

MATHS

BOOKS - MBD MATHS (ODIA ENGLISH)

VECTORS

Question Bank

1. If
$$\overrightarrow{a}$$
 = $\hat{i} + 2\hat{j} + \hat{k}$, \overrightarrow{b} = $2\hat{i} - 2\hat{j} + 2\hat{k}$ and \overrightarrow{c} = $\hat{i} + 2\hat{j} + \hat{k}$ then

A. \overrightarrow{a} and \overrightarrow{b} have the same direction

B. \overrightarrow{a} and \overrightarrow{c} have opposite directions.

C.
$$\overrightarrow{b}$$
 and \overrightarrow{c} have opposite directions

D.

Answer: D

2. If the vectors
$$\overrightarrow{a}$$
 = $2\hat{i} + 3\hat{j} \pm 6\hat{k}$ and \overrightarrow{b} =

 $lpha \hat{i} - \hat{j} + 2 \hat{k}$ are parallel, then lpha = _____

A. 2

B. 44257

C. -2/3

D. 44256

Answer: C

Watch Video Solution

3. If the position vectors of two points A and B are $3\hat{i} + \hat{k}$ and $2\hat{i} + \hat{j} - \hat{k}$, then the vector \overrightarrow{BA} is

A.
$$-\hat{i}+\hat{j}-2\hat{k}$$

B. $\hat{i}+\hat{j}$

C. $\hat{i} - \hat{j} + 2\hat{k}$

D.
$$\hat{i}-\hat{j}-2\hat{k}$$

Answer: C

4. If
$$\left| k \overrightarrow{a} \right|$$
 = 1`, then

A.
$$\overrightarrow{a} = 1/k$$

B. $\overrightarrow{a} = 1/|k|$

C. k =
$$\frac{1}{\left|\frac{a}{a}\right|}$$

D. k = $\frac{+}{-\left(\frac{1}{\left|\frac{a}{a}\right|}\right)}$

Answer: D

C.
$$\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

D. $\frac{2}{\sqrt{6}}, -1/\text{sqrt6}, -\frac{1}{\sqrt{6}}$

AATLE LATEL COLLEGE

1

Answer: C

equal.

12. If
$$\overrightarrow{a} = (1,1,1)$$
, $\overrightarrow{b} = (-1,3,0)$ and $\overrightarrow{c} = (2,0,2)$, find $\overrightarrow{a} + 2\overrightarrow{b} - \frac{1}{2}\overrightarrow{c}$.

Watch Video Solution

13. If A, B, C and D are the vertices of a square, find $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}.$

Watch Video Solution

14. The given points A, B, C are the vertices of a triangle. Determine the vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CA} and

the lengths of these vectors in the following case.

A(4,5,5), B(3,3,3), C(1,2,5)

15. The given points A, B, C are the vertices of a triangle. Determine the vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CA} and the lengths of these vectors in the following case. A(8,6,1), B(2,0,1), C(-4,0,-5)

16. Find the vector from origin to the mid-point of the vector $\overrightarrow{P_1P_2}$ joining the points P_1 (4,3) and P_2 (8, -5).

P_2(5, -12).

Watch Video Solution

18. Find the vectors from the origin to the intersection of the medians of the triangle whose vertices are A(5,2,1), B(-4,7,0) and C(5, -3,5)

19. Prove that the sum of all the vectors drawn from the centre of a regular octagon to its vertices is the null vector.

20. Prove that the sum of the vectors represented by the sides of a closed polygon taken in order is a zero vector.

21. Prove that :
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| \leq \left| \overrightarrow{a} \right| + \left| \overrightarrow{b} \right|$$
.

23. What is geometrical significance of the relation $\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$

24. Find the magnitude of the vector \overrightarrow{PQ} , its scalar components and the component vectors along the co-ordinate axes, if P and Q have the co-ordinates P(-1,30, Q(1,2)

25. Find the magnitude of the vector \overrightarrow{PQ} , its scalar components and the component vectors along the co-ordinate axes, if P and Q have the co-ordinates

P(-1,-2), Q(-5,-6)

26. Find the magnitude of the vector \overrightarrow{PQ} , its scalar components and the component vectors along the co-ordinate axes, if P and Q have the co-ordinates P(1,4,-), Q(2,-2,-1)

0

Watch Video Solution

27. In each of the following find the vector `vec(PQ), its magnitude and direction cosines, if P and Q have co-

P(2,-1,-1), Q(-1,-3,2)

28. In each of the following find the vector `vec(PQ), its magnitude and direction cosines, if P and Q have co-ordinates.

P(3,-1,7), Q(4,-3,-1).

Watch Video Solution

29. If
$$\overrightarrow{a}$$
 = (2,-2,1), \overrightarrow{b} = (2,3,6) and \overrightarrow{c} = (-1,0,2), Find the magnitude and direction of $\overrightarrow{a} - \overrightarrow{b} + 2\overrightarrow{c}$.

30. Determine the unit vector having the direction of the given vector in each of the following problems: $5\hat{i} - 12\hat{j}$

Watch Video Solution

31. Determine the unit vector having the direction of the given vector in each of the following problems. $2\hat{i}+\hat{j}$

32. Determine the unit vector having the direction of the given vector in each of the following problems. $3\hat{i} + 6\hat{j} - \hat{k}$

Watch Video Solution

33. Determine the unit vector having the direction of the given vector in each of the following problems. $3\hat{i} + \hat{j} - 2\hat{k}$

34. Find the unit vector in the direction of the vector $\vec{r}_1 - \vec{r}_2$, where $\vec{r}_1 = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{r}_2 = 3\hat{i} + \hat{j} - 5\hat{k}$.

Watch Video Solution

35. Find the unit vector parallel to the sum of the vectors $\vec{a} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{b} =$ `hati+2hatj+3hatk.

Also find its direction cosines.

36. If the sum of the two unit vectors, show that the

magnitude of their differences is $\sqrt{3}$.

37. The position vectors of the points A, B, C and D are $4\hat{i} + 3\hat{j} - \hat{k}$, $5\hat{i} + 2\hat{j} + 2\hat{k}$, $2\hat{i} - 2\hat{j} - 3\hat{k}$ and $4\hat{i} - 4\hat{j} + 3\hat{k}$ respectively. Show that AB and CD are parallel.

38. In each of the following problems, show by vector method that the given points are collinear. A(2,6,3), B(1,2,7) and C(3,10,-1)

Watch Video Solution

39. In each of the following problems, show by vector method that the given points are collinear. P(2,-1,3), Q(3,-5,1) and R(-1,11,9).

40. Prove that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$,

 $3\hat{i}-4\hat{j}-4\hat{k}$ are the sides of a right angled triangle.

41. Prove by vector method that the medians of a

triangle are concurrent.

42. Prove by vector method that the diagonals of a parallelogram bisect each other.

43. Prove by vector method that the line segment joining the mid points of two sides of a triangle is parallel to the third and half of it.

44. Prove by vector method that the lines joining the

mid points of consecutive sides of a quadrilateral is a

parallelogram.

45. Prove by vector method that in any triangle ABC, the point P being on the side \overrightarrow{BC} , if \overrightarrow{PQ} is the resultant of the vectors \overrightarrow{AP} , \overrightarrow{PB} and \overrightarrow{PC} , then ABQC is a parallelogram.

Watch Video Solution

46. Prove by vector method that in a parallelogram, the line joining a vertex to the midpoint of an oppositeside trisects the other diagonal.

47. Each question given below has four possible answers, out of which only one is correct. Choose the correct one. $(2\hat{i} - 4\hat{j})$. $(\hat{i} + \hat{j} + \hat{k}) =$ _____

A. -3

B. 2

C. -1

D. -2

Answer: D

48. If $\overrightarrow{a} = \hat{i} + 2\hat{j} - \hat{k}$, $\overrightarrow{b} = \hat{i} + \hat{j} + 2\hat{k}$, $\overrightarrow{c} = 2\hat{i} - \hat{j}$

then

A.
$$\overrightarrow{a} \perp \overrightarrow{b}$$

B. $\overrightarrow{o} t \overrightarrow{c}$
C. $\overrightarrow{a} \perp \overrightarrow{c}$

D. no pair of vectors are perpendicular

Answer: C

49. (-3,
$$\leq$$
 mda , 1) \perp (1,0,-3) \Rightarrow \leq mda = ___

A. 0

B. 1

C. impossible to find

D. any real number

Answer: C

View Text Solution

50. If
$$\overrightarrow{a}$$
. \overrightarrow{b} = \overrightarrow{c} . \overrightarrow{a} for all vectors \overrightarrow{a} , then

A.
$$\overrightarrow{a} \perp \left(\overrightarrow{b} - \overrightarrow{c}\right)$$

B. $\overrightarrow{b} - \overrightarrow{c} = 0$

$$C. \overrightarrow{b} \neq \overrightarrow{c}$$
$$D. \overrightarrow{b} + \overrightarrow{c} = 0$$

Answer: B

51. Find the scalar product of the following pairs of vectors and the angle between them. $3\hat{i}-4\hat{j}$ and $-2\hat{i}+\hat{j}$

52. Find the scalar product of the following pairs of vectors and the angle between them. $2\hat{i} - 3\hat{j} + 6\hat{k}$ and $2\hat{i} - 3\hat{j} - 5\hat{k}$

Watch Video Solution

53. Find the scalar product of the following pairs of vectors and the angle between them. $\hat{i} - \hat{j}$ and $\hat{j} + \hat{k}$

Watch Video Solution

54. Find the scalar product of the following pairs of vectors and the angle between them. \overrightarrow{a} = (2,-2,1) and

57. Find the value of λ so that the vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other. $\overrightarrow{a} = \hat{i} + \hat{j} + \lambda \hat{k}$, $\overrightarrow{b} = 4\hat{i} - 3\hat{k}$

59. Find the value of λ so that the vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other. \overrightarrow{a} = (6,2,-3), \overrightarrow{b} = (1,-4, λ)

61. Find the scalar and vector projection of \overrightarrow{a} on \overrightarrow{b} . $\overrightarrow{a} = \hat{i} + \hat{j}, \overrightarrow{b} = \hat{j} + \hat{k}$

• Watch Video Solution
62. Find the scalar and vector projection of
$$\vec{a}$$
 on \vec{b} .
 $\vec{a} = \hat{i} - \hat{j} - \hat{k}, \vec{b} = 3\hat{i} + \hat{j} + 3\hat{k}.$

Watch Video Solution

63. In each of the problems given below, find the work done by a force \overrightarrow{F} acting on a particle, such that the particle is displaced from a point A to a point B. \overrightarrow{F} = $4\hat{i} + 2\hat{j} + 3\hat{k}$

A(1,2,0), B(2,-1,3).

64. In each of the problems given below, find the work done by a force \overrightarrow{F} acting on a particle, such that the particle is displaced from a point A to a point B. \overrightarrow{F} = $2\hat{i} + \hat{j} - \widehat{K}$

A(0,1,2), B(-2,3,0)

Watch Video Solution

65. In each of the problems given below, find the work done by a force \overrightarrow{F} acting on a particle, such that the particle is displaced from a point A to a point B. \overrightarrow{F} =

 $4\hat{i}-3\hat{k}$

A(1,2,0), B(0,2,3).

Watch Video Solution

66. In each of the problems given below, find the work done by a force \overrightarrow{F} acting on a particle, such that the particle is displaced from a point A to a point B. \overrightarrow{F} = $3\hat{i} - \hat{j} - 2\hat{k}$

A(-3,-4,1), B(-1,-1,-2).

67. If
$$\left(\overrightarrow{a} + \overrightarrow{b}\right)$$
. $\left(\overrightarrow{a} - \overrightarrow{b}\right) = 0$ show that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$.
(Vatch Video Solution

68. If a and b are perpendicular vectors show that

$$\begin{pmatrix} \overrightarrow{a} + \overrightarrow{b} \end{pmatrix}^2 = \left(\overrightarrow{a} - \overrightarrow{b} \right)^2.$$

$$\left[\begin{pmatrix} \overrightarrow{a} + \overrightarrow{b} \end{pmatrix}^2 means(veca+vecb).(veca+vecb), sodoes \end{pmatrix}^2$$

(veca-vecb)².]

69. Prove that two vactors are perpendicular iff

$$\left|\overrightarrow{a}+\overrightarrow{b}
ight|^{2}$$
 = $\left|\overrightarrow{a}
ight|^{2}$ + $\left|\overrightarrow{b}
ight|^{2}$

Watch Video Solution

70. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitude, show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} . \overrightarrow{b} . \overrightarrow{c} .

Watch Video Solution

71. Prove the following by vector method. Altitudes of

a triangle are concurrent.

72. Prove the following by vector method. Median to the base of an isosceles triangle is perpendicular to the base.

Watch Video Solution

73. Prove the following by vector method. The parallelogram whose diagonals are equal is a rectangle.

74. Prove the following by vector method. The diagonals of a rhombus are at right angles.

75. Prove the following by vector method. An angle

inscribed in a semi-circle is a right angle.

76. Prove the following by vector method. in any triangle ABC,

a = bcosC+c cosB.

77. Prove the following by vector method. In a triangle AOB, $m \angle AOB = 90^{\circ}$. If P and Q are the points of trisection of AB, prove that $OP^2 + OQ^2 = \frac{5}{9}AB^2$

78. Prove the following by vector method. Measure of the angle between two diagonals of a cube is $\cos^{-1}\left(\frac{1}{3}\right)$

Watch Video Solution

79. Each question given below has four possible answers, out of which only one is correct. Choose the correct one. $(\hat{i} + \hat{k}) \times (\hat{i} + \hat{j} + \hat{k}) = __$

A. $\hat{i}-\hat{k}$ B. $\hat{k}-\hat{i}$ C. $\hat{k}-2\hat{i}-\hat{j}$

Answer: B

D. 2

80. A vector perpendicular to the vectors $\hat{i} + \hat{j}$ and

 $\hat{i}+\hat{k}$ is ____

A.
$$\hat{i}-\hat{j}-\hat{k}$$

B.
$$\hat{j}-\hat{k}+\hat{i}$$

C.
$$\hat{k}-\hat{j}-\hat{i}$$

D.
$$\hat{j}+\hat{k}+\hat{i}$$

Answer: A

81. The area of the triangle with vertices (1,0,0), (0,1,0)

and (0,0,1) is ____

A. 44228

B.1

C. `sqrt3/2

D. 2

Answer: C

82. If \overrightarrow{a} and \overrightarrow{b} are unit vectors such that $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector, then the angle between \overrightarrow{a} and \overrightarrow{b} is ____

A. of any measure

B.
$$\frac{\pi}{4}$$

C. $\frac{\pi}{2}$

D.
$$\pi$$

Answer: C

83. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-zero vectors, then $\overrightarrow{a} \times \overrightarrow{b}$

= `vecaxxvecc

A.
$$\overrightarrow{b} = \overrightarrow{c}$$

B. `veca||(vecb-vecc)

$$\mathsf{C}.\overrightarrow{b}| |\overrightarrow{c}$$

D.
$$\overrightarrow{\mathbf{o}} t \overrightarrow{c}$$

Answer: B

84. Let $\overrightarrow{a} = 2\hat{i} + \hat{j}, \ \overrightarrow{b} = -\hat{i} + 3\hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} + 2\hat{j} + 5\hat{k}$ be three vectors. Find $\overrightarrow{c} \times \overrightarrow{a}$

85. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j}, \ \overrightarrow{b} = -\hat{i} + 3\hat{j} + \hat{k}$$
 and
 $\overrightarrow{c} = \hat{i} + 2\hat{j} + 5\hat{k}$ be three vectors. Find
 $\overrightarrow{a} \times \left(-\overrightarrow{b}\right)$

86. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j}, \ \overrightarrow{b} = -\hat{i} + 3\hat{j} + \hat{k}$$
 and $\overrightarrow{c} = \hat{i} + 2\hat{j} + 5\hat{k}$ be three vectors. Find

$$\left(\overrightarrow{a}-2\overrightarrow{b}
ight) imes\overrightarrow{c}$$

Watch Video Solution

87. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j}, \overrightarrow{b} = -\hat{i} + 3\hat{j} + \hat{k}$$
 and
 $\overrightarrow{c} = -\hat{i} + 2\hat{j} + 5\hat{k}$ be three vectors. Find
 $\left(\overrightarrow{a} - \overrightarrow{c}\right) \times \overrightarrow{c}$

Watch Video Solution

88. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j}, \ \overrightarrow{b} = -\hat{i} + 3\hat{j} + \hat{k}$$
 and
 $\overrightarrow{c} = \hat{i} + 2\hat{j} + 5\hat{k}$ be three vectors. Find
 $\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{c} - \overrightarrow{a}\right)$

89. Find the unit vectors perpendicular to the vectors.

 \hat{i},\hat{k}

90. Find the unit vectors perpendicular to the vectors.

$$\hat{i}+\hat{j}$$
, $\hat{i}-\hat{k}$

91. Find the unit vectors perpendicular to the vectors.

$$2\hat{i}+3\hat{k}$$
, $\hat{i}-2\hat{j}$

Watch Video Solution

92. Find the unit vectors perpendicular to the vectors.

$$2\hat{i}-3\hat{j}+\hat{k}$$
, $-\hat{i}+2\hat{j}-\hat{k}$.

Watch Video Solution

93. Determine the area of parallelogram whose adjacent sides are the vector $2\hat{i}, \hat{j}$

94. Determine the area of parallelogram whose adjacent sides are the vector $\hat{i}+\hat{j},\ -\hat{i}+2\hat{j}$

Watch Video Solution

95. Determine the area of parallelogram whose adjacent sides are the vector $2\hat{i} + \hat{j} + 3\hat{k}, \, \hat{i} - \hat{j}$

96. Determine the area of parallelogram whose adjacent sides are the vector (1, -3, 1), (1,1,1)

99. Determine the sine of the angle between the vectors $5\hat{i} - 3\hat{j}, 3\hat{i} - 2\hat{k}$

100. Determine the sine of the angle between the vectors $\widehat{-3}\hat{j} + \hat{k}, \hat{i} + \hat{j} + \hat{k}$ Watch Video Solution

101. Show that
$$\left(\overrightarrow{a}\times\overrightarrow{b}\right)^2 = a^2b^2 - \left(\overrightarrow{a}.\overrightarrow{b}\right)^2$$
.

Watch Video Solution

102. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} \neq \overrightarrow{0}$, prove that $\overrightarrow{a} + \overrightarrow{c} = m\overrightarrow{b}$, where m is a scalar.

103. if

$$\overrightarrow{=} 2\hat{i} + \hat{j} - \hat{k}, \overrightarrow{b} = -\hat{i} + 2\hat{j} - 4\hat{k}, \overrightarrow{c} = \hat{i} + \hat{j} + \hat{k}$$
, find $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$. $\left(\overrightarrow{a} \times \overrightarrow{c}\right)$.
Watch Video Solution

104. If
$$\overrightarrow{a} = 3\hat{i} + \hat{j} - 2\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ then verify that $\overrightarrow{a} \times \overrightarrow{b}$ is perpendicular to both \overrightarrow{a} and

105. Find the area of the parallelogram whose diagonals are vectors $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$.

Watch Video Solution

106. Show that
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + \overrightarrow{b}\right) = 2\left(\overrightarrow{a} \times \overrightarrow{b}\right)$$
. Interpret

this result geometrically.

107. Each question given below has four possible answers out of which only one is correct. Choose the correct one. \overrightarrow{a} . $\overrightarrow{b} \times \overrightarrow{a}$ =

Answer: B

$$108. \left(-\overrightarrow{a} \right) \cdot \overrightarrow{b} \times \left(-\overrightarrow{c} \right) \right) =$$

$$A. \overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{c}$$

$$B. -\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c} \right)$$

$$C. \overrightarrow{a} \times \overrightarrow{c} \cdot \overrightarrow{b}$$

$$D. \overrightarrow{a} \cdot \left(\overrightarrow{c} \times \overrightarrow{b} \right)$$

Watch Video Solution

Answer: B

109. For the non-zero vectors
$$\overrightarrow{a}, \overrightarrow{b}$$
 and $\overrightarrow{c}, \overrightarrow{a}. \left(\overrightarrow{b} \times \overrightarrow{c}\right) = 0$ if

A. $\overrightarrow{\mathbf{o}} t \overrightarrow{c}$ B. $\overrightarrow{a} \perp \overrightarrow{b}$ C. $\overrightarrow{a} \mid \mid \overrightarrow{c}$ D. $\overrightarrow{a} \perp \overrightarrow{c}$

Answer: B

Watch Video Solution

111. Find the scalar triple product $\overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a})$ where $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are respectively $5\hat{i} - \hat{j} + 4\hat{k}, 2\hat{i} + 3\hat{j} + 5\hat{k}, 5\hat{i} - 2\hat{j} + 6\hat{k}$

Watch Video Solution

112. Find the volume of the parallelopiped whose sides are given by the vectors. $\hat{i} + \hat{j} + \hat{k}, \hat{k}, 3\hat{i} - \hat{j} + 2\hat{k}.$

113. Find the volume of the Parallelepiped whose sides

are given by the vectors. (1,0,0), (0,1,0), (0,0,1)

114. Show that the following vector are co-planar.

$$\hat{i}-2\hat{j}+2\hat{k},3\hat{i}+4\hat{j}+5\hat{k},\ -2\hat{i}+4\hat{j}-4\hat{k}.$$

Watch Video Solution

115. Show that the following vector are co-planar. $\hat{i}+2\hat{j}+3\hat{k},\ -2\hat{i}-4\hat{j}+5\hat{k},3\hat{i}+6\hat{j}+\hat{k}$

116. Find the value of λ so that the three vectors are co-planar. $\hat{i} + 2\hat{j} + 3\hat{k}, 4\hat{i} + \hat{j} + \lambda\hat{k}$ and $\lambda\hat{i} - 4\hat{j} + \hat{k}$

Watch Video Solution

117. Find the value of λ so that the three vectors are

co-planar. (2,-1,1), (1,2,-3) and (3,λ,5)

118. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} mutually perpendiculars, show that $\left[\overrightarrow{a}.\left(\overrightarrow{b}\times\overrightarrow{c}\right)\right]^2 = a^2b^2c^2$ Watch Video Solution

119. Show that
$$\left[\overrightarrow{a} + \overrightarrow{b}\overrightarrow{b} + \overrightarrow{c}\overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$$
 Watch Video Solution

120. Prove that
$$\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} & \overrightarrow{b} \times \overrightarrow{c} & \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$$

121. For
$$\overrightarrow{a} = \hat{i} + \hat{j}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{k}$, $\overrightarrow{c} = \hat{j} + \hat{k}$, obtain
 $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ and also verify the formula
 $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{c}$.

Watch Video Solution

are coplanar.

124. Prove that the sum of the vectors directed from the vertices to the mid points of opposite sides of a triangle is zero

125. Prove by vector method that the diagonals of a

quadrilateral bisect each other iff is a parallelogram.

126. If G is the centroid of a triangle ABC, prove that

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$$
 = 0

Watch Video Solution

127. If M is the midpoint of the side \overrightarrow{BC} of a triangle ABC, prove that $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AM}$

128. If \overrightarrow{a} and \overrightarrow{b} are unit vectors represented by the adjacent sides of a regular hexagon, taken in order, what are the vectors represented by the other sides taken in order?

Watch Video Solution

129. If the points with position vectors $10\hat{i} + 3\hat{j}, 12\hat{i} - 5\hat{j}$ and $a\hat{i} + 11\hat{j}$ are collinear, find the value of a.

130. Prove that the four points with position vectors $2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c}, \overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, 3\overrightarrow{a} + 4\overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{a} - 6\overrightarrow{b} + 6\overrightarrow{c}$ are coplanar.

Watch Video Solution

131. For any vector $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$, prove that $\overrightarrow{r} = (\overrightarrow{r}, \hat{i})\hat{i} + (\overrightarrow{r}, \hat{j})\hat{j} + (\overrightarrow{r}, \hat{k})\hat{k}$.

132. If two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are such that $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 2$ and \overrightarrow{a} . $\overrightarrow{b} = 6$, find $|\overrightarrow{a} + \overrightarrow{b}|$ and $|\overrightarrow{a} - \overrightarrow{b}|$.

133. If \overrightarrow{a} makes equal angles with \hat{i} , \hat{j} and \hat{k} and has magnitude 3, prove that the angle between \overrightarrow{a} and each of \hat{i} , \hat{j} and \hat{k} is $\cos^{-}\left(\frac{1}{\sqrt{3}}\right)$.

Watch Video Solution

134. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are such that \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{a}$. \overrightarrow{c} then
show that $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{c}$ or \overrightarrow{a} is perpendicular to
 \overrightarrow{b} . \overrightarrow{c} .

135. If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

Watch Video Solution

137. Find the angles which the vector \overrightarrow{a} = $\hat{i}-\hat{j}+\sqrt{2}\hat{k}$ makes with the coordinates axes.

