© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT PUBLICATION

BIHAR

RECTANGULAR COORDINATES,

STRAIGHT LINES, FAMILY OF LINES

Solved Examples

1. The incentre of triangle formed by lines $x=0, y=0$ and $3 x+4 y=12$ is
A. $(3,1)$
B. $(1,2)$
C. $(2,1)$
D. $(1,1)$

Answer: D
(Watch Video Solution
2. The perpendicular distance between two
parallel lines $3 x+4 y-6=0$ and
$6 x+8 y+7=0$ is equal to
A. $\frac{19}{10}$ unit
B. $\frac{19}{2}$ unit
C. $\frac{19}{5}$ unit
D. $\frac{10}{19}$ unit

Answer: A
3. In what ratio will the point $\left(\frac{1}{2}, \frac{-13}{4}\right)$ internally divide the line segment joining the point ($3,-5$) and ($-7,2$)?

> A. $\frac{1}{3}$
> B. $\frac{1}{4}$
> C. $\frac{2}{3}$
> D. $\frac{1}{5}$

Answer: A

- Watch Video Solution

4. The locus of a point which is equidistant from point (4,2) and x-axis is

$$
\begin{aligned}
& \text { A. } h^{2}-8 h-4 k+20=0 \\
& \text { B. } h^{2}-8 h+4 k-20=0 \\
& \text { C. } h^{2}-6 h+4 k+20=0
\end{aligned}
$$

D. None of these

Answer: A
(D) Watch Video Solution
5. If points $(5,5),(10, k)$ and $(-5,1)$ are collinear, then the value of k is
A. 8
B. 7
C. 9
D. 6

Answer: B

- Watch Video Solution

Exam Boorster For Cracking Exam

1. The points $(1,1),(-1,-1)$ and
$(-\sqrt{3}, \sqrt{3})$ are the angular points of a triangle, then the triangle is
A. right angled
B. isosceles
C. equilateral
D. None of these

D Watch Video Solution

2. The triangle formed by the points
$A(2 a, 4 a), B(2 a, 6 a)$ and $C(2 a+\sqrt{3} a, 5 a)$ is
A. right angled
B. isosceles
C. equilateral
D. None of these

Answer: C
3. The points $A(12,8), B(-2,6)$ and $\mathrm{C}(6,0)$ are the vertices of
A. right angled triangle
B. isosceles triangle
C. equilateral triangle
D. None of these

Answer: A

D Watch Video Solution

4. Vertices of a $\triangle A B C$ are

$A(2,2), B(-4,-4)$ and $C(5,-8)$, then the length of the median through C is
A. $\sqrt{65}$
B. $\sqrt{117}$
C. $\sqrt{85}$
D. $\sqrt{113}$

Answer: C
5. The co-ordinates of the middle points of the
sides of a triangle are (4,2),(3,3) and (2,2) then
the co-ordinates of its centroid are
A. $\left(3, \frac{7}{3}\right)$
B. $(3,3)$
C. $(4,3)$
D. None of these

Answer: A

D Watch Video Solution
6. Mid-points of the sides $A B$ and $A C$ of a
$\Delta A B C$ are $(3,5)$ and $(-3,-3)$ respectively, then
the length of the side $B C$ is
A. 10 unit
B. 20 unit
C. 15 unit
D. 30 unit

Answer: B

Watch Video Solution

7. The extremities of the diagonal of a parallelogram are the points (3,4) and ($-6,5$). Third vertex is the point $(-2,1)$, then the fourth vertex is
A. $(1,1)$
B. $(1,0)$
C. $(0,1)$
D. $(-1,0)$

Answer: D

D Watch Video Solution

8. If $P(1,2), Q(4,6), R(5,7)$ and $\mathrm{S}(\mathrm{a}, \mathrm{b})$ are
the vertices of a parallelogram PQRS then
A. $a=2, b=4$
B. $a=3, b=4$
C. $a=2, b=3$
D. $a=3, b=5$

Answer: C

D Watch Video Solution

9. The vertices of a $\Delta A B C$ has coordinates
$(\cos \theta, \sin \theta),(\sin \theta,-\cos \theta)$ and (1,2). As θ
varies the locus of centroid of the triangle is
the circle
A. $x^{2}+y^{2}-2 x-4 y+1=0$
B. $3\left(x^{2}+y^{2}\right)-2 x-4 y+1=0$
C. $x^{2}+y^{2}-2 x-4 y+3=0$

D. None of these

Answer: B

D Watch Video Solution

10. $A B C$ is an isosceles triangle. If the coordinates of the base are $B(1,3)$ and $C(-2,7)$,
the coordinates of vertex A can be
A. $(1,6)$

$$
\text { B. }\left(-\frac{1}{2}, 5\right)
$$

C. $\left(\frac{5}{6}, 6\right)$
D. $\left(7,-\frac{1}{8}\right)$

Answer: C

D Watch Video Solution

11. The vertices of a $\triangle A B C$ are
$(\lambda, 2-, 2 \lambda),(-\lambda+1,2 \lambda)$
and
$(-4-\lambda, 6-2 \lambda)$. If its area be 70 units,
then number of integral values of λ is
A. 1
B. 2
C. 4
D. 0

Answer: C

D Watch Video Solution
12. The area of a triangle is 5 and two of its
vertices are $A(2,1), B(3,-2)$. The third vertex which lies on line $y=x+3$ is
A. $\left(\frac{7}{2}, \frac{13}{2}\right)$
B. $\left(\frac{5}{2}, \frac{5}{2}\right)$
C. $\left(\frac{3}{2}, \frac{3}{2}\right)$
D. $(0,0)$

Answer: A

D Watch Video Solution

13. If the co-ordinates of points A, B, C, D are
(6,3),(-3,5),(4,-2) and ($x, 3 x$) respectively and if $\frac{\Delta D B C}{\Delta A B C}=\frac{1}{2}$, then $\mathrm{x}=$
A. $\frac{8}{11}$
B. $\frac{11}{8}$
C. $\frac{7}{9}$
D. 0

Answer: B

- Watch Video Solution

14. The points $(-a,-b),(0,0),(a, b)$ and $\left(a^{2}, a b\right)$ are
A. collinear
B. vertices of a rectangle
C. vertices of a parallelogram
D. None of the above

Answer: A

D Watch Video Solution
15. If the points $(2 k, k),(k, 2 k)$ and (k, k) with
$k>0$ enclose in a triangle of area 18 sq units,
then the centroid of triangle is equal to
A. $(8,8)$
B. $(4,4)$
C. $(-4,-4)$
D. $(4 \sqrt{2}, 4 \sqrt{2})$

Answer: A

D Watch Video Solution

16. The distance between the points
$(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ where
$a>0$
A. $2 a \sin \left(\frac{\alpha+\beta}{2}\right)$
B. $2 a \cos \left(\frac{\alpha+\beta}{2}\right)$
C. $2 a \sin \left(\frac{\alpha-\beta}{2}\right)$
D. $2 a \cos \left(\frac{\alpha-\beta}{2}\right)$

Answer: C

D Watch Video Solution
17. The points $(x, 2 x),(2 y, y)$ and $(3,3)$ are collinear
A. for all values of (x, y)
B. 2 is $A M$ of x, y
C. 2 is GM of x, y
D. 2 is HM of x, y

Answer: D

D Watch Video Solution
18. Line L is perpendicular to the lines
$5 x-y=1$. The area of triangle formed by
the line and coordinate axes is 5 . Its equation
A. $x+5 y=\sqrt{2}$
B. $x+5 y=5 \sqrt{2}$
C. $x-5 y=5 \sqrt{2}$
D. $x+5 y=-\sqrt{2}$

Answer: B

D Watch Video Solution

19. If m_{1} and m_{2} are the roots of an equation $x^{2}+(\sqrt{3}+2) x+(\sqrt{3}-1)=0$, then the
area of the triangle formed by the lines

$$
y=m_{1} x, y=m_{2} x, y=c \text { is }
$$

$$
\begin{aligned}
& \text { A. }\left(\frac{\sqrt{33}+\sqrt{11}}{4}\right) c^{2} \\
& \text { B. }\left(\frac{\sqrt{32}+\sqrt{11}}{16}\right) c \\
& \text { C. }\left(\frac{\sqrt{33}+\sqrt{10}}{4}\right) c^{2} \\
& \text { D. }\left(\frac{\sqrt{33}+\sqrt{21}}{4}\right) c^{3}
\end{aligned}
$$

Answer: A

D Watch Video Solution

20. The equation of the base of an equilateral
triangle is $x+y=2$ and the vertex is $(2,-1)$.

Length of its side is
A. $\sqrt{\frac{1}{2}}$
B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{\frac{2}{3}}$
D. $\sqrt{2}$

Answer: C

D Watch Video Solution
21. The distance between the lines
$4 x+3 y=11$ and $8 x+6 y=15$ is
A. $\frac{7}{2}$ unit
B. $\frac{7}{3}$ unit
C. $\frac{7}{5}$ unit
D. $\frac{7}{10}$ unit

Answer: D
(Watch Video Solution
22. A, B and C are the points (a, p), (b,q) and
(c, r) respectively such that a, b and c are in AP and p, q and r in GP. If the points are collinear, then

$$
\begin{aligned}
& \text { А. } p=q=r \\
& \text { B. } p^{2}=q \\
& \text { C. } q^{2}=r \\
& \text { D. } r^{2}=p
\end{aligned}
$$

Answer: A
23. The equations of perpendicular bisectors of the sides AB and AC of a $\triangle A B C$ are $x-y+5=0$ and $x+2 y=0$, respectively. If the point A is $(1,-2)$ the equation of the line $B C$ is
A. $23 x+14-40=0$
B. $23+14 y+40=0$
C. $14 x+23 y-40=0$
D. $14 x+23 y+40=0$

Answer: C

- Watch Video Solution

24. A point $P(h, k)$ lies on the straight line $x+y+1=0$ and is at a distance 5 from the origin. If k is negative, then h is equal to
A. -3
B. 3
C. -4
D. 4

Answer: B

- Watch Video Solution

25. The equations of the straight lines through
$(3,2)$ which make acute angle of 45° with the
line $x-2 y-3=0$ is (are)
A. $x+3 y=9$ and $3 x-y=7$
B. $x-3 y=9$ and $3 x+y=7$
C. $x-3 y=7$ and $3 x-y=9$
D. $x+3 y=7$ and $3 x+y=7$

Answer: A

- Watch Video Solution

26. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is
A. 2
B. 0
C. 4

D. 1

Answer: A

- Watch Video Solution

27. The equation of the straight line which makes angle of 15° with the positive direction of x-axis and which cuts an intercept of length

4 on the negative direction of y-axis, is

$$
\text { A. } y=(2-\sqrt{3}) x-4
$$

$$
\begin{aligned}
& \text { B. } y=(2+\sqrt{3}) x+4 \\
& \text { C. } y=(2-\sqrt{3}) x+4 \\
& \text { D. } y=(2+\sqrt{3}) x-4
\end{aligned}
$$

Answer: A

D Watch Video Solution

28. The equation of straight line passing through the point of intersection of the straight line $3 x-y+2=0 \quad$ and
$5 x-2 y+7=0$ and having infinite slope is
A. $x=2$
B. $x+y=3$
C. $x=3$
D. $x=4$

Answer: C

D Watch Video Solution
29. The diagonals of a parallelogram $A B C D$ are along are the lines $x+3 y=4$ and $6 x-2 y=7$. Then

ABCD must be a
A. rectangle
B. square
C. cyclic quadrilateral
D. rhombus

Answer: D

D Watch Video Solution
30. The orthocentre of triangle with vertices
$\left(2, \frac{\sqrt{3}-1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right),\left(2,,-\frac{1}{2}\right)$
A. $\left(\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right)$
B. $\left(2,-\frac{1}{2}\right)$
C. $\left(\frac{5}{4}, \frac{\sqrt{3}-2}{4}\right)$
D. $\left(\frac{1}{2},-\frac{1}{2}\right)$

Answer: B

- Watch Video Solution

