

MATHS

BOOKS - ARIHANT PUBLICATION BIHAR

MODEL SOLVED PAPER 2016

Questions

1. A can do a certain work in the same time in which B and C together can do it. If A and B

together could do it in 10 days and C alone in

50 days, then B alone could do the work in

A. 15

B. 20

C. 25

D. 30

Answer: C

2. From the top of a cliff 90 m high, the angles of depression of the top and bottom of a tower are observed to be 30° and 60° respectively. The height of the tower is :

- A. 60 m
- B. 75 m
- C. 30 m
- D. 45 m

Answer: A

3.

HCF

of

expression

 $x^4 + 3x^2 - 4$ and $x^4 - 4x^2 + 3$ will be

A. (x - 1)

B. (x + 1)

C. $(x^2 - 1)$

D. $(x^2 - 3)$

Answer: C

4. The two roots of equation $x^2-px+8p-15=0$ are equal, then the value of p will be

- A. 3 or 5
- B. 2 or 5
- C. 3 or 4
- D. 2 or 30

Answer: D

5. The edge of a cube is increased by $100\,\%$, the surface area of the cube is increased by :

- A. 100~%
- B. 200~%
- C. 300~%
- D. $400\,\%$

Answer: D

6. Rs. 12000 invested at 20% per annum compounded semiannually amount to Rs. 13200. The period of investment is

B.
$$\frac{1}{2}$$
 yr

$$\mathsf{C.}\ 2\ \mathsf{yr}$$

D.
$$2\frac{1}{2}$$
 yr

Answer: B

7. Four bells ring at intervals of 4, 6, 8 and 14 seconds. They start ringing simultaneously at 12.00 O' clock. At what time will they again ring simultaneously?

- A. 2 min 48 s past 12
- B. 3 min past 12
- C. 3 min 20 s past 12
- D. None of these

Answer: A

8. If
$$x=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}$$
 , then $\left(x+\dfrac{1}{x}\right)$ is

A. 6

B. 5

C. 3

D. $2\sqrt{2}$

Answer: A

9. If $an lpha + \cot lpha = 2$, then $an^2 lpha + \cot^2 lpha$ is

A. 2

B. 16

C. 64

D. 128

Answer: A

10. If the ratio of angles In a triangle is 2:5:3, then the value of least angle is

A.
$$\frac{\pi}{20}$$

B.
$$\frac{\pi}{10}$$

$$\mathsf{C.}\;\frac{2\pi}{5}$$

D.
$$\frac{\pi}{5}$$

Answer: D

11.

If

 $x=a\cos heta-b\sin heta ext{ and } y=b\cos heta+a\sin heta,$ then the value of x^2+y^2 is

- A. a^2
- B. b^2
- C. $\frac{a^2}{b^2}$
- D. $a^2 + b^2$

Answer: D

12. The distance between the points (0,0) and the intersecting point of the graphs of x=3 and y=4 is

- A. 3 units
- B. 2 units
- C. 5 units
- D. 4 units

Answer: C

13. The value of \log_4 128 is

A.
$$\frac{7}{3}$$

B. 16

$$\mathsf{C.}\,\frac{3}{7}$$

D. 7

Answer: A

14.

Median

of

10, 11, 13, 11, 12, 10, 13, 11, 12, 15, 12 is.

A. 10

B. 11

C. 12

D. 15

Answer: C

15.

The

value

of

 $(\sin A + \cos A)^2 + (\cos A - \sin A)^2$ is

A. 0

B. 1

 $\mathsf{C.}\ 2$

D. 3

Answer: C

16. The maximum value of $\cos heta + \sin heta$, if

A. 30°

B. 45°

C. 60°

D. 90°

Answer: B

A.
$$\frac{a-1}{a^2+1}$$

$$\mathsf{B.}\,\frac{a^2-1}{a^2+1}$$

C.
$$\dfrac{2a}{a^2+1}$$
D. $\dfrac{2a}{a^2-1}$

Answer: B

Watch Video Solution

The value 18. of tan

 $15^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 75^{\circ}$ is

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

19. If $A+B+C=270^{\circ}$, then the value of $\cos 2A+\cos 2B+\cos 2C+4\sin A\sin B\sin C$ is

- A. 0
- B. 1
- C. 2
- D. 3

Answer: B

Watch Video Solution

20. If A and B are non empty sets, then $(A-B)\cup(B-A)$ equals

A.
$$(A \cup B) - B$$

$$\mathtt{B.}\,A-(A\cap B)$$

$$\mathsf{C.}\left(A\cup B\right)-\left(A\cap B\right)$$

$$\mathsf{D}.\,(A\cap B)-(A\cup B)$$

Answer: C

Watch Video Solution

21. 3. The value of
$$\dfrac{1}{1+p^{(x-y)}}+\dfrac{1}{1+p^{(y-x)}}$$

A. 1

B.
$$\frac{1}{p}$$

 $\mathsf{C}.\,p$

D. None of these

Answer: A

Watch Video Solution

22. If the rate of interest of Rs. 5000 is 10% per annum for the first 2 yr and $15\,\%$ for the next 2 yr is given, then the compound interest is

- A. Rs. 1680
- B. Rs. 3001
- C. Rs. 4100
- D. Rs. 3750

Answer: B

Watch Video Solution

23. A purse contains 5 silver and 2 gold coins. A second purse contains 4 silver and 3 gold coins.

A coin is taken out of any purse. The probability

that it is a silver coin is

- A. $\frac{9}{6}$
- B. $\frac{20}{40}$
- C. $\frac{9}{14}$

D. None of these

Answer: C

24. The distance of the point (-2,3) from the

line x - y = 5 is

A.
$$5\sqrt{2}$$

B.
$$2\sqrt{5}$$

C.
$$3\sqrt{5}$$

D.
$$5\sqrt{3}$$

Answer: A

25. Find the angles between the pairs of straight line $x-y\sqrt{3}=5$ and $\sqrt{3}x+y=7$

- A. 90°
- B. 60°
- C. 75°
- D. 30°

Answer: A

26. The first, second and last terms of an AP are

4, 7 and 31 respectively, then

A. the third term is 15

B. the number of terms is 10

C. the sum of the terms is 155

D. None of these

Answer: B

27. If the variance of a data is 256, then the standard deviation is

- A. 15
- B. 16
- C. 13
- D. 14

Answer: B

28. The coordinates of the point O which divides the join of $A(5,\,-2)$ and $B(9,\,6)$ in the ratio $3\colon 1$ are

- A. (6,0)
- B.(9,5)
- C.(8,4)
- D.(4,8)

Answer: C

29. The sum of the present ages of Varun and Kapil is 42 yr. The ratio of their ages after 5 yr will be 15:11 . What is the present age of Kapil ?

- A. 17 yr
- B. 24 yr
- C. 25 yr
- D. 22 yr

Answer: C

30. If $x=\frac{b}{a-b}$ and $y=\frac{a}{a+b}$, then the value of $\frac{1}{x}+\frac{1}{y}$ is:

A.
$$\dfrac{a^2+b^2}{ab}$$

B.
$$\frac{b^2-a^2}{ab}$$

C.
$$\frac{a^2-b^2}{ab}$$

D. None of these

Answer: A

31. What is the area of a sector of a circle of radius 5 cm formed by an arc of length 3.5 cm?

- A. 8.5 cm²
- B. 8.75 cm^2
- $C. 7.75 \text{ cm}^2$
- D. 125 cm^2

Answer: B

32. Find the length of the longest rod that can be placed in a room 16 m long, 12 m broad and $10\frac{2}{3}m$ high.

$$\mathrm{C.}\ 22\frac{2}{3}\ \mathrm{m}$$

D.
$$22\frac{1}{3}$$
 m

Answer: C

33. A solid of 10 cm height and base radius 20 cm is melted to form balls of 2 cm radius. How many such balls can be made?

- A. 25
- B. 75
- C. 50
- D. 375

Answer: D

34. The number of non-empty subsets of the set $\{1, 2, 3, 4\}$ is

A. 16

B. 12

C. 15

D. 8

Answer: C

35. If a,b, and c are in G.P then a+b,2b and b+ c are in

A. AP

B. GP

C. HP

D. None of these

Answer: C

36. If $8\sin x = 4 + \cos x$, then the values of \sin

x are

A.
$$\frac{3}{5}, \frac{-5}{13}$$

B.
$$\frac{-3}{5}, \frac{-5}{13}$$

C.
$$\frac{3}{5}$$
, $\frac{5}{13}$

D.
$$\frac{5}{3}$$
, $\frac{5}{13}$

Answer: C

37. $\log_a b = \log_b c = \log_c a, \,$ then a, b and c are such that

A.
$$a=b=c$$

B.
$$a=b
eq c$$

C.
$$a=c
eq b$$

D.
$$b=c
eq a$$

Answer: A

38. $\sin\frac{\pi}{4}\cos\frac{\pi}{12}-\cos\frac{\pi}{4}\sin\frac{\pi}{12}$ is equal to

A.
$$\frac{1}{\sqrt{3}}$$

B. $\sqrt{3}$

$$\mathsf{C.}\,\frac{\sqrt{3}}{2}$$

D. $\frac{1}{2}$

Answer: D

39. If

$$an heta+\sin heta=1, \quad an\cos^2 heta=n \quad anm^2-n^2$$
 is equal

A.
$$4\sqrt{AB}$$

B.
$$\sqrt{AB}$$

C.
$$2\sqrt{AB}$$

D.
$$2AB$$

Answer: A

40. In a polygon the number of diagonals is 54.

the number of sides of the polygon, is

- A. 10
- B. 12
- C. 9
- D. None of these

Answer: B

41. The area of a square is given by $A=x^2+4x+4$, then the diagonal of the square is

A.
$$(x + 2)$$

B.
$$\sqrt{(x-4)}$$

C.
$$\sqrt{2}(x+2)$$

D.
$$\frac{\sqrt{3}}{2}(x+2)$$

Answer: C

42.

The value of

cot

 $15^{\circ} \cot 16^{\circ} \cot 17^{\circ} \dots \cot 73^{\circ} \cot 74^{\circ} \cot 75^{\circ}$

is:

A. 0

B. 1

C. -1

 $\mathsf{D.}\;\frac{1}{2}$

Answer: B

43. $x^4 + 4y^4$ is divisible by which one of the following ?

A.
$$\left(x^2+2xy+2y^2\right)$$

B.
$$(x^2 + 2y^2)$$

C.
$$(x^2 - 2y^2)$$

D. None of these

Answer: A

44. If
$$rac{ an26^\circ+ an19^\circ}{x(1- an26^\circ an19^\circ)}=\cos60^\circ$$
 , then

the value of x is

- **A.** 1
- B. $\sqrt{2}$
- C. 2
- D. $\sqrt{3}$

Answer: C

$$ig(1+n^2ig)x^2+2ncx+ig(c^2-a^2ig)=0$$
 will have equal roots if

A.
$$a^2 = c^2 (1 - m^2)$$

B.
$$c^2 = a^2 (1 - m^2)$$

C.
$$a^2 = c^2 (1 + m^2)$$

D.
$$c^2 = a^2 (1 + m^2)$$

Answer: D

46. If the interior angle is 144° more than exterior angle of regular polygon, then what will be the number of sides of polygon?

- A. 10
- B. 8
- C. 20
- D. 15

Answer: C

47. The diameter of a roller is 2.4 m and its length is 1.68 m. If its rotates 1000 time to level a ground. Find the area of the ground.

- A. 126720 m^2
- B. 12672 m^2
- $C. 1267.2 \text{ m}^2$
- D. 12.672 m^2

Answer: B

48. Two numbers x and y are the ratio of 3:4.

If 10 is added to each number, the ratio becomes $5\colon 6$. Then, the numbers x and y are

- A. 12 and 16
- B. 15 and 20
- C. 3 and 4
- D. 30 and 40

Answer: B

