

MATHS

BOOKS - ARIHANT PUBLICATION BIHAR

RECTANGULAR COORDINATES, STRAIGHT LINES, FAMILY OF LINES

Solved Examples

1. The incentre of triangle formed by lines x=0,y=0 and 3x+4y=12 is A. (3,1) B. (1,2) C. (2,1) D. (1,1) **Answer: D**

2. The perpendicular distance between two parallel lines 3x + 4y - 6 = 0 and 6x + 8y + 7 = 0 is equal to

A.
$$\frac{19}{10}$$
 unit
B. $\frac{19}{2}$ unit
C. $\frac{19}{5}$ unit
D. $\frac{10}{19}$ unit

Answer: A

3. In what ratio will the point $\left(\frac{1}{2}, \frac{-13}{4}\right)$ internally divide the line segment joining the point (3,-5) and (-7, 2)?

A.
$$\frac{1}{3}$$

B. $\frac{1}{4}$
C. $\frac{2}{3}$
D. $\frac{1}{5}$

Answer: A

4. The locus of a point which is equidistant from point (4,2) and x-axis is

A.
$$h^2 - 8h - 4k + 20 = 0$$

B.
$$h^2 - 8h + 4k - 20 = 0$$

C. $h^2 - 6h + 4k + 20 = 0$

D. None of these

Answer: A

5. If points (5,5), (10, k) and (-5, 1) are collinear,

then the value of k is

A. 8

B. 7

C. 9

D. 6

Answer: B

1. The points (1, 1), (-1, -1) and $(-\sqrt{3}, \sqrt{3})$ are the angular points of a triangle, then the triangle is

- A. right angled
- B. isosceles
- C. equilateral
- D. None of these

Answer: C

2. The triangle formed by the points A(2a, 4a), B(2a, 6a) and $C(2a + \sqrt{3}a, 5a)$ is

A. right angled

B. isosceles

C. equilateral

D. None of these

Answer: C

3. The points A(12,8), B(-2,6) and C(6,0) are the vertices of

A. right angled triangle

B. isosceles triangle

C. equilateral triangle

D. None of these

Answer: A

4. Vertices of a ΔABC are A(2,2), B(-4,-4) and C(5,-8), then the length of the median through C is

A. $\sqrt{65}$ B. $\sqrt{117}$

 $\mathsf{C}.\sqrt{85}$

D. $\sqrt{113}$

Answer: C

5. The co-ordinates of the middle points of the sides of a triangle are (4,2),(3,3) and (2,2) then the co-ordinates of its centroid are

A.
$$\left(3, \frac{7}{3}\right)$$

- B.(3,3)
- C.(4,3)
- D. None of these

Answer: A

6. Mid-points of the sides AB and AC of a ΔABC are (3, 5) and (-3, -3) respectively, then the length of the side BC is

A. 10 unit

B. 20 unit

C. 15 unit

D. 30 unit

Answer: B

7. The extremities of the diagonal of a parallelogram are the points (3,-4) and (-6,5). Third vertex is the point (-2,1), then the fourth vertex is

A. (1,1)

- B. (1,0)
- C. (0,1)

D. (-1, 0)

Answer: D


```
8. If P(1,2), Q(4,6), R(5,7) and S(a,b) are the vertices of a parallelogram PQRS then
```

- B. a=3,b=4
- C. a=2,b=3

D. a=3,b=5

Answer: C

9. The vertices of a ΔABC has coordinates $(\cos \theta, \sin \theta), (\sin \theta, -\cos \theta)$ and (1,2). As θ varies the locus of centroid of the triangle is the circle

A.
$$x^2 + y^2 - 2x - 4y + 1 = 0$$

B. $3(x^2 + y^2) - 2x - 4y + 1 = 0$
C. $x^2 + y^2 - 2x - 4y + 3 = 0$

D. None of these

Answer: B

Watch Video Solution

10. ABC is an isosceles triangle. If the coordinates of the base are B(1,3) and C(-2,7), the coordinates of vertex A can be

A.
$$(1, 6)$$

B. $\left(-\frac{1}{2}, 5\right)$

$$\mathsf{C.}\left(\frac{5}{6},6\right)$$
$$\mathsf{D.}\left(7,\ -\frac{1}{8}\right)$$

Answer: C

A. 1

B. 2

C. 4

D. 0

Answer: C

Watch Video Solution

12. The area of a triangle is 5 and two of its vertices are A(2,1),B(3,-2). The third vertex which lies on line y = x + 3 is

A.
$$\left(\frac{7}{2}, \frac{13}{2}\right)$$

B. $\left(\frac{5}{2}, \frac{5}{2}\right)$
C. $\left(\frac{3}{2}, \frac{3}{2}\right)$

D. (0,0)

Answer: A

Watch Video Solution

13. If the co-ordinates of points A,B,C,D are (6,3),(-3,5),(4,-2) and (x,3x) respectively and if $\frac{\Delta DBC}{\Delta ABC} = \frac{1}{2}$, then x=

A.
$$\frac{8}{11}$$

B. $\frac{11}{8}$
C. $\frac{7}{9}$
D. 0

Answer: B

Watch Video Solution

14. The points (-a, -b), (0, 0), (a, b) and

 $\left(a^2, ab
ight)$ are

A. collinear

B. vertices of a rectangle

C. vertices of a parallelogram

D. None of the above

Answer: A

Watch Video Solution

15. If the points (2k,k), (k,2k) and (k, k) with

k>0 enclose in a triangle of area 18 sq units,

then the centroid of triangle is equal to

A. (8,8)

B. (4,4)

C. (-4,-4)

D. $\left(4\sqrt{2}, 4\sqrt{2}\right)$

Answer: A

16. The distance between the points $(a \cos \alpha, a \sin \alpha)$ and $(a \cos \beta, a \sin \beta)$ where a > 0

A.
$$2a \sin\left(\frac{\alpha+\beta}{2}\right)$$

B. $2a \quad \cos\left(\frac{\alpha+\beta}{2}\right)$
C. $2a \quad \sin\left(\frac{\alpha-\beta}{2}\right)$
D. $2a \quad \cos\left(\frac{\alpha-\beta}{2}\right)$

Answer: C

Watch Video Solution

17. The points (x,2x),(2y,y) and (3,3) are collinear

A. for all values of (x,y)

B. 2 is AM of x,y

C. 2 is GM of x,y

D. 2 is HM of x,y

Answer: D

Watch Video Solution

18. Line L is perpendicular to the lines 5x - y = 1. The area of triangle formed by the line and coordinate axes is 5. Its equation

A.
$$x+5y=\sqrt{2}$$

B.
$$x+5y=5\sqrt{2}$$

C.
$$x-5y=5\sqrt{2}$$

D.
$$x+5y=-\sqrt{2}$$

Answer: B

Watch Video Solution

19. If m_1 and m_2 are the roots of an equation $x^2 + ig(\sqrt{3}+2ig)x + ig(\sqrt{3}-1ig) = 0$, then the

area of the triangle formed by the lines

$$y=m_1x, y=m_2x, y=c$$
 is

$$\begin{aligned} &\mathsf{A.}\left(\frac{\sqrt{33}+\sqrt{11}}{4}\right)c^2\\ &\mathsf{B.}\left(\frac{\sqrt{32}+\sqrt{11}}{16}\right)c\\ &\mathsf{C.}\left(\frac{\sqrt{33}+\sqrt{10}}{4}\right)c^2\\ &\mathsf{D.}\left(\frac{\sqrt{33}+\sqrt{21}}{4}\right)c^3\end{aligned}$$

Answer: A

20. The equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2,-1). Length of its side is

A.
$$\sqrt{\frac{1}{2}}$$

B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{\frac{2}{3}}$
D. $\sqrt{2}$

Answer: C

21. The distance between the lines 4x + 3y = 11 and 8x + 6y = 15 is

A.
$$\frac{7}{2}$$
 unit
B. $\frac{7}{3}$ unit
C. $\frac{7}{5}$ unit
D. $\frac{7}{10}$ unit

Answer: D

22. A, B and C are the points (a, p), (b,q) and (c,r) respectively such that a, b and c are in AP and p,q and r in GP. If the points are collinear, then

A.
$$p=q=r$$

$$\mathsf{B.}\,p^2=q$$

$$\mathsf{C}.\,q^2=r$$

D.
$$r^2 = p$$

Answer: A

23. The equations of perpendicular bisectors of the sides AB and AC of a ΔABC are x - y + 5 = 0 and x + 2y = 0, respectively. If the point A is (1, - 2) the equation of the line BC is

A. 23x + 14 - 40 = 0

 $\mathsf{B}.\,23 + 14y + 40 = 0$

C. 14x + 23y - 40 = 0

D. 14x + 23y + 40 = 0

Answer: C

24. A point P(h, k) lies on the straight line x + y + 1 = 0 and is at a distance 5 from the origin. If k is negative, then h is equal to

A. - 3

 $\mathsf{B.}\,3$

 $\mathsf{C}.-4$

Answer: B

25. The equations of the straight lines through (3, 2) which make acute angle of 45° with the line x - 2y - 3 = 0 is (are)

A. x + 3y = 9 and 3x - y = 7

B. x - 3y = 9 and 3x + y = 7

C. x - 3y = 7 and 3x - y = 9

D. x + 3y = 7 and 3x + y = 7

Answer: A

26. The number of integral values of m for which the x-coordinate of the point of intersection of the lines 3x + 4y = 9 and y = mx + 1 is also an integer is

A. 2

B. 0

D. 1

Answer: A

Watch Video Solution

27. The equation of the straight line which makes angle of 15° with the positive direction of x-axis and which cuts an intercept of length 4 on the negative direction of y-axis, is

A.
$$y=ig(2-\sqrt{3}ig)x-4$$

B.
$$y=ig(2+\sqrt{3}ig)x+4$$

C.
$$y=ig(2-\sqrt{3}ig)x+4$$

D.
$$y=ig(2+\sqrt{3}ig)x-4$$

Answer: A

Watch Video Solution

28. The equation of straight line passing through the point of intersection of the straight line 3x-y+2=0 and 5x-2y+7=0 and having infinite slope is A. x=2

B. x+y=3

C. x=3

D. x=4

Answer: C

29. The diagonals of a parallelogram ABCD are

along are the lines x+3y=4 and 6x-2y=7. Then

ABCD must be a

A. rectangle

B. square

C. cyclic quadrilateral

D. rhombus

Answer: D

30. The orthocentre of triangle with vertices

$$\left(2, \frac{\sqrt{3}-1}{2}\right), \left(rac{1}{2}, \ -rac{1}{2}
ight), \left(2, \ , \ -rac{1}{2}
ight)$$

$$A.\left(\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right)$$
$$B.\left(2, -\frac{1}{2}\right)$$
$$C.\left(\frac{5}{4}, \frac{\sqrt{3}-2}{4}\right)$$
$$D.\left(\frac{1}{2}, -\frac{1}{2}\right)$$

Answer: B

