

MATHS

BOOKS - MAHAVEER PUBLICATION

PERMUTATIONS AND COMBINATIONS

Question Bank

1. Find the two-digit number (having different digits), which is divisible by 5.

2. A Hall has 3 gates. In how many ways can a man enter the hall through one gate and come out through a different gate?

Watch Video Solution

3. If repetition is allowed, how many even numbers of two digits can be formed with the digits 1,2,3,4,5?

4. Without reptition how many 4 digit numbers can be formed with the digits 1,3,5,7,9?

Watch Video Solution

5. How many different four-digit numbers greater than 6000 can be formed using the digit 1,2,4,5,6,7, if no digit can be repeated?

6. How many different four-digit numbers greater than 6000 can be formed using the digit 1,2,4,5,6,7, if repetitions are allowed?

Watch Video Solution

7. How many different five digit numbers can beformed from the digit 1,2,3,4 and 5 if there are no restrictions on digits and repetitions are allowed:

8. How many different five digit numbers can beformed from the digit 1,2,3,4 and 5 if the number is odd and no repetitions are allowed

Watch Video Solution

9. How many different five digit numbers can beformed from the digit 1,2,3,4 and 5 if the number is even and repetitions are allowed:

10. How many different five digit numbers can beformed from the digit 1,2,3,4 and 5 if the number is greater than 50,000 and no repetitions are followed?

Watch Video Solution

11. Find the value : 5! - 3!

12. Find the value : $\frac{7!}{4!}$

Watch Video Solution

13. Find the value : $3! \times \frac{7!}{5!}$

Watch Video Solution

14. If n is a natural number then show that

$$n! + (n+1)! = (n+2)n!$$

15. If n is a natural number then show that

$$1.3.5.7.\dots (2n-1) = rac{(2n)\,!}{2^n n\,!}$$

Watch Video Solution

16. If ${}^{56}P_{r+6}$: ${}^{54}P_{r+3}$ = 30800, find ${}^{r}P_{2}$.

Watch Video Solution

17. Prove that $\hat{}$ $nP_r-5^nP_r+r^{n-1}P_{r2-1}$.

18. How many 9 letters words can be formed using the letters of the word "COMMITTEE"?

Watch Video Solution

19. A child has four pocket and three marbles.

In how many ways can the child put the marbles in its pocket?

20. Find the value : 6C_3

Watch Video Solution

21. Find the value : ${}^5C_4 + {}^7C_4$

Watch Video Solution

22. Find the value : $\frac{\hat{}7C_3}{\hat{}3C_2}$

23. If

$$.^{n} C_{r-1} = 36, .^{n} C_{r} = 84 \text{ and } .^{n} C_{r+1} = 126,$$

find n and r.

Watch Video Solution

24. How many ways 3 students can be selected from 50 students ?

- **25.** In how many ways can 11 players be selected from 14 players if
- (i) a particular player is always included?
- (ii) a particular player is never included?

- **26.** In how many ways can 11 players be selected from 14 players if
- (i) a particular player is always included?
- (ii) a particular player is never included?

Watch Video Solution

27. Find the number of 4 letter words that can be formed from the letters of the word "ALLAHABAD".

Watch Video Solution

28. If $^nP_3=336$ find nC_3

29. If ${}^{n}C_{5} = {}^{n}C_{12}$ find n.

Watch Video Solution

30. Find value of ${}^8P_5, {}^6C_3$.

Watch Video Solution

31. If ${}^{17}C_5 = {}^n C_{12}$ find n.

32. (i) If ${}^{2n}C_3$: ${}^nC_3=11$: 1, find n.

(ii) If ${}^{2n}C_3$: ${}^nC_2=12$: 1, find n.

33. 12points lie on a circle. How many cyclic quadrilaterals can be drawn by using these points?

34. In a box there are 5 black pens,3 white pens and 4 red pens .In how many pens can 2 black pens, 2 white pens and 2 red pens can be chosen?

Watch Video Solution

35. In how many ways can 4 girls and 5 boys be arranged in a row so that all the four girls are together?

36. How many arrangements of the letters of the word 'BENGALI' can be made if the vowels are never together.

Watch Video Solution

37. How many arrangements of the letters of the word 'BENGALI' can be made if the vowels are to occupy only odd places.

38. Out of 9 girls and 13 boys how many different committees can be formed each consisting of 5 boys and 3 girls?

Watch Video Solution

39. From 10 boys and 20 girls, a committee of 2 boys and 3 girls is to be formed. In how many ways can this be done if a particular boy is included.

40. From 10 boys and 20 girls, a committee of 2 boys and 3 girls is to be formed. In how many ways can this be done if a particular girl is included

Watch Video Solution

41. From 10 boys and 20 girls, a committee of 2 boys and 3 girls is to be formed. In how many ways can this be done if a particular girl is excluded

42. Find the value of if n if $^{n+1}P_3=4^nP_2$

Watch Video Solution

43. Find the value $\frac{8!}{6!X2!}$

45. Find the value $^{11}P_5$

Watch Video Solution

46. Find the value $^{14}P_{11}$

47. (i) If ${}^{2n}C_3$: ${}^{n}C_3 = 11:1$, find n.

(ii) If ${}^{2n}C_3$: ${}^nC_2=12$: 1, find n.

Watch Video Solution

48. Find n if ${}^{n}P_{4} = 10 \times {}^{n}P_{3}$

Watch Video Solution

49. Find n if ${}^nC_{12} = {}^n C_8$

50. Find n if nP_3 : ${}^{n+1}P_3 = 5$: 12

Watch Video Solution

51. If ${}^nC_{10} = {}^nC_5$ find ${}^nC_{14}$

Watch Video Solution

52. Find the value of r if $^nP_r=3024$ and

 ${}^{n}C_{r}=126$

53. Find the value of r if ${}^{n-1}P_r$: ${}^nP_r=2:3$ and nC_r : ${}^{n+1}C_r=9:13$, then find n and r

54. If show that ${}^{n-1}P_r=(n-r).{}^{n-1}P_{r-1}$

55.

Prove

that

 $^{n}C_{r}+2.^{n}\ C_{r-1}+^{n}\ C_{r-2}=^{n+2}\ C_{r}$

Watch Video Solution

56. How many odd numbers of 5 district signification digits can be formed with 0,1,2,3,4?

57. Find how many word can be formed of the letters in the word "FAILURE" so that the vowels main never may seprated

Watch Video Solution

58. How many ways the letters of the word "RUBBER" can be arranged?

59. In how many ways can be letters of the word "MULTIPLE" be arranged without changing the order of the vowels in the word?

Watch Video Solution

60. How many numbers of five digits can be formed without repetition if 2,3 and 5 always occur in each number

61. How many numbers of five digits can be formed without repetition if 0 never occurs ?

Watch Video Solution

62. Six different colours are chosen to make a tri-colour fiag. How many different fiags can be made?

63. How many chords can be drawn through 11 points on a circle?

Watch Video Solution

64. How many numbers of 4 digits can be formed with the odd digits without repeating any digit?

65. How many words can be formed with the letters of the word 'PENCIL' beginning with C?

Watch Video Solution

66. In how many ways 7 books can be arranged from 10 books?

67. From 50 students how many ways a group of 3 repesentative can be selected if a particular student is always included. From 50 students how many ways a group of 3 representative can be selected if a specific student is never included.

Watch Video Solution

68. In how many different ways can 8 examination papers be arranged in a row, so

that the best and the worst papers may never come together?

Watch Video Solution

69. In how many ways a committee of 5 is to be formed from 6 boys and 4 girls, where the committee contains at least one girl.

