©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

STRAIGHT LINES

Question Bank

1. Find the distance between the following
pairs of points. $(3,4),(2,1)$.
2. Find the distance between the following pairs of points. $(-1,0),(5,3)$.

D Watch Video Solution

3. If the distance between the points $(3, a)$ and
$(6,1)$ is 5 , find the value of a.

- Watch Video Solution

4. Find the coordinates of the point which
divides the line segment joining the points A
$(4,6), B(-3,1)$ in the ratio $2: 3$ internally.

Find also the coordinates of the point which divides $\overline{A B}$ in the same ratio externally.

D Watch Video Solution

5. Find the coordinates of the mid-point of the following pairs of points $.(-7,3),(8,-4)$.
6. Find the coordinates of the mid-point of the
following pairs of points .(3/4,-2),(-5/2,1).

- Watch Video Solution

7. Find the area of triangle whose vertices are
(1,2), (3,4),(1/2,1/4).

- Watch Video Solution

8. If the area of the triangle with vertices $(0,0)$,
$(1,0),(0, a)$ is 10 units, find the value of a.

- Watch Video Solution

9. Find the value of a so that the points $(1,4)$,
(2,7),(3,a) are collinear.

- Watch Video Solution

10. Find the slope of the lines whose inclinations are given 30°.

D Watch Video Solution
11. Find the slope of the lines whose inclinations are given 45°.

- Watch Video Solution

12. Find the slope of the lines whose inclinations are given. 60°.

D Watch Video Solution

13. Find the slope of the lines whose inclinations are given. 135°.

- Watch Video Solution

14. Find the inclination of the lines whose
slopes are given below. $\frac{1}{\sqrt{3}}$.

D Watch Video Solution

15. Find the inclination of the lines whose slopes are given below. 1.
(Watch Video Solution
16. Find the inclination of the lines whose slopes are given below. $\sqrt{3}$.

D Watch Video Solution
17. Find the inclination of the lines whose slopes are given below. -1 .
(D) Watch Video Solution
18. Find the angles between the pair of lines
whose slopes are $, \frac{1}{\sqrt{3}}, 1$.

D Watch Video Solution
19. Find the angles between the pair of lines
whose slopes are , $\sqrt{3},-1$.

D Watch Video Solution
20. Show that the points $(0,-1),(-2,3),(6,7)$ and $(8,3)$ are vertices of a rectangle.

D Watch Video Solution

21. Show that the points (1,1),(-1,-1) and (
$-\sqrt{3}, \sqrt{3})$ are the vertices of an equilateral triangle.

D Watch Video Solution
22. Find the coordinates of the point $P(x, y)$ which is equidistant from $(0,0),(32,10)$ and $(42,0)$.

D Watch Video Solution

23. If the points (x, y) are equidistant from the points $(a+b, b-a)$ and ($a-b, a+b)$,prove that $b x=$ ay.

D Watch Video Solution

24. The coordinates of the vertices of a triangle are $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)$ and $\left(\alpha_{3}, \beta_{3}\right)$

Prove that the coordinates of its centroid are $\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) /(3),\left(\beta_{1}+\beta_{2}+\beta_{3}\right) /(3)$.

D Watch Video Solution

25. Two vertices of a triangle are $(0,-4)$ and
$(6,0)$.If the medians meet at the point $(2,0)$,
find the coordinates of the third vertex.
26. If the point $(0,4)$ divides line segment joining $(-4,10)$ and $(2,1)$ internally, find the point which divides it externally in these same ratio.

D Watch Video Solution

27. Find the ratios in which the line segment
joining $(-2,-3)$ and $(5,4)$ is divided by the coordinate axes and hence find the coordinates of these points.
28. In a triangle one of the vertices is at $(2,5)$ and the centroid of the triangle is at $(-1,1)$. Find the coordinates of the midpoint of the side opposite to the given angular point.

- Watch Video Solution

29. Find the coordinates of the vertices of a triangle whose sides have mid points at (2,1),
$(-1,3)$ and ($-2,5$).

D Watch Video Solution

30. If the vertices of a triangle have their coordinates given by rational numbers, prove that the triangle cannot be equilateral.

D Watch Video Solution

31. Prove that the area of any triangle is equal to four times the area of the triangle formed by joining the mid points of its sides.
32. Find the condition that the point (x, y) may
lie on the line joining (1,2) and (5,-3).

- Watch Video Solution

33. Show that the three distinct points
$\left(a^{2}, a\right)\left(b^{2}, b\right)$ and $\left(c^{2}, c\right)$ can never be collinear.
34. If A, B, C are points $(-1,2),(3,1)$ and $(-2,-3)$ respectively, show that the points which divide $B C, C A, A B$ in the ratios (1:3), (4:3) and (-9,:4) respectively are collinear.

D Watch Video Solution

35. Prove analytically : The line segment joining the midpoints of two sides of a triangle is parallel to the third and half of its length.
36. Prove analytically : The altitudes of a triangle are concurrent.

D Watch Video Solution

37. Prove analytically : The perpendicular bisector of the sides of a triangle are concurrent.
38. Prove analytically : An angle in a semicircle is a right angle.

D Watch Video Solution

39. Fill in the blanks in each of the following,
using the answers given against each of them

The slope and x-intercept of the line $3 x-y+k=0$ are equal if $\mathrm{k}=$
A. 0
B. -1
C. 3
D. -9

Answer: D

D Watch Video Solution

40. Fill in the blanks in each of the following,
using the answers given against each of them

The lines $2 x-3 y+1=0$ and $3 x+k y-1=0$ are perpendicular to each other if $\mathrm{k}=$
A. 2
B. 3
C. -2
D. -3

Answer: A
(Watch Video Solution
41. Fill in the blanks in each of the following, using the answers given against each of them

The lines $3 x+k y-4=0$ and $k-4 y-3 x=0$ are
coincident if $\mathrm{k}=$ \qquad
A. 1
B. -4
C. 4
D. -1

Answer: C
42. Fill in the blanks in each of the following, using the answers given against each of them
:
The distance between the lines $3 x-1=0$ and x $+3=0$ is ___ units.
A. 4
B. 2
C. $\frac{8}{3}$

D. $\frac{10}{3}$

Answer: D

D Watch Video Solution

43. Fill in the blanks in each of the following,
using the answers given against each of them
:

The angle between the lines $x=2$ and

$$
x-\sqrt{3} y+1=0 \text { is }
$$

A. 30°
B. 60°
C. 120°
D. 150°

Answer: B

D Watch Video Solution

44. State with reasons which of following are true or false :

The equation $\mathrm{x}=\mathrm{k}$ represents a line parallel to
x - axis for all real values of k.
45. State with reasons which of following are true or false :

The line, $y+x+1=0$ makes an angle 45° with y-axis.

- Watch Video Solution

46. State with reasons which of following are true or false :

The lines represented by $2 x-3 y+1=0$ and
$3 x+2 y-k=0$ are perpendicular to each other for positive values of k only.

D Watch Video Solution

47. State with reasons which of following are true or false :

The lines represented by $p x+2 y-1=0$ and $3 x$
$+p y+1=0$ are not coincident for any value of 'p' .
48. State with reasons which of following are true or false :

The equation of the line whose x - and y intercepts are 1 and -1 respectively is $x-y+1=$ 0.

D Watch Video Solution

49. State with reasons which of following are true or false :

The point $(-1,2)$ lines on the line $2 x+3 y-4=0$.
50. State with reasons which of following are true or false :

The equation of line through $(1,1)$ and $(-2,-2)$ is $y=-2 x$.

- Watch Video Solution

51. State with reasons which of following are true or false :

The line through $(1,2)$ perpendicular to $y=x$ is
$y+x-2=0$.

- Watch Video Solution

52. State with reasons which of following are true or false :

The lines $\frac{x}{a}+\frac{y}{b}=1$ and $\mathrm{y} / \mathrm{a}-\mathrm{x} / \mathrm{b}=1$ are intersecting but not perpendicular to each other.
53. State with reasons which of following are true or false :

The points (1, 2) and (3, -2) are on the opposite sides of the line $2 \mathrm{x}+\mathrm{y}=1$.

- Watch Video Solution

54. A point $P(x, y)$ is such that its distance from the fixed point $(\alpha, 0)$ is equal to its distance from y-axis. Prove that the equation of the locus is given by, $y^{2}=\alpha(2 x-\alpha)$.
55. Find the locus of the point $P(x, y)$ such that the area of the triangle $P A B$ is 5 , where A is the point $(1,-1)$ and B is the point $(5,2)$.

D Watch Video Solution

56. A point is such that its distance from the point $(3,0)$ is twice its distance from the point $(-3,0)$. Find the equation of the locus.
57. Obtain the equation of straight lines : Passing through ($1,-1$) and making an angle 150°.

- Watch Video Solution

58. Obtain the equation of straight lines :

Passing through (-1,2) and making intercept 2 on the y -axis.
59. Obtain the equation of straight lines :

Passing through the points $(2,3)$ and $(-4,1)$.

- Watch Video Solution

60. Obtain the equation of straight lines :

Passing through ($-2,3$) and sum of whose intercepts in 2.
61. Obtain the equation of straight lines :

Whose perpendicular distance from origin is 2
such that the perpendicular from origin has indication 150.

- Watch Video Solution

62. Obtain the equation of straight lines :

Bisecting the line segment joining ($3,-4$) and $(1,2)$ at right angles.
63. Obtain the equation of straight lines : Bisecting the line segment joining ($\mathrm{a}, \mathrm{0}$) and $(0, b)$ at right angles.

- Watch Video Solution

64. Obtain the equation of straight lines : Bisecting the line segment joining
$(a, b),\left(a^{\prime}, b^{\prime}\right)$ and $(-\mathrm{a}, \mathrm{b}),\left(a^{\prime},-b^{\prime}\right)$.
65. Obtain the equation of straight lines :

Passing through origin and the points of trisection of the portion of the line $3 x+y-12=$ 0 intercepted between the coordinate axes.

D Watch Video Solution

66. Obtain the equation of straight lines :

Passing through ($-4,2$) and parallel to the line
$4 x-3 y=10$
67. Obtain the equation of straight lines :

Passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the straight line $x \sec \theta+y \cos e c \theta=\alpha$.

- Watch Video Solution

68. Obtain the equation of straight lines :

Which passes through the point $(3,-4)$ and is
such that its portion between the axes is divided at this point internally in the ratio 2:3 .
69. Obtain the equation of straight lines : which passes through the point (α, β) and is such that given point bisects its portion between the co-ordinate axies.

D Watch Video Solution

70. Find the equation of the line which is parallel to the line $3 x+4 y+7=0$ and is at a distance 2 from it.
71. Find the equation of the line passing through the intersection of $2 x-y-1=0$ and $3 x-$ $4 y+6=0$ and parallel to the line $x+y-2=0$.

- Watch Video Solution

72. Find the equation of the line passing through the point of intersection of lines $x+$
$3 y+2=0$ and $x-2 y-4=0$ and perpendicular to the line $2 y+5 x-9=0$.

D Watch Video Solution

73. Find the equation of the line passing through the point of intersection of lines $x+$ $3 y-1=0$ and $3 x-y+1=0$ and the centroid of the triangle whose vertices are the points
$(1,3)$ and (2,4).
74. If $1 x+m y+3=0$ and $3 x-2 y-1=0$ represent the same line,find the values of I and m.

D Watch Video Solution

75. Find the equation of sides of a triangle whose vertices are at (1,2),(2,3) and (-3,-5).
(Watch Video Solution
76. Find the coordinate of the circumcentre and incentre of the triangle formed by lines $3 x$
$-y=5, x+2 y=4$ and $5 x+3 y+1=0$.

- Watch Video Solution

77. Find the equations of straight lines passing
through the point ($3,-2$) and making angle 45° with the line $6 x+5 y=1$.
78. Two straight lines are drawn through the point $(3,4)$ inclined at an angle 45° to the line $x-y-2=0$. Find their equations and obtain the area included by the above three lines.

D Watch Video Solution

79. Show that the area of the triangle formed by the line given by the equations
$\mathrm{y}=\mathrm{m}_{-} 1 \mathrm{x}+\mathrm{c}_{-} 1, \mathrm{y}=\mathrm{m}_{-} 2 \mathrm{x}+\mathrm{c}_{-} 2$ and $\mathrm{x}=0$ is $1 / 2$
$\left(c_{-} 1-c_{-} 2\right)^{\wedge} 2 /\left[m_{-} 2-m_{-} 1\right]$

Watch Video Solution

80. Find the equation of lines passing through
origin and perpendicular to the lines $3 x+2 y-$
$5=0$ and $4 x+3 y=7$. Obtain the co-ordinate of
the points where these perpendiculars meet the given lines. Prove that the equation of line passing through these two points is $23 x+11 y-$ $35=0$.

D Watch Video Solution

81. Find the length of perpendicular drawn
from the point $(-3,-4)$ to the straight line whose equation is $12 x-5 y+65=0$.

D Watch Video Solution

82. Find the perpendicular distances of the point $(2,1)$ from the parallel lines $3 x-4 y+4=0$ and $4 y-3 x+5=0$. Hence find the distance between them.
83. Find the distance of the point $(3,2)$ from the line $x+3 y-1=0$ measured parallel to the line $3 x-4 y+1=0$

- Watch Video Solution

84. Find the distance of the point $(-1,-2)$ from
the line $x+3 y-7=0$ measured parallel to the line $3 x+2 y-5=0$.
85. Find the distance of the line passing through the points $(a \cos \alpha, a \sin \alpha)$ and ($a \cos \beta, a \sin \beta)$ from the origin.

D Watch Video Solution

86. Find the length of perpendiculars drawn
from the origin on the side of the triangle whose vertices are $A(2,1), B(3,2)$ and $C(-1,-1)$.

- Watch Video Solution

87. Show that the product of perpendicular from the points $\left(\pm \sqrt{a^{2}-b^{2}}, 0\right)$ upon the straight line $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1 i s b^{2}$.

D Watch Video Solution

88. Show that the lengths of perpendiculars drawn from any point of the straight line $2 x+$
$11 y-5=0$ on the lines $24 x+7 y-20=0$ and $4 x-$ $3 y-2=0$ are equal to each other.

D Watch Video Solution

89. If p and p^{\prime} are the length of perpendicular drawn from the origin upon the lines
$x \sec \alpha+y \cos e c \alpha=0$ and
$x \cos \alpha-y \sin \alpha-a \cos 2 \alpha=0$
Prove that , $4 p^{2}+p^{2}=a^{2}$

- Watch Video Solution

90. Obtain the equation of the lines passing
through the foot of the perpendicular from
(h, k) on the line $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ and bisecting
the angle between the perpendicular and the given line.

D Watch Video Solution

91. Find the direction in which a straight line must be drawn through the point $(1,2)$ such
that its point of intersection with the line $x+y$
$-4=0$ is at a distant $\frac{1}{3} \sqrt{6}$ from this point.
92. A triangle has its vertices at $P(1,-1), Q(3,4)$
and $R(2,5)$. Find the equation of altitudes
through P and Q and obtain the coordinate of their point of intersection.(This point is called ortho-centre of the triangle.)

- Watch Video Solution

93. Show that the line passing through $(6,0)$
and $(-2,-4)$ is concurrent with the lines.
$2 x-3 y-11=0$ and $3 x-4 y=16$.
94. Show that the lines $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0$, $\mathrm{mx}+$ $n y+I=0$ and $n x+l y+m=0$ are concurrent, if $\mathrm{l}+\mathrm{m}+\mathrm{n}=0$.

D Watch Video Solution

95. Obtain the equation of the bisector of the

 acute angle between the pair of lines. $X+2 y=$$$
1,2 x+y+3=0
$$

96. Obtain the equation of the bisector of the

 acute angle between the pair of lines. $3 x-4 y=$ $5,12 y-5 x=2$.
D Watch Video Solution

97. Find the area of the region bounded by the
line $y=3 x+2, x$-axis and the ordinates

$$
x=-1 \text { and } x=1
$$

98. Find the coordinate of the circumcentre and incentre of the triangle formed by lines $3 x$
$-y=5, x+2 y=4$ and $5 x+3 y+1=0$.

- Watch Video Solution

99. Find the equation of the lines represented
by the following equation $4 x^{2}-y^{2}=0$
100. Find the equation of the lines represented by the following equation
$2 x^{2}-5 x y-3 y^{2}=0$

D Watch Video Solution

101. Find the equation of the lines represented

$$
\begin{aligned}
& \text { by the following equation } \\
& x^{2}+2 x y \sec \theta+y^{2}=0
\end{aligned}
$$

102. Find the equation of the lines represented
by the following equation $3 x^{2}+4 x y=0$

D Watch Video Solution

103. From the equations which represents the following Pair of lines.,
$y=m x, y=n x$

D Watch Video Solution
104. From the equations which represents the following Pair of lines
$y-3 x=0, y+3 x=0$

D Watch Video Solution

105. From the equations which represents the
following Pair of lines
$2 x-3 y+1=0,2 x+3 y+1=0$
106. From the equations which represents the following Pair of lines
$x=y, x+2 y+5=0$
(Watch Video Solution
107. Which of the following equations
represent pair of lines ?
$2 x^{2}-6 y^{2}+3 x+y+1=0$

- Watch Video Solution

108. Which of the following equations represent pair of lines ?
$10 x^{2}-x y-6 y^{2}-x+5 y-1=0$

D Watch Video Solution

109. Which of the following equations represent pair of lines ?
$x y+x+y+1=0$

D Watch Video Solution
110. For what value of λ do the following equations represent pair of straight lines?
$\lambda x^{2}+5 x y-2 y^{2}-8 x+5 y-\lambda=0$

- Watch Video Solution

111. For what value of λ do the following equations represent pair of straight lines?
$x^{2}-4 x y-y^{2}+6 x+8 y+\lambda=0$

D Watch Video Solution

112. Obtain the value of λ for which the pair of
straight
lines
represented
by
$3 x^{2}-8 x y+\lambda y^{2}=0$ are perpendicular to each other.

D Watch Video Solution

113. Prove that a pair of lines through origin perpendicular to the pair of lines represented by
$p x^{2}+2 q x y+r y^{2}=0 \quad$ is given by
$r x^{2}-2 q x y+p y^{2}=0$.
114. Obtain the condition that a line of the pair of lines
$a x^{2}+2 h x y+b y^{2}=0$,
Coincides with to a line of the pair of lines

$$
p x^{2}+2 q x y+r y^{2}=0
$$

(Watch Video Solution
115. Obtain the condition that a line of the pair of lines
$a x^{2}+2 h x y+b y^{2}=0$,
Coincides with to a line of the pair of lines
$p x^{2}+2 q x y+r y^{2}=0$

D Watch Video Solution

116. Find the acute angle between the pair of lines given by:
$x^{2}+2 x y-4 y^{2}=0$
117. Find the acute angle between the pair of lines given by:
$2 x^{2}+x y-3 y^{2}+3 x+2 y+1=0$

- Watch Video Solution

118. Find the acute angle between the pair of lines given by :
$x^{2}+x y-6 y^{2}-x-8 y-2=0$
119. Write down the equation of pair of bisectors of the following pair of lines:
$x^{2}-y^{2}=0$

- Watch Video Solution

120. Write down the equation of pair of
bisectors of the following pair of lines :
$4 x^{2}-x y-3 y^{2}=0$
121. Write down the equation of pair of bisectors of the following pair of lines : $x^{2} \cos \theta+2 x y-y^{2} \sin \theta=0$

D Watch Video Solution

122. Write down the equation of pair of bisectors of the following pair of lines :

$$
x^{2}-2 x y \tan \theta-y^{2}=0
$$

123. If the pair of lines represented by
$x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$
be such that each pair bisects the angle between the other pair, then prove that $p q=-1$.

D Watch Video Solution
124. Transform the equaton :
$x^{2}+y^{2}-2 x-4 y+1=0$
by shifting the origin to $(1,2)$ and keeping the axes parallel.

D Watch Video Solution

125. Transform the equation
$2 x^{2}+3 y^{2}+4 x y-12 x-14 y+20=0$
when referred to parallel axes through (2,1).

D Watch Video Solution
126. Find the measure of rotation so that the equation $\quad x^{2}-x y+y^{2}=5$
transformed does not contain $x y$ - term.

D Watch Video Solution

127. What does the equation $x+2 y-10=0$
become when the origin is changed to $(4,3)$?

D Watch Video Solution

