coordinates of the mid-point of the

following pairs of points (3/4,-2),(-5/2,1).

Watch Video Solution

7. Find the area of triangle whose vertices are

(1,2), (3,4),(1/2,1/4).

8. If the area of the triangle with vertices (0,0),

(1,0),(0,a) is 10 units, find the value of a.

9. Find the value of a so that the points (1,4),

(2,7),(3,a) are collinear.

10. Find the slope of the lines whose inclinations are given.30°.
Watch Video Solution

11. Find the slope of the lines whose inclinations are given. 45° .

12. Find the slope of the lines whose inclinations are given.60°.
Watch Video Solution

13. Find the slope of the lines whose inclinations are given. 135° .

14. Find the inclination of the lines whose slopes are given below. $\frac{1}{\sqrt{3}}$. Vatch Video Solution

15. Find the inclination of the lines whose slopes are given below. 1.

16. Find the inclination of the lines whose

slopes are given below. $\sqrt{3}$.

Watch Video Solution

17. Find the inclination of the lines whose slopes are given below. -1.

18. Find the angles between the pair of lines

whose slopes are , $\frac{1}{\sqrt{3}}$,1.

Watch Video Solution

19. Find the angles between the pair of lines whose slopes are , $\sqrt{3}$,-1 .

20. Show that the points (0,-1),(-2,3),(6,7) and

(8,3) are vertices of a rectangle.

21. Show that the points (1,1),(-1,-1) and ($-\sqrt{3},\sqrt{3}$) are the vertices of an equilateral triangle.

22. Find the coordinates of the point P(x,y) which is equidistant from (0,0), (32,10) and (42,0).

23. If the points (x,y) are equidistant from the

points (a+b,b-a) and (a-b,a+b),prove that bx =

ay.

24. The coordinates of the vertices of a triangle are $(\alpha_1, \beta_1), (\alpha_2, \beta_2)$ and (α_3, β_3) Prove that the coordinates of its centroid are $(\alpha_1 + \alpha_2 + \alpha_3) / (3), (\beta_1 + \beta_2 + \beta_3) / (3).$

25. Two vertices of a triangle are (0,-4) and (6,0).If the medians meet at the point (2,0), find the coordinates of the third vertex.

26. If the point (0,4) divides line segment joining (-4,10) and (2,1) internally, find the point which divides it externally in these same ratio.

27. Find the ratios in which the line segment joining (-2,-3) and (5,4) is divided by the coordinate axes and hence find the coordinates of these points.

28. In a triangle one of the vertices is at (2,5) and the centroid of the triangle is at (-1,1). Find the coordinates of the midpoint of the side opposite to the given angular point.

Watch Video Solution

29. Find the coordinates of the vertices of a triangle whose sides have mid points at (2,1), (-1,3) and (-2,5).

30. If the vertices of a triangle have their coordinates given by rational numbers, prove that the triangle cannot be equilateral.

Watch Video Solution

31. Prove that the area of any triangle is equal

to four times the area of the triangle formed

by joining the mid points of its sides.

32. Find the condition that the point (x,y) may

lie on the line joining (1,2) and (5,-3).

33. Show that the three distinct points $(a^2, a)(b^2, b)$ and (c^2, c) can never be collinear.

34. If A,B,C are points (-1,2),(3,1) and (-2,-3) respectively, show that the points which divide BC, CA, AB in the ratios (1:3), (4:3) and (-9,:4) respectively are collinear.

Watch Video Solution

35. Prove analytically : The line segment joining the midpoints of two sides of a triangle is parallel to the third and half of its length.

36. Prove analytically : The altitudes of a

triangle are concurrent.

37. Prove analytically : The perpendicular bisector of the sides of a triangle are concurrent.

38. Prove analytically : An angle in a semicircle

is a right angle.

39. Fill in the blanks in each of the following, using the answers given against each of them
:
The slope and x-intercept of the line 3x-y+ k = 0 are equal if k= .

B. -1

C. 3

D.-9

Answer: D

:

Watch Video Solution

40. Fill in the blanks in each of the following, using the answers given against each of them

The lines 2x - 3y + 1 = 0 and 3x + ky - 1 = 0 are

perpendicular to each other if k = _____.

A. 2

B. 3

C. -2

 $\mathsf{D.}-3$

Answer: A

41. Fill in the blanks in each of the following, using the answers given against each of them
The lines 3x + ky - 4 = 0 and k - 4y - 3x = 0 are coincident if k = ____.

A. 1

 $\mathsf{B.}-4$

C. 4

 $\mathsf{D}.-1$

Answer: C

42. Fill in the blanks in each of the following, using the answers given against each of them
:
The distance between the lines 3x - 1 = 0 and x + 3 = 0 is units.

A. 4 B. 2 C. $\frac{8}{3}$ D. $\frac{10}{3}$

Answer: D

Watch Video Solution

43. Fill in the blanks in each of the following, using the answers given against each of them

The angle between the lines
$$x=2$$
 and $x-\sqrt{3}y+1=0$ is ____

:

B. 60°

C. 120°

D. 150°

Answer: B

Watch Video Solution

44. State with reasons which of following are

true or false :

The equation x= k represents a line parallel to

x - axis for all real values of k.

45. State with reasons which of following are

true or false :

The line, y + x + 1 = 0 makes an angle 45° with

y- axis.

Watch Video Solution

46. State with reasons which of following are

true or false :

The lines represented by 2x-3y+1=0 and

3x + 2y - k = 0 are perpendicular to each other

for positive values of k only.

47. State with reasons which of following are true or false :

The lines represented by px + 2y - 1 = 0 and 3x

+ py + 1 = 0 are not coincident for any value of

'p' .

48. State with reasons which of following are true or false :

The equation of the line whose x - and y - intercepts are 1 and -1 respectively is x - y + 1 =

0.

49. State with reasons which of following are

true or false :

The point (-1, 2) lines on the line 2x + 3y - 4 = 0.

50. State with reasons which of following are

true or false :

The equation of line through (1, 1) and (-2, -2) is

y = - 2x.

Watch Video Solution

51. State with reasons which of following are

true or false :

The line through (1, 2) perpendicular to y = x is

y + x - 2 = 0.

52. State with reasons which of following are true or false : The lines $\frac{x}{a} + \frac{y}{b} = 1$ and y/a - x/b = 1 are intersecting but not perpendicular to each other.

53. State with reasons which of following are true or false :

The points (1, 2) and (3, -2) are on the opposite

sides of the line 2x + y = 1.

> Watch Video Solution

54. A point P(x,y) is such that its distance from the fixed point $(\alpha, 0)$ is equal to its distance from y-axis. Prove that the equation of the locus is given by, $y^2 = \alpha(2x - \alpha)$.

55. Find the locus of the point P(x,y) such that the area of the triangle PAB is 5, where A is the point (1,-1) and B is the point (5,2).

Watch Video Solution

56. A point is such that its distance from the point (3,0) is twice its distance from the point (-3,0). Find the equation of the locus.

57. Obtain the equation of straight lines : Passing through (1,-1) and making an angle 150° .

Watch Video Solution

58. Obtain the equation of straight lines : Passing through (-1,2) and making intercept 2 on the y-axis.

59. Obtain the equation of straight lines : Passing through the points (2,3) and (-4,1).

Watch Video Solution

60. Obtain the equation of straight lines : Passing through (-2,3) and sum of whose intercepts in 2.

61. Obtain the equation of straight lines : Whose perpendicular distance from origin is 2 such that the perpendicular from origin has indication 150.

62. Obtain the equation of straight lines : Bisecting the line segment joining (3,-4) and

(1,2) at right angles.

63. Obtain the equation of straight lines : Bisecting the line segment joining (a,0) and (0,b) at right angles.

64. Obtain the equation of straight lines : Bisecting the line segment joining (a, b), (a', b') and (-a,b), (a', -b').

65. Obtain the equation of straight lines : Passing through origin and the points of trisection of the portion of the line 3x + y - 12 =0 intercepted between the coordinate axes.

Watch Video Solution

66. Obtain the equation of straight lines :

Passing through (-4,2) and parallel to the line

4x-3y = 10

67. Obtain the equation of straight lines : Passing through the point $(a \cos^3 \theta, a \sin^3 \theta)$ and perpendicular to the straight line $x \sec \theta + y \cos ec\theta = \alpha$.

Watch Video Solution

68. Obtain the equation of straight lines : Which passes through the point (3,-4) and is such that its portion between the axes is divided at this point internally in the ratio 2:3.

69. Obtain the equation of straight lines : which passes through the point (α, β) and is such that given point bisects its portion between the co-ordinate axies.

Watch Video Solution

70. Find the equation of the line which is parallel to the line 3x + 4y + 7 = 0 and is at a distance 2 from it.

71. Find the equation of the line passing through the intersection of 2x-y-1 = 0 and 3x-4y+6 = 0 and parallel to the line x + y - 2 = 0.

72. Find the equation of the line passing through the point of intersection of lines x + y

3y + 2 = 0 and x-2y-4 = 0 and perpendicular to

the line 2y + 5x - 9 = 0.

73. Find the equation of the line passing through the point of intersection of lines x + 3y - 1 = 0 and 3x-y+1 = 0 and the centroid of the triangle whose vertices are the points (3,-1) (1,3) and (2,4).

74. If 1x + my + 3 = 0 and 3x - 2y - 1 = 0

represent the same line, find the values of I and

m.

75. Find the equation of sides of a triangle

whose vertices are at (1,2),(2,3) and (-3,-5).

76. Find the coordinate of the circumcentre and incentre of the triangle formed by lines 3x - y = 5, x + 2y = 4 and 5x + 3y + 1 = 0.

77. Find the equations of straight lines passing

through the point (3,-2) and making angle $45^{\,\circ}$

with the line 6x + 5y = 1.

78. Two straight lines are drawn through the point (3,4) inclined at an angle 45° to the line x - y - 2 = 0. Find their equations and obtain the area included by the above three lines.

79. Show that the area of the triangle formed

by the line given by the equations

(c_1-c_2)^2/[m_2-m_1]

80. Find the equation of lines passing through origin and perpendicular to the lines 3x + 2y - 5 = 0 and 4x + 3y = 7. Obtain the co-ordinate of the points where these perpendiculars meet the given lines . Prove that the equation of line passing through these two points is 23x + 11y - 35 = 0.

81. Find the length of perpendicular drawn from the point (-3,-4) to the straight line whose equation is 12x - 5y + 65 = 0.

82. Find the perpendicular distances of the point (2,1) from the parallel lines 3x-4y+4 = 0 and 4y-3x+5 = 0. Hence find the distance between them.

83. Find the distance of the point (3,2) from the line x + 3y - 1 = 0 measured parallel to the line 3x - 4y + 1 = 0

Watch Video Solution

84. Find the distance of the point (-1,-2) from

the line x + 3y-7 = 0 measured parallel to the

line 3x + 2y - 5 = 0.

85. Find the distance of the line passing through the points $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ from the origin.

86. Find the length of perpendiculars drawn from the origin on the side of the triangle

whose vertices are A(2,1),B(3,2) and C(-1,-1).

87. Show that the product of perpendicular from the points $(\pm \sqrt{a^2 - b^2}, 0)$ upon the straight line $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1isb^2$. **Vatch Video Solution**

88. Show that the lengths of perpendiculars drawn from any point of the straight line 2x + 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 11y - 5 = 0 on the lines 24x + 7y - 20 = 0 and 4x - 10y - 10y - 10y - 10y.

3y - 2 = 0 are equal to each other.

89. If p and p' are the length of perpendicular drawn from the origin upon the lines $x \sec lpha + y \cos ec lpha = 0$ and $x \cos lpha - y \sin lpha - a \cos 2 lpha = 0$ Prove that , $4p^2 + p^{'2} = a^2$

Watch Video Solution

90. Obtain the equation of the lines passing through the foot of the perpendicular from (h,k) on the line Ax + By + C = 0 and bisecting

the angle between the perpendicular and the

given line.

91. Find the direction in which a straight line must be drawn through the point (1,2) such that its point of intersection with the line x + y -4 = 0 is at a distant $\frac{1}{3}\sqrt{6}$ from this point.

92. A triangle has its vertices at P(1,-1),Q(3,4) and R(2,5). Find the equation of altitudes through P and Q and obtain the coordinate of their point of intersection.(This point is called ortho-centre of the triangle.)

Watch Video Solution

93. Show that the line passing through (6,0)

and (-2,-4) is concurrent with the lines.

2x-3y-11 = 0 and 3x-4y = 16.

ny + I = 0 and nx + Iy + m = 0 are concurrent, if

| + m + n = 0.

Watch Video Solution

95. Obtain the equation of the bisector of the

acute angle between the pair of lines. X + 2y =

1, 2x + y + 3 = 0

96. Obtain the equation of the bisector of the acute angle between the pair of lines. 3x - 4y =

5 , 12y - 5x = 2.

Watch Video Solution

97. Find the area of the region bounded by the line y = 3x + 2, x-axis and the ordinates x = -1 and x = 1.

98. Find the coordinate of the circumcentre and incentre of the triangle formed by lines 3x

-y = 5, x + 2y = 4 and 5x + 3y + 1 = 0.

99. Find the equation of the lines represented

by the following equation $4x^2 - y^2 = 0$

102. Find the equation of the lines represented

by the following equation $3x^2 + 4xy = 0$

Watch Video Solution

103. From the equations which represents the

following Pair of lines.,

y = mx, y = nx

104. From the equations which represents the

following Pair of lines

y - 3x = 0, y + 3x = 0

105. From the equations which represents the

following Pair of lines

2x - 3y + 1 = 0, 2x + 3y + 1 = 0

106. From the equations which represents the

following Pair of lines

x = y, x + 2y + 5 = 0

Watch Video Solution

107. Which of the following equations represent pair of lines ?

$$2x^2 - 6y^2 + 3x + y + 1 = 0$$

108. Which of the following equations represent pair of lines? $10x^2 - xy - 6y^2 - x + 5y - 1 = 0$ Watch Video Solution 109. Which of the following equations represent pair of lines? xy + x + y + 1 = 0Watch Video Solution

110. For what value of λ do the following equations represent pair of straight lines? $\lambda x^2 + 5xy - 2y^2 - 8x + 5y - \lambda = 0$

Watch Video Solution

111. For what value of λ do the following equations represent pair of straight lines?

$$x^2-4xy-y^2+6x+8y+\lambda=0$$

112. Obtain the value of λ for which the pair of

straight lines represented by $3x^2-8xy+\lambda y^2=0$ are perpendicular to

each other.

Watch Video Solution

113. Prove that a pair of lines through origin perpendicular to the pair of lines represented by

$$px^2+2qxy+ry^2=0$$
 is given by $rx^2-2qxy+py^2=0.$

114. Obtain the condition that a line of the pair of lines $ax^2 + 2hxy + by^2 = 0$, Coincides with to a line of the pair of lines $px^2 + 2qxy + ry^2 = 0$ Watch Video Solution 115. Obtain the condition that a line of the pair

of lines

$$ax^2+2hxy+by^2$$
 = 0 ,

Coincides with to a line of the pair of lines

$$px^2+2qxy+ry^2$$
 = 0

Watch Video Solution

116. Find the acute angle between the pair of lines given by :

$$x^2 + 2xy - 4y^2 = 0$$

117. Find the acute angle between the pair of

lines given by :

$$2x^2 + xy - 3y^2 + 3x + 2y + 1 = 0$$

Watch Video Solution

118. Find the acute angle between the pair of lines given by :

$$x^2 + xy - 6y^2 - x - 8y - 2 = 0$$

119. Write down the equation of pair of bisectors of the following pair of lines :

$$x^2 - y^2$$
= 0

Watch Video Solution

120. Write down the equation of pair of bisectors of the following pair of lines :
$$4x^2 - xy - 3y^2 = 0$$

121. Write down the equation of pair of bisectors of the following pair of lines : $x^2\cos heta+2xy-y^2\sin heta=0$

Watch Video Solution

122. Write down the equation of pair of bisectors of the following pair of lines : $x^2 - 2xy an heta - y^2 = 0$

123. If the pair of lines represented by $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ be such that each pair bisects the angle between the other pair, then prove that pq = -1.

Watch Video Solution

124. Transform the equaton :

 $x^2 + y^2 - 2x - 4y + 1 = 0$

by shifting the origin to (1,2) and keeping the

axes parallel.

 $2x^2 + 3y^2 + 4xy - 12x - 14y + 20 = 0$

when referred to parallel axes through (2,1).

126. Find the measure of rotation so that the

equation
$$x^2 - xy + y^2 = 5$$
 when

transformed does not contain xy-term.

127. What does the equation x + 2y - 10 = 0

become when the origin is changed to (4,3)?

