©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR

ENGLISH

TRIGONOMETRIC FUNCTIONS

Others

1. A tower stands at the centre of a circular
park. A and B are two points on the boundary
of the park such that $A B(=a)$ subtends an
angle of 60° at the foot of the tower, and the
angle of elevation of the top of the tower from
A or B is 30°. The height of the tower is (1)
$\frac{2 a}{\sqrt{3}}$ (2) $2 a \sqrt{3}$ (3) $\frac{a}{\sqrt{3}}$ (4) $a \sqrt{3}$

- Watch Video Solution

2. $A B$ is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60 o . He
moves away from the pole along the line $B C$ to
a point D such that $C D=7 m$. From D the angle of elevation of the point A is 45 o . Then
the height of the pole is (1) $\frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3}-1} m$
(2) $\frac{7 \sqrt{3}}{2} \sqrt{3}+1 m \quad$ (3) $\frac{7 \sqrt{3}}{2} \sqrt{3}-1 m$
$7 \sqrt{3}$
$\frac{\sqrt{3}}{2} \sqrt{3}+1 m$

D Watch Video Solution

3. Let A and B denote the statements A :
$\cos a+\cos b+\cos g=0$
$\sin a+\sin b+\sin g=0$
$\cos (b g)+\cos (g a)+\cos (a b)=3 / 2$, then (1)
A is true and B is false (2) A is false and B is true (3) both A and B are true (4) both A and B are false

D View Text Solution

4. $\int_{0}^{\pi}[\cot x] d x$, where [.] denotes the greatest integer function, is equal to (1) $\pi / 2$
(2) 1 (3) $1(4) \pi / 2$

- View Text Solution

5. For a regular polygon, let r and R be the radii of the inscribed and the circumscribed circles. A false statement among the following is There is a regular polygon with $\frac{r}{R}=\frac{1}{\sqrt{2}}$
(17) There is a regular polygon with $\frac{r}{R}=\frac{2}{3}$
(30) There is a regular polygon with
$\frac{r}{R}=\frac{\sqrt{3}}{2}$ (47) There is a regular polygon
with $\frac{r}{R}=\frac{1}{2}$ (60)

D View Text Solution

6. Let $\cos (\alpha+\beta)=\frac{4}{5}$ and let
$\sin (\alpha-\beta)=\frac{5}{13} \quad$ where $\quad 0 \leq \alpha, \beta \leq \frac{\pi}{4}$
then $\tan 2 \alpha=$ (1) $\frac{56}{33}$ (2) $\frac{19}{12}$ (3) $\frac{20}{7}$ (4) $\frac{25}{16}$

D Watch Video Solution

7. If $A=\sin ^{2} x+\cos ^{4} x$, then for all real x :
3
(1) $\quad \frac{3}{4} \leq A \leq 1$
(2) $\frac{13}{16} \leq A \leq 1$
$1 \leq A \leq 2(4) \frac{3}{4} \leq A \leq \frac{13}{16}$

D Watch Video Solution

8. In a $\triangle P Q R$, if $3 \sin P+4 \cos Q=6$ and $4 \sin Q+3 \cos P=1$, then the angle R is equal to (1) $\frac{5 \pi}{6}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{4}$ (4) $\frac{3 \pi}{4}$

- Watch Video Solution

9. no.of solutions of the equation
$e^{\sin x}-e^{-\sin x}-4=0$
10. The expression $\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}$ can be written as (1) $\sec A \operatorname{cosec} A+1$
$s \in A \cos A+1$

D Watch Video Solution

11. Let a vertical tower $A B$ have its end A on
the level ground. Let C be the mid point of
$A B$ and P be a point on the ground such that
$A P=2 A B$. If $\angle B P C=\beta$, then $\tan \beta$ is
equal to : (1) $\frac{2}{9}$ (2) $\frac{4}{9}$ (3) $\frac{6}{7}$ (4) $\frac{1}{4}$

- Watch Video Solution

