

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

TRIGONOMETRIC FUNCTIONS

Others

1. A tower stands at the centre of a circular park. A and B are two points on the boundary

of the park such that AB(=a) subtends an angle of 60° at the foot of the tower, and the angle of elevation of the top of the tower from A or B is 30° . The height of the tower is (1) $\frac{2a}{\sqrt{3}}$ (2) $2a\sqrt{3}$ (3) $\frac{a}{\sqrt{3}}$ (4) $a\sqrt{3}$ Watch Video Solution

2. AB is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60*o*. He

moves away from the pole along the line BC to a point D such that CD = 7m . From D the angle of elevation of the point A is 45o. Then the height of the pole is (1) $\frac{7\sqrt{3}}{2} \frac{1}{\sqrt{3}-1}m$ (2) $\frac{7\sqrt{3}}{2}\sqrt{3} + 1m$ (3) $\frac{7\sqrt{3}}{2}\sqrt{3} - 1m$ (4) $rac{7\sqrt{3}}{2}\sqrt{3}+1m$

Watch Video Solution

3. Let A and B denote the statements A: $\cos a + \cos b + \cos g = 0$ B : $\sin a + \sin b + \sin g = 0$ If $\cos(bg) + \cos(ga) + \cos(ab) = 3/2$, then (1) A is true and B is false (2) A is false and B is true (3) both A and B are true (4) both A and B are false

4.
$$\int_0^{\pi} [\cot x] dx$$
 , where [.] denotes the greatest integer function, is equal to (1) $\pi/2$ (2) 1 (3) 1 (4) $\pi/2$

View Text Solution

View Text Solution

5. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is There is a regular polygon with $\frac{r}{R} = \frac{1}{\sqrt{2}}$ (17) There is a regular polygon with $\frac{r}{R} = \frac{2}{3}$ (30) There is a regular polygon with $\frac{r}{R} = \frac{\sqrt{3}}{2}$ (47) There is a regular polygon with $\frac{r}{R}=\frac{1}{2}$ (60)

View Text Solution

Watch Video Solution

7. If
$$A = \sin^2 x + \cos^4 x$$
 , then for all real x :
(1) $\frac{3}{4} \le A \le 1$ (2) $\frac{13}{16} \le A \le 1$ (3)
 $1 \le A \le 2$ (4) $\frac{3}{4} \le A \le \frac{13}{16}$

Watch Video Solution

8. In a ΔPQR , if $3\sin P + 4\cos Q = 6$ and $4\sin Q + 3\cos P = 1$, then the angle R is equal to (1) $\frac{5\pi}{6}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{4}$ (4) $\frac{3\pi}{4}$ Watch Video Solution 9. no.of solutions of the equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ Watch Video Solution

11. Let a vertical tower AB have its end A on the level ground. Let C be the mid point of AB and P be a point on the ground such that AP = 2AB if $\angle BPC = \beta$, then $\tan \beta$ is equal to : (1) $\frac{2}{9}$ (2) $\frac{4}{9}$ (3) $\frac{6}{7}$ (4) $\frac{1}{4}$

Watch Video Solution