# © 'doubtnut 

## MATHS

## BOOKS - MBD MATHS (ODIA ENGLISH)

## VECTORS

## Question Bank

1. If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+2 \hat{k}$ and $\vec{c}=$
$\hat{i}+2 \hat{j}+\hat{k}$ then
A. $\vec{a}$ and $\vec{b}$ have the same direction
B. $\vec{a}$ and $\vec{c}$ have opposite directions.
C. $\vec{b}$ and $\vec{c}$ have opposite directions
D.

## Answer: D

## D Watch Video Solution

2. If the vectors $\vec{a}=2 \hat{i}+3 \hat{j} \pm 6 \hat{k}$ and $\vec{b}=$ $\alpha \hat{i}-\hat{j}+2 \hat{k}$ are parallel, then $\alpha=$ $\qquad$
A. 2
B. 44257
C. $-2 / 3$
D. 44256

## Answer: C

## D Watch Video Solution

3. If the position vectors of two points $A$ and $B$ are $3 \hat{i}+\hat{k}$ and $2 \hat{i}+\hat{j}-\hat{k}$, then the vector $\overrightarrow{B A}$ is
A. $-\hat{i}+\hat{j}-2 \hat{k}$
B. $\hat{i}+\hat{j}$
C. $\hat{i}-\hat{j}+2 \hat{k}$
D. $\hat{i}-\hat{j}-2 \hat{k}$

Answer: C

## D Watch Video Solution

4. If $|k \vec{a}|=1$, then
A. $\vec{a}=1 / k$
B. $\vec{a}=1 /|\mathrm{k}|$
C. $\mathrm{k}=\frac{1}{|\vec{a}|}$
D. $\mathrm{k}=\frac{+}{-\left(\frac{1}{|\vec{a}|}\right)}$

## ( Watch Video Solution

5. The direction cosines of the vectors $\overrightarrow{P Q}$ where $\overrightarrow{P Q}$
$=(1,0,-2)$ and $\overrightarrow{O Q}=(3,-2,0)$ are
A. $2,-2,2$
B. $4,-2,-2$
C. $\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
D. $\frac{2}{\sqrt{6}},-1 / \mathrm{sqrt} 6,-\frac{1}{\sqrt{6}}$

Answer: C
6. Reactify the mistakes if any $\vec{a}-\vec{a}=0$

## D Watch Video Solution

7. Reactify the mistakes if any. The vector $\overrightarrow{0}$ has unique direction.

D Watch Video Solution
8. Reactify the mistakes if any. All unit vectors are equal.
9. $|\vec{a}|=\mid$ vecb $\mid=$ veca $=$ vecb.

## - Watch Video Solution

10. Subtraction of two vectors is not commutative.

D Watch Video Solution
11. If $\vec{a}=(2,1), \vec{b}=(-1,0)$, find $3 \vec{a}+2 \vec{b}$.

D Watch Video Solution
12. If $\vec{a}=(1,1,1), \vec{b}=(-1,3,0)$ and $\vec{c}=(2,0,2)$, find $\vec{a}+2 \vec{b}-\frac{1}{2} \vec{c}$.

## - Watch Video Solution

13. If $A, B, C$ and $D$ are the vertices of a square, find $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D A}$.

## D Watch Video Solution

14. The given points $A, B, C$ are the vertices of $a$ triangle. Determine the vectors $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$ and
the lengths of these vectors in the following case.
$A(4,5,5), B(3,3,3), C(1,2,5)$

## Watch Video Solution

15. The given points $A, B, C$ are the vertices of $a$ triangle. Determine the vectors $\overrightarrow{A B}, \overrightarrow{B C}$ and $\overrightarrow{C A}$ and the lengths of these vectors in the following case.
$A(8,6,1), B(2,0,1), C(-4,0,-5)$

## - Watch Video Solution

16. Find the vector from origin to the mid-point of the vector $P_{1} P_{2}$ joining the points $P_{1}(4,3)$ and $P_{2}(8,-5)$.
17. Find the vectors from the origin to the points of trisection the vector $\overrightarrow{P_{1} P_{2}}$ joining $P_{1}(-4,3)$ and P_2(5,-12).

## - Watch Video Solution

18. Find the vectors from the origin to the intersection of the medians of the triangle whose vertices are $\mathrm{A}(5,2,1), \mathrm{B}(-4,7,0)$ and $\mathrm{C}(5,-3,5)$
19. Prove that the sum of all the vectors drawn from the centre of a regular octagon to its vertices is the null vector.

## - Watch Video Solution

20. Prove that the sum of the vectors represented by the sides of a closed polygon taken in order is a zero vector.

## - Watch Video Solution

21. Prove that: $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$.
22. State when the equality will hold, $|\vec{a}-\vec{b}| \geq|\vec{a}|-|\vec{b}|$

D Watch Video Solution
23. What is geometrical significance of the relation $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$

D Watch Video Solution
24. Find the magnitude of the vector $\overrightarrow{P Q}$, its scalar components and the component vectors along the co-ordinate axes, if $P$ and $Q$ have the co-ordinates $P(-1,30, Q(1,2)$

## - Watch Video Solution

25. Find the magnitude of the vector $\overrightarrow{P Q}$, its scalar
components and the component vectors along the
co-ordinate axes, if $P$ and $Q$ have the co-ordinates
$P(-1,-2), Q(-5,-6)$
26. Find the magnitude of the vector $\overrightarrow{P Q}$, its scalar components and the component vectors along the co-ordinate axes, if $P$ and $Q$ have the co-ordinates

$$
P(1,4,-), Q(2,-2,-1)
$$

## - Watch Video Solution

27. In each of the following find the vector ${ }^{\text {vec }}(\mathrm{PQ})$, its magnitude and direction cosines, if $P$ and $Q$ have coordinates.

$$
P(2,-1,-1), Q(-1,-3,2)
$$

28. In each of the following find the vector ${ }^{\text {vec }}(\mathrm{PQ})$, its magnitude and direction cosines, if $P$ and $Q$ have coordinates.
$P(3,-1,7), Q(4,-3,-1)$.

## (D) Watch Video Solution

29. If $\vec{a}=(2,-2,1), \vec{b}=(2,3,6)$ and $\vec{c}=(-1,0,2)$, Find the magnitude and direction of $\vec{a}-\vec{b}+2 \vec{c}$.
30. Determine the unit vector having the direction of the given vector in each of the following problems:
$5 \hat{i}-12 \hat{j}$

- Watch Video Solution

31. Determine the unit vector having the direction of the given vector in each of the following problems. $2 \hat{i}+\hat{j}$
32. Determine the unit vector having the direction of the given vector in each of the following problems.
$3 \hat{i}+6 \hat{j}-\hat{k}$

## D Watch Video Solution

33. Determine the unit vector having the direction of the given vector in each of the following problems.
$3 \hat{i}+\hat{j}-2 \hat{k}$

## - Watch Video Solution

34. Find the unit vector in the direction of the vector
$\vec{r}_{1}-\vec{r}_{2}$, where $\vec{r}_{1}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{r}_{2}=$ $3 \hat{i}+\hat{j}-5 \hat{k}$.

## D Watch Video Solution

35. Find the unit vector parallel to the sum of the vectors $\vec{a}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{b}=$ 'hati+2hatj+3 hatk.

Also find its direction cosines.

## - Watch Video Solution

36. If the sum of the two unit vectors, show that the magnitude of their differences is $\sqrt{3}$.

## - Watch Video Solution

37. The position vectors of the points $A, B, C$ and $D$ are
$4 \hat{i}+3 \hat{j}-\hat{k}, \quad 5 \hat{i}+2 \hat{j}+2 \hat{k}, \quad 2 \hat{i}-2 \hat{j}-3 \hat{k} \quad$ and
$4 \hat{i}-4 \hat{j}+3 \hat{k}$ respectively. Show that $A B$ and $C D$ are parallel.
38. In each of the following problems, show by vector method that the given points are collinear. $A(2,6,3)$, $B(1,2,7)$ and $C(3,10,-1)$
39. In each of the following problems, show by vector method that the given points are collinear. $\mathrm{P}(2,-1,3)$, $Q(3,-5,1)$ and $R(-1,11,9)$.
40. Prove that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$, $3 \hat{i}-4 \hat{j}-4 \hat{k}$ are the sides of a right angled triangle.

## - Watch Video Solution

41. Prove by vector method that the medians of a triangle are concurrent.

## - Watch Video Solution

42. Prove by vector method that the diagonals of a parallelogram bisect each other.
43. Prove by vector method that the line segment joining the mid points of two sides of a triangle is parallel to the third and half of it.

## - Watch Video Solution

44. Prove by vector method that the lines joining the mid points of consecutive sides of a quadrilateral is a parallelogram.
45. Prove by vector method that in any triangle $A B C$, the point P being on the side $\overrightarrow{B C}$, if $\overrightarrow{P Q}$ is the resultant of the vectors $\overrightarrow{A P}, \overrightarrow{P B}$ and $\overrightarrow{P C}$, then ABQC is a parallelogram.

## D Watch Video Solution

46. Prove by vector method that in a parallelogram, the line joining a vertex to the midpoint of an oppositeside trisects the other diagonal.

D Watch Video Solution
47. Each question given below has four possible answers, out of which only one is correct. Choose the correct one. $(2 \hat{i}-4 \hat{j}) \cdot(\hat{i}+\hat{j}+\hat{k})=$ A. -3
B. 2
C. -1
D. -2

## Answer: D

48. If $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}, \vec{c}=2 \hat{i}-\hat{j}$
then
A. $\vec{a} \perp \vec{b}$
B. $\overrightarrow{\mathbf{o}} t \vec{c}$
C. $\vec{a} \perp \vec{c}$
D. no pair of vectors are perpendicular

Answer: C

- Watch Video Solution

49. $(-3, \leq m d a, 1) \perp(1,0,-3) \Rightarrow \leq m d a=$
A. 0
B. 1
C. impossible to find

D. any real number

## Answer: C

## - View Text Solution

50. If $\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{a}$ for all vectors $\vec{a}$, then
A. $\vec{a} \perp(\vec{b}-\vec{c})$
B. $\vec{b}-\vec{c}=0$
c. $\vec{b} \neq \vec{c}$
D. $\vec{b}+\vec{c}=0$

Answer: B

## - Watch Video Solution

51. Find the scalar product of the following pairs of vectors and the angle between them. $3 \hat{i}-4 \hat{j}$ and
$-2 \hat{i}+\hat{j}$
52. Find the scalar product of the following pairs of vectors and the angle between them. $2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $2 \hat{i}-3 \hat{j}-5 \hat{k}$

## D Watch Video Solution

53. Find the scalar product of the following pairs of vectors and the angle between them. $\hat{i}-\hat{j}$ and $\hat{j}+\hat{k}$

## D Watch Video Solution

54. Find the scalar product of the following pairs of vectors and the angle between them. $\vec{a}=(2,-2,1)$ and
$\vec{b}(0,2,4)$

## D Watch Video Solution

55. If $A, B, C$ are the points ( $1,0,2$ ), ( $0,3,1$ ) and ( $5,2,0$ ) respectively, find $m \angle A B C$

## (D) Watch Video Solution

56. Find the value of $\lambda$ so that vectors $\vec{a}$ and $\vec{b}$ are perpendicular to each other. $\vec{a}=3 \hat{i}+4 \hat{j}, \vec{b}=$ $-5 \hat{i}+\lambda \hat{j}$.
57. Find the value of $\lambda$ so that the vectors $\vec{a}$ and $\vec{b}$ are perpendicular to each other. $\vec{a}=\hat{i}+\hat{j}+\lambda \hat{k}, \vec{b}=$ $4 \hat{i}-3 \hat{k}$

## D Watch Video Solution

58. Find the value of $\lambda$ so that vectors $\vec{a}$ and $\vec{b}$ are perpendicular to each other. $\vec{a}=2 \hat{i}-\hat{j}-\hat{k}, \vec{b}=$ $\lambda \hat{i}+\hat{j}+5 \hat{k}$
59. Find the value of $\lambda$ so that the vectors $\vec{a}$ and $\vec{b}$ are perpendicular to each other. $\vec{a}=(6,2,-3), \vec{b}=(1,-4$, $\lambda)$

## D Watch Video Solution

60. Find the scalar and vector projection of $\vec{a}$ on $\vec{b}$.

$$
\vec{a}=\hat{i}, \vec{b}=\hat{j}
$$

## D Watch Video Solution

61. Find the scalar and vector projection of $\vec{a}$ on $\vec{b}$.
$\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}$
62. Find the scalar and vector projection of $\vec{a}$ on $\vec{b}$. $\vec{a}=\hat{i}-\hat{j}-\hat{k}, \vec{b}=3 \hat{i}+\hat{j}+3 \hat{k}$.

## D Watch Video Solution

63. In each of the problems given below, find the work done by a force $\vec{F}$ acting on a particle, such that the particle is displaced from a point $A$ to a point $B . \vec{F}=$ $4 \hat{i}+2 \hat{j}+3 \hat{k}$
$A(1,2,0), B(2,-1,3)$.
64. In each of the problems given below, find the work done by a force $\vec{F}$ acting on a particle, such that the particle is displaced from a point A to a point $\mathrm{B} . \vec{F}=$ $2 \hat{i}+\hat{j}-\widehat{K}$
$A(0,1,2), B(-2,3,0)$

## D Watch Video Solution

65. In each of the problems given below, find the work done by a force $\vec{F}$ acting on a particle, such that the particle is displaced from a point A to a point B. $\vec{F}=$
$4 \hat{i}-3 \hat{k}$
$A(1,2,0), B(0,2,3)$.

## - Watch Video Solution

66. In each of the problems given below, find the work done by a force $\vec{F}$ acting on a particle, such that the particle is displaced from a point A to a point $\mathrm{B} . \vec{F}=$ $3 \hat{i}-\hat{j}-2 \hat{k}$
$A(-3,-4,1), B(-1,-1,-2)$.

D Watch Video Solution
67. If $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$ show that $|\vec{a}|=$ $|\vec{b}|$.

## - Watch Video Solution

68. If $a$ and $b$ are perpendicular vectors show that
$(\vec{a}+\vec{b})^{2}=(\vec{a}-\vec{b})^{2}$.
$\left[(\vec{a}+\vec{b})^{2}\right.$ means (veca+vecb).(veca+vecb), sodoes (veca-vecb) ${ }^{\wedge} 2^{`}$.]
69. Prove that two vactors are perpendicular iff

$$
|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}
$$

## - Watch Video Solution

70. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude, show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to $\vec{a} \cdot \vec{b} \cdot \vec{c}$.

## D Watch Video Solution

71. Prove the following by vector method. Altitudes of a triangle are concurrent.
72. Prove the following by vector method. Median to the base of an isosceles triangle is perpendicular to the base.

## - Watch Video Solution

73. Prove the following by vector method. The parallelogram whose diagonals are equal is a rectangle.
74. Prove the following by vector method. The diagonals of a rhombus are at right angles.

## - Watch Video Solution

75. Prove the following by vector method. An angle inscribed in a semi-circle is a right angle.

## - Watch Video Solution

76. Prove the following by vector method. in any triangle ABC, $a=b \cos C+c \cos B$.

## - Watch Video Solution

77. Prove the following by vector method. In a triangle AOB, $m \angle A O B=90^{\circ}$. If P and Q are the points of trisection of $A B$, prove that
$O P^{2}+O Q^{2}=\frac{5}{9} A B^{2}$

D Watch Video Solution
78. Prove the following by vector method. Measure of the angle between two diagonals of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$
79. Each question given below has four possible answers, out of which only one is correct. Choose the
correct one. $(\hat{i}+\hat{k}) \times(\hat{i}+\hat{j}+\hat{k})=$

$$
\begin{aligned}
& \text { A. } \hat{i}-\hat{k} \\
& \text { B. } \hat{k}-\hat{i} \\
& \text { C. } \hat{k}-2 \hat{i}-\hat{j} \\
& \text { D. } 2
\end{aligned}
$$

Answer: B
80. A vector perpendicular to the vectors $\hat{i}+\hat{j}$ and $\hat{i}+\hat{k}$ is
A. $\hat{i}-\hat{j}-\hat{k}$
B. $\hat{j}-\hat{k}+\hat{i}$
C. $\hat{k}-\hat{j}-\hat{i}$
D. $\hat{j}+\hat{k}+\hat{i}$

Answer: A

D Watch Video Solution

## 81. The area of the triangle with vertices $(1,0,0),(0,1,0)$

and $(0,0,1)$ is
A. 44228
B. 1
C. ’sqrt3/2
D. 2

Answer: C

- Watch Video Solution

82. If $\vec{a}$ and $\vec{b}$ are unit vectors such that $\vec{a} \times \vec{b}$ is a unit vector, then the angle between $\vec{a}$ and $\vec{b}$ is $\qquad$
A. of any measure
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\pi$

Answer: C
83. If $\vec{a}, \vec{b}$ and $\vec{c}$ are non-zero vectors, then $\vec{a} \times \vec{b}$
= `vecaxxvecc A. \(\vec{b}=\vec{c}\) B. `veca||(vecb-vecc)
C. $\vec{b}|\mid \vec{c}$
D. $\overrightarrow{\mathbf{o}} t \vec{c}$

Answer: B
84. Let $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=-\hat{i}+3 \hat{j}+\hat{k} \quad$ and
$\vec{c}=\hat{i}+2 \hat{j}+5 \hat{k}$ be three vectors. Find $\vec{c} \times \vec{a}$

## - Watch Video Solution

85. Let $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=-\hat{i}+3 \hat{j}+\hat{k} \quad$ and $\vec{c}=\hat{i}+2 \hat{j}+5 \hat{k}$ be three vectors. Find $\vec{a} \times(-\vec{b})$

## D Watch Video Solution

86. Let $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=-\hat{i}+3 \hat{j}+\hat{k} \quad$ and
$\vec{c}=\hat{i}+2 \hat{j}+5 \hat{k} \quad$ be three vectors.
Find
$(\vec{a}-2 \vec{b}) \times \vec{c}$

## - Watch Video Solution

87. Let $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=-\hat{i}+3 \hat{j}+\hat{k} \quad$ and
$\vec{c}=-\hat{i}+2 \hat{j}+5 \hat{k}$ be three vectors. Find
$(\vec{a}-\vec{c}) \times \vec{c}$

## - Watch Video Solution

88. Let $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=-\hat{i}+3 \hat{j}+\hat{k} \quad$ and
$\vec{c}=\hat{i}+2 \hat{j}+5 \hat{k}$ be three vectors. Find
$(\vec{a}-\vec{b}) \times(\vec{c}-\vec{a})$
89. Find the unit vectors perpendicular to the vectors.
$\hat{i}, \hat{k}$

- Watch Video Solution

90. Find the unit vectors perpendicular to the vectors.
$\hat{i}+\hat{j}, \hat{i}-\hat{k}$

- Watch Video Solution

91. Find the unit vectors perpendicular to the vectors.
$2 \hat{i}+3 \hat{k}, \hat{i}-2 \hat{j}$
(D) Watch Video Solution
92. Find the unit vectors perpendicular to the vectors.
$2 \hat{i}-3 \hat{j}+\hat{k},-\hat{i}+2 \hat{j}-\hat{k}$.

## - Watch Video Solution

93. Determine the area of parallelogram whose adjacent sides are the vector $2 \hat{i}, \hat{j}$
94. Determine the area of parallelogram whose adjacent sides are the vector $\hat{i}+\hat{j},-\hat{i}+2 \hat{j}$

## (D) Watch Video Solution

95. Determine the area of parallelogram whose adjacent sides are the vector $2 \hat{i}+\hat{j}+3 \hat{k}, \hat{i}-\hat{j}$

## - Watch Video Solution

96. Determine the area of parallelogram whose adjacent sides are the vector ( $1,-3,1$ ), ( $1,1,1$ )
97. Calculate the area of the triangle ABC (by vector method) where $\mathrm{A}(1,2,4), \mathrm{B}(3,1,-2), \mathrm{C}(4,3,1)$

- Watch Video Solution

98. Calculate the area of the triangle ABC (by vector method) where $A(1,1,2), B(2,2,3), C(3,-1,-1)$
99. Determine the sine of the angle between the vectors $5 \hat{i}-3 \hat{j}, 3 \hat{i}-2 \hat{k}$

## - Watch Video Solution

100. Determine the sine of the angle between the vectors $\widehat{-} 3 \hat{j}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$

## D Watch Video Solution

101. Show that $(\vec{a} \times \vec{b})^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$.
102. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, prove that $\vec{a}+\vec{c}=m \vec{b}$, where $m$ is a scalar.

## - Watch Video Solution

103. 

$\Longrightarrow 2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}-4 \hat{k}, \vec{c}=\hat{i}+\hat{j}+\hat{k}$
, find $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$.
D Watch Video Solution
104. If $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ then verify that $\vec{a} \times \vec{b}$ is perpendicular to both $\vec{a}$ and

## - Watch Video Solution

105. Find the area of the parallelogram whose diagonals are vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$.

## D Watch Video Solution

106. 

Show
that
$(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$. Interpret
this result geometrically.
107. Each question given below has four possible answers out of which only one is correct. Choose the
correct one. $\vec{a} \cdot \vec{b} \times \vec{a}=$
A. $\overrightarrow{0}$
B. 0
C. 1
D. $\vec{a}^{2} \vec{b}$

Answer: B
108. $(-\vec{a}) \cdot \vec{b} \times(-\vec{c}))=$
A. $\vec{a} \times \vec{b} \cdot \vec{c}$
B. $-\vec{a} \cdot(\vec{b} \times \vec{c})$
C. $\vec{a} \times \vec{c} \cdot \vec{b}$
D. $\vec{a} \cdot(\vec{c} \times \vec{b})$

Answer: B

## - Watch Video Solution

109. For the non-zero vectors $\vec{a}, \vec{b}$ and
$\vec{c}, \vec{a} \cdot(\vec{b} \times \vec{c})=0$ if
A. $\overrightarrow{\mathbf{o}} t \vec{c}$
B. $\vec{a} \perp \vec{b}$
C. $\vec{a}|\mid \vec{c}$
D. $\vec{a} \perp \vec{c}$

Answer: B

## ( Watch Video Solution

110. Find the scalar triple product $\vec{b} \cdot(\vec{c} \times \vec{a})$ where $\vec{a}, \vec{b}$ and $\vec{c}$ are respectively
$\hat{i}+\hat{j}, \hat{i}-\hat{j}, 5 \hat{i}+2 \hat{j}+3 \hat{k}$.
111. Find the scalar triple product $\vec{b} \cdot(\vec{c} \times \vec{a})$ where $\vec{a}, \vec{b}$ and $\vec{c}$ are respectively $5 \hat{i}-\hat{j}+4 \hat{k}, 2 \hat{i}+3 \hat{j}+5 \hat{k}, 5 \hat{i}-2 \hat{j}+6 \hat{k}$

## D Watch Video Solution

112. Find the volume of the parallelopiped whose sides are given by the vectors.
$\hat{i}+\hat{j}+\hat{k}, \hat{k}, 3 \hat{i}-\hat{j}+2 \hat{k}$.
113. Find the volume of the Parallelepiped whose sides are given by the vectors. (1,0,0), (0,1,0), (0,0,1)

## - Watch Video Solution

114. Show that the following vector are co-planar.
$\hat{i}-2 \hat{j}+2 \hat{k}, 3 \hat{i}+4 \hat{j}+5 \hat{k},-2 \hat{i}+4 \hat{j}-4 \hat{k}$.

## - Watch Video Solution

115. Show that the following vector are co-planar.
$\hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}-4 \hat{j}+5 \hat{k}, 3 \hat{i}+6 \hat{j}+\hat{k}$
116. Find the value of $\lambda$ so that the three vectors are co-planar. $\hat{i}+2 \hat{j}+3 \hat{k}, 4 \hat{i}+\hat{j}+\lambda \hat{k}$ and $\lambda \hat{i}-4 \hat{j}+\hat{k}$

## D Watch Video Solution

117. Find the value of $\lambda$ so that the three vectors are co-planar. (2,-1,1), ( $1,2,-3$ ) and (3, $\lambda, 5$ )
118. If $\vec{a}, \vec{b}$ and $\vec{c}$ mutually perpendiculars, show
that $[\vec{a} \cdot(\vec{b} \times \vec{c})]^{2}=a^{2} b^{2} c^{2}$

## D Watch Video Solution

119. 

Show
that
$[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$
D Watch Video Solution
120.

Prove
that
$[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$
121. For $\vec{a}=\hat{i}+\hat{j}, \vec{b}=-\hat{i}+2 \hat{k}, \vec{c}=\hat{j}+\hat{k}$, obtain $\vec{a} \times(\vec{b} \times \vec{c})$ and also verify the formula $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.

## - Watch Video Solution

122. 

Prove
that
$\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})$
$=0$ and hence prove that
$\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b})$

## are coplanar.

## Watch Video Solution

123. If $\vec{a}, \vec{b}, \vec{c}$ be unit vectors and $\vec{a} \times(\vec{b} \times \vec{c})$
$=\frac{1}{2} \hat{b}$, find the angles that $\vec{a}$ makes with $\hat{b}$ and $\hat{c}$, where $\hat{b}, \hat{c}$ are not parallel.

## - Watch Video Solution

124. Prove that the sum of the vectors directed from
the vertices to the mid points of opposite sides of a triangle is zero
125. Prove by vector method that the diagonals of a quadrilateral bisect each other iff is a parallelogram.

## D Watch Video Solution

126. If $G$ is the centroid of a triangle $A B C$, prove that $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=0$

D Watch Video Solution
127. If $M$ is the midpoint of the side $\overrightarrow{B C}$ of a triangle

ABC , prove that $\overrightarrow{A B}+\overrightarrow{A C}=2 \overrightarrow{A M}$
128. If $\vec{a}$ and $\vec{b}$ are unit vectors represented by the adjacent sides of a regular hexagon, taken in order,
what are the vectors represented by the other sides taken in order?

## D Watch Video Solution

129. If the points with position vectors
$10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, find the value of $a$.
130. Prove that the four points with position vectors $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.

## D Watch Video Solution

131. For any vector $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, prove that $\vec{r}=$ $(\vec{r} \cdot \hat{i}) \hat{i}+(\vec{r} \cdot \hat{j}) \hat{j}+(\vec{r} \cdot \hat{k}) \hat{k}$.

## D Watch Video Solution

132. If two vectors $\vec{a}$ and $\vec{b}$ are such that $|\vec{a}|=3$, $|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=6$, find $|\vec{a}+\vec{b}|$ and $|\vec{a}-\vec{b}|$.

## D Watch Video Solution

133. If $\vec{a}$ makes equal angles with $\hat{i}, \hat{j}$ and $\hat{k}$ and has magnitude 3, prove that the angle between $\vec{a}$ and each of $\hat{i}, \hat{j}$ and $\hat{k}$ is $\cos ^{-}\left(\frac{1}{\sqrt{3}}\right)$.

## - Watch Video Solution

134. If $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ then show that $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\vec{c}$ or $\vec{a}$ is perpendicular to $\vec{b} \cdot \vec{c}$.
135. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=$ 7, find the angle between $\vec{a}$ and $\vec{b}$.

## (D) Watch Video Solution

136. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

## - Watch Video Solution

137. Find the angles which the vector $\vec{a}=$ $\hat{i}-\hat{j}+\sqrt{2} \hat{k}$ makes with the coordinates axes.
138. Find the angle between $\vec{a}$ and $\vec{b}$ if $|\vec{a} \times \vec{b}|=$ $\vec{a} \cdot \vec{b}$

- Watch Video Solution

