

MATHS

BOOKS - MAHAVEER PUBLICATION

APPLICATION OF INTEGRALS

Question Bank

1. Find the area under the curve $f(x)=x^{rac{3}{2}}$ from[0,2]

Watch Video Solution

2. Find the area enclosed by the circle $x^2 + y^2 = a^2$.

6. Find the area between the curves $y = x^2$ and y = 4Watch Video Solution

7. Calculate the area bouded by the parabola $y^2=4ax$ and

its latus rectum

Watch Video Solution

8. Area lying in the first quadrant and bounded by the circle

 $x^2+y^2=4$ and the lines $x=0 \, ext{ and } x=2$ is :

Α. π

C.
$$\frac{\pi}{3}$$

D. $\frac{\pi}{4}$

Answer: A

Watch Video Solution

9. Area (in square units) of the region bounded by the curve $y^2=4x,$ y-axis and the line y=3 , is

A. 2

B. $\frac{9}{4}$ C. $\frac{9}{3}$ D. $\frac{9}{2}$

Answer: B

10. Area lying between the curves $y^2 = 4x$ and y = 2x is

Answer: B

11. Find the area bounded by the curve $y = \cos x$ between

x=0and $x=2\pi$.

A. 1

B. 2

C. 3

D. 4

Answer: D

Watch Video Solution

12. Area lying between the curves y = |x|, x=1 and x=-1 is

B. 0

C. 3

 $\mathsf{D.}-1$

Answer: B

Watch Video Solution

13. Find the area under the curve f(x)=2x from[0,2].

Watch Video Solution

14. Find by the method of integration the area of the region

bounded by the parabola $y^2=8x$ and its latus rectum.

15. Find the area of region bounded by the bounded by the parabola $y^2 = x$, x=0, x=2 and the x-axis.

Watch Video Solution

16. Find by the method of integration the area of the region

bounded by the parabola $y^2=16x$ and the line x=5.

Watch Video Solution

17. Find the area of the portion enclosed between the curves

$$y^2=4x$$
 and $x^2=4y$.

18. Find the area of the regions bounded by the parabola

- $y^2=4ax$ and the line x=a.
 - **Watch Video Solution**

19. Find area under the curve y=sin 2x between the ordinates

$$x=rac{\pi}{2}$$
 and $x=\pi.$

Watch Video Solution

20. Find by integration, the area of the triangle bounded by

the lines 4y-5x=0 and x=4.

21. Find the center and radius of the circle $x^2 + y^2 + 8x + 10y - 8 = 0.$

22. Find the equation of the parabola with vertex (0,0) and passing through (2,3) and axis is along the x-axis.

23. In what ratio does the origin divides the line segment

joining the points P(-1,-2,-3) and Q(4,8,12).

24. Find the direction cosines of the line whose direction

ratios are 2,-4,6.

25. If $g(x) = 2^x$, show that g(a).g(b) = g(a+b).

Watch Video Solution

26. Find
$$\lim_{x o 2} rac{x^2 - 9x + 14}{x^2 + 9x - 22}$$

Watch Video Solution

27. Examine the continuity of f(x) at x=0 if f(x)= $rac{\sin 2x}{2x}, x
eq 0$

28. Find
$$rac{dy}{dx}$$
 : $y=\sqrt{1+x^2}$

Watch Video Solution

29. Find
$$\displaystyle rac{dy}{dx}$$
 : $\displaystyle x=\displaystyle rac{2at}{1+t^2}, y=\displaystyle rac{aig(1-t^2ig)}{1+t^2}$

Watch Video Solution

30. Find
$$\frac{dy}{dx}$$
 if $xy = \sin x$.

31. Find the maximum and minimum values of the function $y = 4x^3 - 15x^2 + 12x - 2$

Watch Video Solution

32. Find the unit vector in the direction of the vector $\overrightarrow{a} + \overrightarrow{b}$ if $\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = 2\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k}$

Watch Video Solution

33. Integrate:
$$\int \cos ecx (\cos ecx + \cot x) dx$$

34. Integrate:
$$\int 6x(3x^2 + 7)^7 dx$$

Watch Video Solution
35. If (x+y, x-y)=(1,2), find x and y.
Watch Video Solution
36. Find the value of $\int_0^{\frac{\pi}{4}} \frac{\sec^2 x dx}{1 + \tan^2 x}$
Watch Video Solution

37. Using the properties of the definite integral, prove that

$$\int_0^{rac{\pi}{2}}rac{\sin x dx}{\sin x+\cos x}=rac{\pi}{4}$$

38. Find the area of the region bounded by the parabola

$$y^2 = 4ax$$
 and the line x=a.

Watch Video Solution

40. If
$$y=Ae^{mx}+Be^{-mx}$$
, show that $\displaystyle rac{d^2y}{dx^2}-m^2y=0.$