©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MAHAVEER PUBLICATION

DIFFERENTIATION OR DERIVATIVE OF
 A FUNCTION

Question Bank

1. Find from the definition of derivative
$\mathrm{f}^{\prime}(1)$ if $f(x)=x^{2}-2 x+3$
2. Find the derivatives of the followings from the $1^{s t}$ principle. x^{2}

- View Text Solution

3. Find the derivatives of the followings from the $1^{s t}$ principle.

1/x
4. Find the derivatives of the followings from the $1^{s t}$ principle. $\sin ^{2} x$

- View Text Solution

5. Prove that $\mathrm{f}(\mathrm{x})=|\mathrm{x}-\mathrm{k}|, \mathrm{k}$ is constant, $x \in R$ is not differentiable at $\mathrm{x}=\mathrm{k}$.
6. Find (dy)/(dx) if
$y=\sqrt{1+x^{2}}$

- View Text Solution

7. Find (dy)/(dx) if
$y=\cos \sqrt{x+2}$

- View Text Solution

8. Find (dy)/(dx) if
$y=\left(x^{2}+x+1\right)^{4}$

- View Text Solution

9. Find (dy)/(dx) if
$y=\left(a x^{2}+b x+c\right)^{n}$

- View Text Solution

10. Find (dy)/(dx) if
$y=(2 x+1)\left(3 x^{2}-1\right)^{3}$

- View Text Solution

11. Find $\frac{d y}{d x}$ if $y=\sin f(x)$

- Watch Video Solution

12. Find $(\mathrm{dy}) /(\mathrm{dx})$ if
$y=\sec f(x)$

- View Text Solution

13. Find (dy)/(dx) if
$y=\cos (a \cos x+b \sin x)$

D View Text Solution

14. Find (dy)/(dx) if
$y=\sin ^{3} x \cos ^{2} x$

- View Text Solution

15. Find (dy)/(dx) if
$y=\tan \left\{(a x-b)^{n}\right\}$

D View Text Solution

16. Find (dy)/(dx) if

$$
y=\cot x
$$

17. Find (dy)/(dx) if
$y=\sec (\tan \sqrt{x})$

- View Text Solution

18. Find $\mathrm{dy} / \mathrm{dx}$ if
$x^{2}+y^{2}=a^{2}$

- View Text Solution

19. Find $\mathrm{dy} / \mathrm{dx}$ if
$x^{3}+y^{3}=3 x y$

D View Text Solution
20. Find $d y / d x$ if
$x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$

- View Text Solution

21. Find $d y / d x$ if
$\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=1$

D View Text Solution

22. Find $d y / d x$ if

$$
x^{m} y^{n}=(x+y)^{m+n}
$$

(D) Watch Video Solution

23. Find $d y / d x$ if

$x y=\cos (x+y)$

D View Text Solution

24. Find $d y / d x$ if

$x y+y^{2}=\tan x+y$

D View Text Solution
25. Find $d y / d x$ if
$y=\sqrt{[\sin x+\sqrt{\{\sin x+\sqrt{(\sin x+\ldots . .)}]}}$

D View Text Solution

26. Find $\mathrm{dy} / \mathrm{dx}$ if
$x=a t^{2}, \mathrm{y}=2 \mathrm{at}$

- View Text Solution

27. Find $d y / d x$ if
$x=\frac{2 a t}{1+t^{2}}, y=\frac{a\left(1-t^{2}\right)}{1+t^{2}}$

- Watch Video Solution

28. Find $d y / d x$ if

$$
x=r \cos \theta, y=r \sin \theta
$$

29. Find $d y / d x$ if
$x=a \cos ^{3} \theta, y=b \sin ^{3} \theta$

- View Text Solution

30. Find $d y / d x$ if
$x=a(\theta+\sin \theta), y=a(1-\cos \theta)$
(D) View Text Solution
31. Find $d y / d x$ if
$\sin x=\frac{2 t}{1+t^{2}}, \cos y=\frac{1-t^{2}}{(1+t)^{2}}$

D View Text Solution

32. Find $d y / d x$ if
$\mathrm{x}=\mathrm{a}(\mathrm{t}+\sin \mathrm{t}), \mathrm{y}=\mathrm{a}(1+\cos \mathrm{t})$ at $t=\frac{\pi}{2}$

D View Text Solution

33. A particle is moving in a straight line according to the law $S=t^{3}+2 t^{2}+3 t-4$, where S is displacement and t is time. Find the velocity and acceleration when $\mathrm{t}=2$.

D View Text Solution

34. For a particle moving along a straight line,
the relation between the velocity and the displacement at any instant is given by $v^{2}=S^{2}+2 S^{2}+3$

Find the acceleration of the particle when it is at a distance of 4 meters from a fixed point on the line.

D Watch Video Solution

35. A particle is moving in a straight line is at a
distance S from a point O on the line in time t, where $S=t^{3}-6 t^{2}+8 t+5$.Find the velocity when the acceleration is $12 \mathrm{~cm} / \mathrm{sec}^{2}$.
36. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?

D View Text Solution

37. At what point of the parabola $y^{2}=18 x$, does the ordinate increase at twice the rate of the abscissa ?
38. A particle moves along a curve
$6 y=x^{3}+2$. Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate.

D Watch Video Solution

39. The sides of an equilateral triangle increases at the rate of $\sqrt{3} \mathrm{~cm} / \mathrm{sec}$. What will be the rate of increase in area of the triangle when the length of a side is 5 cm ?
40. The length x of a rectangle is decreasing at the rate of 5 cm / minute and the width y is increasing at the rate of 4 cm / minute. When $x=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rates of change of the perimeter.

D View Text Solution

41. The length x of a rectangle is decreasing at
the rate of 5 cm / minute and the width y is
increasing at the rate of 4 cm / minute. When
$x=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of the area of the rectangle.

D View Text Solution

42. A spherical balloon is inflated such that its
radius is increasing at the rate of $\frac{1}{11} \mathrm{~cm} / \mathrm{sec}$.At what rate would the volume be increasing at the instant when the radius is 7 cm ?

$$
\left[\pi=\frac{22}{7}\right]
$$

D View Text Solution
43. The radius of a spherical button is increasing at the rate $10 \mathrm{~cm} / \mathrm{sec}$. Find the rate of change of its surface area when its radius is 4 cm .

D View Text Solution

44. The side of a square is increasing at the rate of $0.01 \mathrm{~cm} / \mathrm{s}$. Find the rate of change of its area at the instant when each side is 4 cms .

View Text Solution

45. The side of a cube is increasing at the rate of $0.02 \mathrm{~cm} / \mathrm{sec}$. Find the rate at which its surface area is increasing when its sides are 3 cms each.

D View Text Solution

46. A man is walking away from the foot of a tower of height 40 m at the rate of $4 \mathrm{~km} / \mathrm{hour}$
.Find the rate at which his distance from the
top of the tower is increasing when he is 30 m
away from the bottom of the tower.

D Watch Video Solution
47. Find the slope of the tangent to the curve
$y=x^{4}-4 x^{2}+8$ at $(1,5)$

D View Text Solution

48. Find the slope of the tangent to the curve
$\mathrm{y}=(1+\mathrm{x}) \sin \mathrm{x}$ at $x=\frac{\pi}{4}$
49. Find the inclination to the positive x-axis of the tangent to the curve $y=-3 x-x^{4}$ at the point where $x=-1$

D View Text Solution

50. Find the point on the curve $y=4 x-x^{2}$ where the tangent is parallel to the x-axis.

- View Text Solution

51. Show that, the tangent at no point on the curve $y=x^{3}+3 x$ can be parallel to the x axis.

D View Text Solution

52. Find the slope of the tangents to the curve $y=x^{2}(x+3)$ at the points where it crosses the x-axis.
53. The slope of the tangent to the curve $y=a x^{3}+b$ at the point $(2,3)$ is 4 . Find a and b

D View Text Solution
54. Find the equation of the tangent and normal to the curve $y=x^{2}+x+1$ at $(1,1)$.

D View Text Solution
55. Find the equations of the tangents to the
curve $\sqrt{x}+\sqrt{y}=3$ at $(4,1)$

D View Text Solution

56. Find the equation of the tangent and normal to the
circle
$2 x^{2}+2 y^{2}-3 x-4 y+1=0$ at the point
$(1,2)$

57. Find the equation of normal to the ellipse

 $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1$ at the point $(3,4)$.
D View Text Solution

58. Find the equation of the tangent and the normal at the point ' t ' on the curve $\mathrm{x}=\mathrm{a}(\mathrm{t}+\sin \mathrm{t})$,
$y=a(1-\cos t)$

- Watch Video Solution

59. Find the points on the curve $y=x^{3}-2 x^{2}+x$ at which the tangents are parallel to x-axis. Also find the tangents at these points.

D Watch Video Solution

60. Find the equation of the tangents to the
curve $y=(x-1)(x-2)$ at the points where the curve cuts the x-axis.
61. Find the tangent to the curve
$x y^{2}=4(4-x)$ at the point where it is cut by
the line $y=x$

D View Text Solution

62. The equation of a tangent to the parabola $y^{2}=8 x$ which makes an angle 45° with the line $y=3 x+5$ is
63. Find the coordinates of the points on the curve $y=x^{2}+3 x+4$, the tangents at which pass through the origin.

D Watch Video Solution

64. Find the angle between the two curves
$y=2 x^{2}$ and $y=x^{2}+4 x-4$

D Watch Video Solution

65. Find the acute angle between the two
curves $y=x^{2}$ and $y=(x-3)^{2}$

D Watch Video Solution
66. Find $\frac{d^{2} y}{d x^{2}}$ if
$y=2 x^{3}-3 x^{2}+5 x-7$

D View Text Solution
67. Find $\frac{d^{2} y}{d x^{2}}$ if
$y=\frac{x-1}{x+1}$

- View Text Solution

68. Find $\frac{d^{2} y}{d x^{2}}$ if
$y=\log \left(x+\sqrt{x^{2}+a^{2}}\right)$

D View Text Solution

69. Find $\frac{d^{2} y}{d x^{2}}$ if
$y=\sin ^{3} x . \cos x$

- View Text Solution

70. Find $\frac{d^{2} y}{d x^{2}}$ if
$y=\tan ^{-1} 2 x$

- View Text Solution

71. Find $\frac{d^{2} y}{d x^{2}}$ if
$y=e^{x} \cdot \tan x$

D View Text Solution

72. Find $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=2$ if $y=x^{3}+\log x$

D View Text Solution
73. If $y=A \cos \sqrt{k} x+B \sin \sqrt{k} x$, prove that $y_{2}+k y=0$

- View Text Solution

74. If $y=\left(\sin ^{-1} x\right)^{2}$, then prove that $\left(1-x^{2}\right) y_{2}-x y_{1}=2$

- Watch Video Solution

75. If $y=\left(\tan ^{-1} x\right)^{2}$, show that
$\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$.

- Watch Video Solution

76. If $y=a e^{3 x}$, then prove that $\frac{d^{2} y}{d x^{2}}=9 y$.

D View Text Solution

77. If $y=e^{a x} \cos b x$, then prove that:
$\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0$.

D Watch Video Solution

78. Without using derivative, find the maximum value and the minimum value, if any,
of the function f defined by
$f(x)=-(x-1)^{2}+10, x \in \square$

D View Text Solution

79. Without using derivative, find the maximum value and the minimum value, if any,
of the function f defined by
$f(x)=|x|, x \in \square$

D View Text Solution
80. Without using derivative, find the maximum value and the minimum value, if any, of the function f defined by
$f(x)=x+1, x \in]-1,1[$

D View Text Solution

81. Find the local maximum, local minimum, absolute maximum and absolute minimum
values, if any, using first or second derivative
test of the function f defined by :
$f(x)=x^{3}-9 x^{2}+15 x-1$

D Watch Video Solution

82. Find the local maximum, local minimum, absolute maximum and absolute minimum
values, if any, using first or second derivative test of the function f defined by :

$$
f(x)=x^{5}-5 x^{4}+5 x^{3}-10
$$

D Watch Video Solution

83. Find the local maximum, local minimum, absolute maximum and absolute minimum
values, if any, using first or second derivative test of the function f defined by :
$f(x)=2 x^{3}-3 x^{2}-12 x+1, x \in\left[-2, \frac{5}{2}\right]$

D Watch Video Solution

84. Show that $f(x)=x^{3}-6 x^{2}+24 x+4$ has neither maxima nor minima.

D View Text Solution

85. Find from the Definition of Derivative:
$f^{\prime}\left(\frac{\pi}{4}\right)$ where $f(x)=\sec x$

D Watch Video Solution
86. Find the derivatives of the followings from
the $1^{\text {st }}$ principle.
$x^{2}+\frac{1}{x^{2}}$

D View Text Solution
87. Find the derivatives of the followings from
the $1^{s t}$ principle.
$\frac{x}{1-x}$

D View Text Solution
88. Find the derivatives of the followings from
the $1^{s t}$ principle.
$\cos ^{2} x$

D View Text Solution
89. Examine the differentiability at $x=0$ and $x=1$:
$f(x)= \begin{cases}-x & x<0 \\ x^{2} & 0 \leq x \leq 1 \\ x^{3}-x+1 & x>1\end{cases}$

D View Text Solution

90. Examine the differentiability at $x=0,1,2$ if:
$f(X)= \begin{cases}4-x & x \leq 0 \\ 5 x+4 & 0<x \leq 1 \\ 4 x^{2}-3 x & 1<x<2 \\ 3 x+4 & x \geq 2\end{cases}$
$1+2 x+3 x^{2}+\ldots .+n x^{n-1}$ from the relation
$1+x+x^{2}+x^{3}+\ldots .+x^{n}=\frac{1-x^{n+1}}{1-x}$

D Watch Video Solution

92. Prove that the derivative of an even
function is an odd function and that of an odd
function is an even function.

D Watch Video Solution
93. Find $d y / d x$ if
$y=\left(x^{2}+2 x+3\right)^{5}$

D View Text Solution

94. Find $d y / d x$ if
$y=\frac{1}{\sqrt{a^{2}+x^{2}}}$

D View Text Solution

95. Find $\mathrm{dy} / \mathrm{dx}$ if

$y=x^{4} \sin 3 x$

- View Text Solution

96. Find $\mathrm{dy} / \mathrm{dx}$ if
$y=\frac{1-\cos x}{1+\cos x}$

- View Text Solution

$$
\text { 97. } y=\frac{\sin x+\cos x}{\sin x-\cos x}
$$

- Watch Video Solution

98. Find $\mathrm{dy} / \mathrm{dx}$ if
$y=\sin ^{3} x+\cos ^{6} x$

- View Text Solution

99. Find $\mathrm{dy} / \mathrm{dx}$ if
$y=\sec \sqrt{2 x+3}$

- View Text Solution

100. Find $d y / d x$ if
$y=\tan \sqrt{a^{2}+x^{2}}$

- View Text Solution

101. Find $\mathrm{dy} / \mathrm{dx}$ if
$y=\sin \sqrt{a^{2}+x^{2}}$

- View Text Solution

102. Find $\mathrm{dy} / \mathrm{dx}$ if
$y=\sqrt{1+\cot x}$

D View Text Solution
103. Find $d y / d x$ if
$y=\left(\cos x^{3}\right)\left(\sin ^{2} x^{5}\right)$

D View Text Solution
104. $\cos (\sin \sqrt{a x+b})$

- Watch Video Solution

105. Find $\mathrm{dy} / \mathrm{dx}$ if
$x^{3}+y^{3}=a^{3}$

- View Text Solution

106. Find dy/dx if
$2 x^{2}+5 x y+3 y^{2}=0$

- View Text Solution

107. Find $d y / d x$ if
$3 x^{4}-2 x^{2} y^{2}+5 x y^{3}-4 y^{4}=0$

- View Text Solution

108. Find $\mathrm{dy} / \mathrm{dx}$ if
$x(y-x)^{2}=x+y$

D View Text Solution
109. Find $d y / d x$ if
$x \sqrt{1+y}+y \sqrt{1+x}=0$

- View Text Solution

110. Find $d y / d x$ if
$x y=\sin (x+y)$

D View Text Solution
111. Find $d y / d x$ if
$\tan (x+y)+\tan (x-y)=1$

D View Text Solution

112. Find $d y / d x$ if
$x=t^{7}+1, y=t^{5}+3 t^{3}$

D View Text Solution
113. Find $d y / d x$ if
$x=a \sec \theta, y=b \tan \theta$

- View Text Solution

114. Find $\mathrm{dy} / \mathrm{dx}$ if
$x=a(t+\sin t), y=b \cos t$

D View Text Solution
115. Find $d y / d x$ if
$x=a(t+\cos t), y=a(t+\sin t)$

D View Text Solution

116. Find $d y / d x$ if
$x=\cos \theta+\theta \sin \theta, y=\sin \theta-\theta \cos \theta$
(D) View Text Solution
117. Find $d y / d x$ if
$x=a \sec ^{2} \theta, y=b \tan ^{3} \theta$

D View Text Solution

118. A particle describes a distance S meter in t seconds, where $S=7 t^{6}+4 t^{4}-11$.What will be its velocity and acceleration after 2 seconds ?
119. A particle moves in a straight line according to the law $S=a t^{2}+b t+c$.lf at the ends of 3 seconds, it has covered 20 cms , attained velocity $9 \mathrm{~cm} / \mathrm{sec}$ and has acceleration $4 \mathrm{~cm} / \mathrm{sec}^{2}$, find $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

D View Text Solution

120. Find the rate of change of the area of a circle with respect to its radius r when $r=3 \mathrm{~cm}$
121. Find the rate of change of the area of a circle with respect to its radius r when $r=4 \mathrm{~cm}$

D View Text Solution

122. The radius of a circle is increasing uniformly at the rate of $3 \mathrm{~cm} / \mathrm{s}$.Find the rate at which the area of the circle is increasing when the radius is 10 cm .

D View Text Solution
123. The rate of change of radius of a circle is $\frac{1}{\pi} \mathrm{~cm} / \mathrm{sec}$. Find the rate of change of circumference of the circle and area bounded by the circle when its radius is 4 cm .

D View Text Solution

124. Find the point on the curve $y^{2}=8 x$ at which the abscissa and the ordinate change at the same rate.
125. A balloon, which always remains spherical
on inflation, is being inflated by pumping in

900 cubic centimeters of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm .

D View Text Solution

126. A balloon, which always remains spherical ,
has a variable diameter $3 / 2(2 x+1)$. Find the rate of change of its volume with respect to x.
127. A man 1.5 m tall walks away from a lamp post 4.5 m high at a rate of $4 \mathrm{~km} / \mathrm{hr}$. (i) How fast is his shadow lengthening?

- Watch Video Solution

128. Sand is pouring from a pipe at the rate of
$12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on
the ground in such a way that the height of the cone is always one-sixth of the radius of
the base. How fast is the height of the sand cone increasing when t

D Watch Video Solution

129. Find the slope of the tangent to the curve
$y\left(x^{2}+1\right)=x$ at the point $(1,1 / 2)$

D Watch Video Solution

130. Find the inclination to the positive x-axis
of the tangent to the curve
$2 y=2-x^{2}$ at the point $(1,1 / 2)$

- Watch Video Solution

131. Find the points at which the tangent to
the curve $y=\frac{x^{4}}{4}-2 x^{2}$ is parallel to the x axis.

- View Text Solution

132. Find the points on the circle $x^{2}+y^{2}=16$ at which the tangents are perpendicular to
the y-axis and the x-axis.

D Watch Video Solution

133. Find the point on the curve $y=2 x^{2}$ at which the slope of the tangent is 6 .

- Watch Video Solution

134. Find the slope of the normal to the curvex $=1-a \sin \theta, y=b \cos ^{2} \theta$ at $\theta=\frac{\pi}{2}$.
135. Find the point on the curve $y=(x-2)^{2}$ at which the tangent is parallel to the chord joining the points (2,0) and (4,4).

D Watch Video Solution

136. Find the point on the curve $y=x^{3}-11 x+5$ at which the tangent is

$$
y=x \quad 11
$$

D Watch Video Solution
137. Find the equation of all lines having slope

1that are tangents to the curve
$y=\frac{1}{x-1}, x \neq 1$.

D Watch Video Solution

138. Find the equations of all lines having slope 0 which are tangent to the curve $y=\frac{1}{x^{2}-2 x+3}$.
139. Find the equation of the tangent to the
curve.
$x^{2}+5 y^{2}=9$ at $(2,-1)$

- View Text Solution

140. The equation of tangent to the curve $x^{2}+y^{2}+x y=3$ at $(1,1)$ is

D Watch Video Solution
141. Find the equation of the tangent to the
curve.
$y^{2}=4 x+5$ at $(1,3)$

- Watch Video Solution

142. Find the equation of the normal to the
curve
$y\left(x^{2}+4\right)=16$ at $(2,2)$

- Watch Video Solution

143. Find the equation of the normal to the

curve

$x^{2}-4 y^{2}=9$ at $(5,-2)$

- Watch Video Solution

144. Find the equation of tangent and normal to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ at $(1,1)$
145. Find the equation of tangent and normal to :

The curve $y=2 x^{2}-4 x+3$ at $(2,3)$

- Watch Video Solution

146. Find the equation of tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$.
147. Find the equation of tangent and normal to :

Parbola $y^{2}=16 x$ at the point $(1,4)$

- Watch Video Solution

148. Find the equation of the tangent to the
curve $y=\sqrt{3 x-2}$ which is parallel to the
line $4 x-2 y+5=0$

- Watch Video Solution

149. Find the equation of the normal to the curve $3 x^{2}-y^{2}=8$ which are parallel to the line $x+3 y-5=0$

D Watch Video Solution

150. Find the equation of the tangent line to
the curve $y=x^{2}-2 x+7$ which is perpendicular to the line $5 y-15 x=13$.

D Watch Video Solution
151. Find the equations of tangent and normal to the curve at the point where it crosses the x-axis.

D View Text Solution

152. Prove that the sum of the x and y intercepts made by the tangent to the curve
$\sqrt{x}+\sqrt{y}=\sqrt{a}$ at any point on it's is a constant
153. Find $\frac{d^{2} y}{d x^{2}}$ if:
$y=\sec x-\tan x$

D View Text Solution

154. Find $\frac{d^{2} y}{d x^{2}}$ if:
$y=x^{2} \cos x$

- View Text Solution

155. Find $\frac{d^{2} y}{d x^{2}}$ if: $\sin x+\cos y=1$

D View Text Solution

156. Find $\frac{d^{2} y}{d x^{2}}$ if:
$y^{2}=a^{2} \cos ^{2} x+b^{2} \sin ^{2} x$

D View Text Solution
157. Find $\frac{d^{2} y}{d x^{2}}$ if:
$x^{3}+y^{3}-3 a x y=0$

D Watch Video Solution

158. If $x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=0$, find the value of $\frac{d^{2} y}{d x^{2}}$ when $\mathrm{y}=1$
159. If $\sqrt{y}+\frac{1}{\sqrt{y}}=2 x$, show that
$\left(x^{2}-1\right) y_{2}+x y_{1}-4 y=0$

D Watch Video Solution

160. Without using derivative, find the maximum value and the minimum value, if any,
of the function f defined by
$\mathrm{f}(\mathrm{x})=3+|\mathrm{x}+1|, x \in R$

D Watch Video Solution
161. Without using derivative, find the maximum value and the minimum value, if any, of the function f defined by
$f(x)=x^{2}, x \in R$

D Watch Video Solution

162. Without using derivative, find the maximum value and the minimum value, if any, of the function f defined by
$f(x)=x^{3}, x \in[-1,1]$
163. Find the local maximum, the local minimum values, if any, using first or second derivative test of the function f defined by
$f(x)=3 x^{4}-20 x^{3}+36 x^{2}+12$

D Watch Video Solution

164. Find the local maximum, the local minimum values, if any, using first or second
derivative test of the function f defined by
$f(x)=1+\frac{1}{x}+\frac{1}{x^{2}}$

D Watch Video Solution
165. Find the values of x, if any, for which $f(x)$
has local maximum and local minimum when
$f(x)=5 x^{6}-18 x^{5}+15 x^{4}-10$

D Watch Video Solution
166. Find the values of x, if any, for which $f(x)$
has local maximum and local minimum when
$f(x)=x \sqrt{1-x}, x \leq 1$

D Watch Video Solution

167. Find the values of x, if any, for which $f(x)$
has local maximum and local minimum when
$f(x)=x^{3}(x-1)^{2}$
168. Find the values of x, if any, for which $f(x)$
has local maximum and local minimum when
$f(x)=\sin x+\cos x, x \in[0,2 \pi]$

- Watch Video Solution

169. Find the local maximum, local minimum,
absolute maximum and absolute minimum
values of
$f(x)=x^{4}-2 x^{2}+5, x \in[-2,5]$
170. Find the local maximum, local minimum, absolute maximum and absolute minimum
values of
$f(x)=x(x-1)^{2}, x \in[0,2]$

- Watch Video Solution

171. Show that $f(x)=3 x-x^{3}$ has a local maximum at $\mathrm{x}=1$.
172. Show that $f(x)=x^{2}+\frac{250}{x}$ has a local minimum at $\mathrm{x}=5$.

- Watch Video Solution

173. Show that $f(x)=1+x+x^{2}+x^{3}$ has no local extremum.

- Watch Video Solution

174. Show that $f(x)=x^{3}-3 x^{2}+15 x+2$ has no local extremum.

D Watch Video Solution

175. Find the extreme values of the function
$y=2 x^{3}-9 x^{2}+12 x+5$

- Watch Video Solution

176. Find the maximum and minimum values of
the function $y=4 x^{3}-3 x^{2}-6 x+1$

D Watch Video Solution

177. Find two positive numbers x and y such
that
$x+y=28$ and $x y$ is maximum.

D Watch Video Solution
178. Find two positive numbers x and y such
that
$\mathrm{x}+\mathrm{y}=64$ and $x^{3}+y^{3}$ is minimum.

D Watch Video Solution

179. Find two positive numbers x and y such
that
$\mathrm{x}+\mathrm{y}=400$ and $x y^{3}$ is maximum.

D Watch Video Solution
180. Find two positive numbers x and y such that
$x y=36$ and $x+y$ is minimum.

- Watch Video Solution

181. Find the point on the curve $y^{2}=4 x$ which
is nearest to the point $(2,1)$.
(D) Watch Video Solution
182. Find the coordinates of a point on the parabola $y=x^{2}+7 x+2$ which is closest to the straight line $y=3 x-3$.

D Watch Video Solution

183. Show that the largest rectangle with a given perimeter is a square.

D Watch Video Solution

184. Show that of all the rectangles inscribed
in a given circle, the square has the maximum area.

D Watch Video Solution

185. Show that the triangle of maximum area
that can be inscribed in a given circle is an equilateral triangle.

D Watch Video Solution
186. Consider an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

What is the area of the greatest rectangle that can be inscribed in the ellipse?

D Watch Video Solution

187. Let $A P$ and $B Q$ be two vertical poles at
points A and B respectively. If
$A P=16 m, B Q=22 m$ and $A B=20 m$,
then find the distance of a point R on $A B$
from the point A such that $R P^{2}+R Q^{2}$ is minimum.
188. If the length of three sides of a trapezium other than base are equal to 10 cm , then find the area of trapezium when it is maximum.

D Watch Video Solution

189. Show if $f(x)=|x|$ is differentiable for all x.
190. If $f(x)$ and $g(x)$ are differentiable for all, x then
$\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

- Watch Video Solution

> 191. If f is differentiable, then
> $\frac{d}{d x} f(\sqrt{x})=\frac{f^{\prime}(\sqrt{x})}{2 \sqrt{x}}$

- Watch Video Solution

192. Derive $\frac{d}{d x}(\tan x)=\sec ^{2} x$

- Watch Video Solution

193.

$f(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right)\left(1+x^{4}\right)$,
then $f^{\prime}(0)=1$

- Watch Video Solution

194. If $f(x)=7 x-8$, then $f^{\prime}(3)=$

- Watch Video Solution

195. Show that the equation of the tangent line to the parabola $y=x^{2}$ at $(-2,4)$ is y -$4=-4(x+2)$.

D Watch Video Solution

196. Write True/False:

If for any function $y=f(x), f^{\prime}(c)=0$, then the
tangent drawn to the curve at $\mathrm{x}=\mathrm{c}$ is parallel to the y-axis.

D Watch Video Solution

197. If $f^{\prime}(x)=\frac{1}{(3-x)^{2}}$, the equation of the
tangent line to $\mathrm{f}(\mathrm{x})$ at $\left(0, \frac{1}{3}\right)$ is $y=\frac{x}{9}+\frac{1}{3}$.

D Watch Video Solution

198. Write True/False:

All critical points of $f(x)$ satisfy $f^{\prime}(x)=0$
199. Write True/False:

If $f^{\prime}(c)$ does not exist and $f^{\prime}(x)$ changes from positive to negative as x increases through c, then $f(x)$ has a local minimum at $x=c$.

- Watch Video Solution

200. Write True/False:

If $\mathrm{f}^{\prime}(\mathrm{c})$ exists and $f^{\prime}(c)>0$, then $\mathrm{f}(\mathrm{x})$ has a
local minimum at $x=c$.

- Watch Video Solution

201. Write True/False:

If $f(x)$ has an absolute maximum at $x=c$, then $f^{\prime}($
c $)=0$

- Watch Video Solution

202. Write True/False:

If $f^{\prime}(c)=0$ then $f(x)$ has a local maximum or a
local minimum at $x=c$

- Watch Video Solution

203. Let $y=f(x)$ and $z=g(x)$ be two curves. Then
the tangents drawn to curves at the intersection of these curve is perpendicular to each other if and only if $f^{\prime}(x) \cdot g^{\prime}(x)=-1$

D Watch Video Solution

204. Given, $f(x)=x^{3}-5 x+2$. Then $\mathrm{f}^{\prime}(2)$ equals
A. $3 x^{2}-5$
B. 2
C. 7
D. 8

Answer: C

D Watch Video Solution
205. $\frac{d}{d x}\left(\sin x^{2}\right)=$?
A. $2 x \cos x^{2}$
B. $2 x \sin x^{2}$
C. $2 x \cos x$
D. $2 x \cos (2 x)$

Answer: A
(D) Watch Video Solution
206. Differentiate $a x^{2}+b$
A. $-2 a x$
B. 2 ax
C. $2 \mathrm{ax}+\mathrm{b}$
D. $a x+2 b$

Answer: B

D Watch Video Solution

$$
\begin{aligned}
& \text { 207. } \frac{d}{d x}\left[\frac{(x+1)^{3}}{x}\right]=\text { ? } \\
& \text { A. } \frac{3(x+1)^{2}}{x}+\frac{(x+1)^{3}}{x^{2}}
\end{aligned}
$$

> B. $\frac{3(x+1)^{2}}{x} \cdot \frac{(x+1)^{3}}{x^{2}}$
> C. $\frac{2(x+1)^{2}}{x}-\frac{(x+1)^{3}}{x^{2}}$
> D. $\frac{3(x+1)^{2}}{x}+\frac{2(x+1)^{3}}{x^{2}}$

Answer: B

- Watch Video Solution

208. The derivative of $y=|x-2|$ at $x=2$ is
A. 1
B. -1
C. 0
D. None of these

Answer: D

D Watch Video Solution

209. Given the polar equation $\mathrm{r}=1$. find $\frac{d y}{d x}$.
A. $\cot \theta$
B. $\tan \theta$
C. 0

D. $-\cot \theta$

Answer: D

D Watch Video Solution

210. The slope of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$ is :

A. 3
B. $\frac{1}{3}$
C. -3
D. $-\frac{1}{3}$

Answer: D

D Watch Video Solution

211. The line $y=x+1$ is a tangent to the
curve $y^{2}=4 x$ at the point:
A. $(1,2)$
B. $(2,1)$
C. $(1,-2)$
D. $(-1,2)$

Answer: A

D Watch Video Solution

212. The slope of the tangent line to the curve

$$
y=x^{3}-2 x+1 \text { at } \mathrm{x}=1 \text { is }
$$

A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$

D. $\frac{1}{4}$

Answer: A

D Watch Video Solution

213. Find the slope of the line whose parametric equations are $x=4 t+6$ and $y=t-1$
A. -4
B. 44200
C. 4

D. $\frac{1}{4}$

Answer: B

D Watch Video Solution

214. The slope of the tangent line to the curve

$x+y=x y$ at the point $(2,2)$ is
A. -1
B. -2
C. -3
D. -4

Answer: A

D Watch Video Solution

215. Find the coordinates of the vertex of the
parabola $y=x^{2}-4 x+1$ by making use of
the fact that at the vertex, the slope of the tangent is zero.
A. $(2,-3)$
B. $(3,-2)$
C. $(-1,-3)$
D. $(-2,-3)$

Answer: A

D Watch Video Solution

216. Find the point in the parabola $y^{2}=4 x$ at which the rate of change of the ordinate and abscissa are equal.
A. $(1,2)$
B. $(2,1)$
C. $(4,4)$
D. $(-1,4)$

Answer: A

D Watch Video Solution

217. Find the eqaution of the normal to
$x^{2}+y^{2}=5$ at the point $(2,1)$
A. $x+2 y=0$
B. $x-2 y=0$
C. $y-2 x=0$
D. $y+2 x=0$

Answer: B

D Watch Video Solution

218. Find the point on the curve
$y=3 x^{2}-4 x+5$ where the tangent line is
parallel to the line $y=-22 x+7$
A. $(0,5)$
B. $(-1,12)$
C. $(2,25)$
D. $(-3,34)$

Answer: D

D Watch Video Solution

219. The edge of the cube is increasing at a rate of $2 \mathrm{~cm} / \mathrm{hr}$. How fast is the cube's volume changing when its edge is $\sqrt{2} \mathrm{~cm}$ in length ?
A. $6 \mathrm{~cm}^{3} /$ hour
B. $12 \mathrm{~cm}^{3} / \mathrm{hour}$
C. $3 \sqrt{2} \mathrm{~cm}^{3} /$ hour
D. $6 \sqrt{2}$

Answer: B

D Watch Video Solution

220. Suppose $y^{\prime}+y=0$. Which of the following is
a possibility for $\mathrm{y}=\mathrm{f}(\mathrm{x})$
A. $y=\tan x$
B. $y=\sec x$
C. $y=\sin x$
D. $y=\frac{1}{x}, x \neq 0$

Answer: C

D Watch Video Solution
221. Suppose f is a function such that
$f^{\prime}(x)=4 x^{3}$ and $f^{\prime \prime}(x)=12 x^{2}$. Which of
the following is true?
A. f has a local maximum at $x=0$ by the $1^{s t}$
derivative test
B. f has a local minimum at $x=0$ by the $1^{s t}$
derivative test
C. f has a local maximum at $\mathrm{x}=0$ by the $2^{\text {nd }}$
derivative test
D. f has a local minimum at $\mathrm{x}=0$ by the $2^{\text {nd }}$
derivative test

Answer: D

222. In the curve $y=2+12 x-x^{3}$, find the critical points.
A. $(2,18)$ and $(-2,-14)$
B. $(2,18)$ and $(2,-14)$
C. $(-2,18)$ and $(2,-14)$
D. $(-2,18)$ and $(-2,14)$

Answer: A
223. What is the acute angle between the curves $\mathrm{xy}=2$ and $y^{2}=4 x$ at their point of intersection?
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\tan ^{-1}(3)$
D. $\pm \tan ^{-1}(3)$

Answer: C

D Watch Video Solution

